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Speaker Identification Based on the Use
of Robust Cepstral Features Obtained
from Pole-Zero Transfer Functions
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Abstract—A common problem in speaker identification systems or rejected [2]. Speaker recognition can either be done as a
is that a mismatch in the training and testing conditions sacrifices - text-dependent or text-independent task. The difference is that
much performance. We attempt to alleviate this problem by i the former case, the speaker is constrained as to what must
proposing new features that show less variation when speech . N . .
is corrupted by convolutional noise (channel) and/or additive be said while in the latter case, no f:onstrglnts are imposed.
noise. The conventional feature used is the linear predictive The overall system that we consider will have three com-
(LP) cepstrum that is derived from an all-pole transfer function ponents:

which, in turn, achieves a good approximation to the spectral : g ; i
envelope of the speech. Recently, a new cepstral feature based 1) ggzgtrrarl)rZﬂl\gll\(/)T)e('Lp) analysis for parameterizing the

on a pole-zero function (called theadaptive component weighted - ) o
or ACW cepstrum) was introduced. We propose four additional 2) feature extraction for ensuring speaker discrimination;
new cepstral features based on pole-zero transfer functions. One  3) classifier for making a decision.

is an alternative way of doing adaptive component weighting ; : :

and is called the ACW2 cepstrum. Two others (known as the .The input to- the S.yStem wil be. a .SpeeCh signal pos-
PFL1 cepstrum and the PFL2 cepstrum) are based on a pole-zero S'bIY corrupted by PP'Se a_nd possibly influenced by other
postfilter used in speech enhancement. Finally, an autoregressive€nvironmental conditions (like channel effects). The output
moving-average (ARMA) analysis of speech results in a pole-zero will be a decision regarding the identity of the speaker. A
transfer function describing the spectral envelope. The cepstrum rohyst system performs the recognition task successfully even
of this transfer function is the feature. Experiments involving a when the speech is corrupted by noise and/or communication

closed set, text-independent and vector quantizer based speaker h | eff he ideal si . . hi hiah
identification system are done to compare the various features. channel effects. The ideal situation is to achieve a hig

The TIMIT and King databases are used. The ACW and PFL1 performance in terms of recognition accuracy given any type
features are the preferred features, since they do as well or of speech material. The concentration of the work will be on
better than. the LP cepstrum for all the test. conditions. The the development of robust LP derived features in a closed
corresponding spectra show a clear emphasis of the formants qo eyt independent mode. Note that existing methods will
and no spectral tilt. To enhance robustness, it is important to . .
emphasize the formants. An accurate description of the spectral P& Used for the first and third components of the system.
envelope is not required. After LP analysis of speech [3] is carried out, various
equivalent representations of the LP parameters exist. A com-
parison of these parameters in terms of speaker recognition
accuracy revealed that the LP cepstrum is the best when
training and testing is done on clean speech [4]. The problem
. INTRODUCTION with the LP cepstrum is that a mismatch in training and testing
EAKER recognition is the task of identifying a speakegonditions sacrifices much performance, thereby diminishing
y his or her voice. Systems performing speaker recotfie robustness. The LP cepstrum is derived from an all-pole
nition operate in different modes. A closed set mode is ttigansfer function that describes the spectral envelope of the
situation of identifying a particular speaker as one in a finitgpeech. This in particular gives information about the formants
set of reference speakers [1]. In an open set system, a spe#iat is crucial for speaker recognition to be successful. Our
is either identified as belonging to a finite set or is deemedtempt in finding more robust features is to first transform
not to be a member of the set [1]. For speaker verification, thee all-pole transfer function derived from LP analysis into
claim of a speaker to be one in a finite set is either accept@dpole-zero transfer function that gives more emphasis to
the formants. The cepstrum of the pole-zero transfer function
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that of using a pole-zero transfer function derived after LP 1/A(z) AZ0.9)A%Z)
analysis. 30 30
20 \ 20
100/ N\ 10 ’ L
Il. PARAMETERIZATION OF SPECTRAL ENVELOPE 18' \ 18 -
The first component of the system transforms the speech 0 0.2 04 0 02 04
signal into a compact representation of its spectral envelope. @) %)
A linear predictive (LP) analysis [3] is used for this purpose.
An LP analysis of a speech signal, based on the model that a N1(zZ)/A) AZI0.T5)Az)

speech sample is a weighted linear combinatiop pfevious 2

samples, results in a set of weightg. The fundamental 10 A 10 .
equation governing this model is OM 0 N :

-10 - -10
p 0 0.2 04 0 0.2 0.4
s(n) = kz aps(n — k) +e(n) (1) ®) ©
=1
N2(2)/A(z) AZ0.9YAR)AZ)
where s(n) is the speech signal ane(n) is the error or 30
LP residual. These weights correspond to the direct form fg
coefficients of a nonrecursive filter 0 A
» » 10 / :
k=1 k=1 © 0

Fig. 1. Various spectra when speech is corrupted by additive white Gaussian

where fa fori1<k< p represent the zeros Oi(z). Passing noise (SNR of 20 dB). Clean speech, solid line; noisy speech, dotted line. (a)
h h .= I_h h the filtek lts in the LP Magnitude response of LP filter. (b) Magnitude response of ACW transfer
t e_ speec S'gna_ through the Tilt (Z) results in t e function. (c) Magnitude response of ACW2 transfer function. (d) Magnitude
residuale(n) that is free of near-sample redundancies. Thequnse of postfilteH, () (a = 1, 5 = 0.9). (¢) magnitude response of
determination of the LP coefficients, is usually based on Postfilter I, (=) (« = 1, 5 = 0.75). (f) Spectral envelope of postfiltered

. . speechl'(z) (o = 1, 3 = 0.9).
minimizing the weighted mean squared-erfy,. over a seg-
ment of speech consisting &f samples. In the minimization
of Fuse USing the autocorrelation approach [3], the coefficien®B(z) is given by
ay. are found by solving a system of linear equations. More-

over, A(z) is guaranteed to be minimum phase. The magnitude H(l — upzh)
spectrum of1/A(z) describes the spectral envelope of the U(z) w2
speech. Sincé/A(z) is completely specified by its poleg, P(z) = V(z) =% : 3)
the LP analysis is based on an all-pole model. H(l -z
An ARMA analysis leads to a transfer functiéf(z)/V(z) k=1

that approximates the spectral envelope. We use Sha
method [5] to determine the coefficients &fz) and V(z).
In this approach, a minimum phad3&(z) is first determined
by LP analysis and is equal td(z). The impulse response
of 1/V(z) is h(n), which is truncated tQV samples as the
segment of speech being analyzed consist¥ agamples. The I, 1 &,
error iss(n) — h(n) = u(n) whereu(n) is the finite impulse cp(n) = n Z YT Z Uk (4)
response ofl/(z). Upon minimization of the mean-square k=1 k=1
error, the coefficients of/(z) are found by solving a systemfor n > 0.
of linear equations. Althougli/(z) is not guaranteed to be The first feature we consider is the conventional LP cep-
minimum phase, this property can be forced by reflecting tkerum of the all-pole LP filterl/A(z). This serves as a
zeros ofU(z) outside the unit circle to lie inside. The order obenchmark to which we compare our proposed features. For
U(z) is determined empirically so as to achieve an acceptalie: next four features, the all-pole LP transfer functigii (=)
approximation of the spectral envelope. is transformed into a pole-zero function. It is known that
the mean-square difference between two cepstral vectors is
directly related to the mean-square difference in the magnitude
spectra of the transfer functions from which the cepstral vec-
The first component either gives an all-pole or pole-zetors were derived from [6]. The magnitude spectral pfi(z)
transfer function. The feature extractor generally performsodtained from clean and corrupted speech shows a degree of
transformation of the function and then computes the cepstralissimilarity even around the formant regions [see Figs. 1(a),
as the feature vector. Suppose a pole-zero transfer funct{a), and 3(a)]. This is manifested as a clear difference in

rI"Ik%(z) is minimum phase, the cepstrug(») can be obtained
either by a computationally efficient recursion based on the
polynomial coefficients or by considering the polynomial roots
ug, and v, as given [6] by

Ill. FEATURE EXTRACTION
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Fig. 2. Various spectra when speech is passed through the IRS filter. Cl€& 3. Various spectra when speech is passed through the CMV filter. Clean
speech, solid line; corrupted speech, dotted line. (a) Magnitude responsemédech, solid line; corrupted speech, dotted line. (a) Magnitude response of
LP filter. (b) Magnitude response of ACW transfer function. (c) MagnitudeP filter. (b) Magnitude response of ACW transfer function. (c) Magnitude
response of ACW?2 transfer function. (d) Magnitude response of postfiltersponse of ACW2 transfer function. (d) Magnitude response of postfilter

H,;(z) (@ = 1, 3 = 0.9). (e) Magnitude response of postfiltéf,, (=)
(o =1, 3 =0.75). (f) Spectral envelope of postfiltered spedtfr) (o = 1,

3 = 0.9).

H,;(z) (@« = 1, 3 = 0.9). (e) Magnitude response of postfiltéf,, s (=)
(o =1, 8 =0.75). (f) Spectral envelope of postfiltered spedctr) (o = 1,
B = 0.9).

the cepstral vectors which causes a performance degradatlbfas been shown in [8] thaV () is the derivative ofA(z)
Our objective is to transform the all-pole transfer functiowith respect to: and hence, the coefficientis are easily found
into a pole-zero transfer function such that the difference from ay asby = (p—k)ay/p for k = 1to p—1. The mismatch
the magnitude spectra decreases when noise is added toirtttbe magnitude spectra 8f(z)/A(z) for clean and corrupted
speech and/or the speech is passed through a channel. Wespsech is reduced over that bfA(z) [see Figs. 1(b), 2(b),
a recently introduced approach [7] for comparison purposasd 3(b)]. The numerator polynomi& (=) is guaranteed to
and formulate three novel approaches.
The existing approach as developed in [7] is to first perforthe feature vector and can be obtained by an efficient recursion
a partial fraction expansion af/A(z) to get

1 P Zli_{gclk[(l—sz_l)/A(Z)] P

Tk

AR =

The experiments in [7] reveal that the residues show

1- sz_l

k

= > T- .1 For1°

(5)

be minimum phase [8]. The cepstrumM{ =)/ A(z) is used as

based on the polynomial coefficients. This method is known as
adaptive component weightif\CW) and is primarily used
for mitigating channel effects [7].

Our first new approach is an alternative to the ACW
method. From the perspective of system analysis, the LP
filter 1/A(») can be viewed as the cascade connectiomp of
first order filters having a transfer functiary(1 — f,271).

considerable variations especially for nonformant poles whélonnecting these first-order sections in parallel results in

the speech is degraded. Therefore, the variations, iwere

the overall pole-zero transfer function for the ACW method

removed by forcing, = 1 for every k. Hence, the transfer [see (6)]. Using a similar reasonint/A(z) can be interpreted
function is a pole-zero type of the form

as a cascade connection of second-order sections (pairs of
first-order sections). The parallel combination of theg@

p p p
N(z) = Z 1 = 1 Z H (1—fiz™h) second-order sections gives rise to another overall pole-zero
A) =Nt AR S transfer function. We refer to this as the ACW2 approach.
p—1 For the initial cascade connection, the question of which first-
1— Zbkz—k order sections to pair up emerges. We choose to pair up the
bl first order sections specified by the complex conjugate poles of
=bp P 6) 1/A(z). Any remaining real poles are also paired up. Suppose
1- Z apz =k that among the polesfy, there are- complex poles ang—c
k=1 real poles. The complex poles are arrangedasfy, fa2, f5,
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"+ Jey2: 2y, Where fitis the complex conjugate ofy.. The
remaining real poles are arrangedfas:, fe+2, -+ fp—1, fp- | Speakert || Accumuiated
In this case, the pole-zero transfer function is given as Va Codebook Distance
N(z) 2% 1
Alz) 1= froz=O(1 = frz—1 Spaaker 2 Accumulated
()i (= fm ) = iz "VQ Codebook || Distance | Speaker
(p—c)/2-1 Decision ——
+ ) - ‘ Identity
. ] (]
Pt (1= ferzrrrz7 )L = fegor1)z™t) ﬂ.
7 Test Vectors ' '
(7) , ,
In practice, we have observed that if real poles are present, Speaker N —
there are only two of them for the case whe#s- 12 assuming 0 Codebook || Distance
8 kHz sampled speech. Therefore, the optimal real pole pairing

is npt a pract_ical_ issue. The motivation of pair_ing up complex rig 4. Block diagram of VQ based speaker identification system.
conjugate pairs is based on the fact that the impulse response

of a second-order section specified by a complex conjugate . _ _ _ _
pole pair is a damped sinusoid. This provides for a mosPeech corrupted by additive white Gaussian noise. The signal

natural pole-zero model of the speech signal, representifgnoise ratio (SNR) is 20 dB. There is a certain mismaich
it as a superposition of amplitude modulated sinusoids. & the spectra ot /A(z) as mentioned earlier and revealed in

conjecture thatV(z) is minimum phase since no instance ofig. 1(6\_). We attempt to alleviate thls_mlsmatch by mtroducmg
a nonminimum phasé(z) was found in practice. In a real th_e various pole-zero trz?msfer functlons. As can be seen in
system, any roots oN(z) outside the unit circle should beFig- 1(b) and (c), the mismatch in the magnitude spectrum

reflected inside. Again, the cepstrum{z)/A(z) is used as for the ACW and ACW2 methods is reduced over that of
the feature vector. 1/A(z). It should be pointed out that the ACW2 spectrum

The other family of pole-zero transfer functions that w&hows very sharp peak values. Also, the amplitudes of the
formulate is based on the concept of a postfilter that w¥&lleys are more equal for the ACW spectrum than the ACW2
introduced in [9] to enhance noisy speech. The philosoppectrum. In analyzing the magnitude responséipf(z) as
in developing a postfilter relies on the fact that more nois&'oWn in Fig. 1(d) and (e), note the similarity between it and
can be perceptually tolerated in the formant regions (spectfa ACW spectrum. The formant amplitudes are emphasized

peaks) than in the spectral valleys. The postfilter is obtain¥gthout causing any spectral tilt. The response of the postfilter
from A(z) and its transfer function is given by is sensitive to changes in and 3. A decrease ofx causes

formant bandwidth broadening while a changeiaffects the
H(2) = A(2/B) 0<f<a<l. (8) spectral tilt. By comparing Fig. 1(d) and (e), it can be seen that
i A(z/a) - as 3 decreases, the spectral tilt becomes more apparent. The

The spectrum oft,,;(z) emphasizes the formant peaks. Thapectrum of the postfiltered speech [see Fig. 1(f)] shows some

spectral envelope of the postfiltered speech is determinedsBECtral tilt but reflects the spectral envelope of the enhanced
the magnitude response of speech, which is desired to be more like that of clean speech.

The formant peaks are amplified and the valleys are depressed.
T(z) = A(z/B) 9) Fig. 2 shows the magnitude responses of the LP filter and
A()A(z/a) of the pole-zero transfer functions when speech is passed

through the intermediate reference mask (IRS) channel. A
anteed to be minimum phase. The cepstrum of both tﬁién”ar figure (Fig. 3) shows the_ responses when speech is
polezoro vanster ctonsl, () and T()are used as oSS0 Bovgh i conteni e (G0 el
the feature vectors. The cepstrum Hi,;(z) can be shown [ I]. h h ls. Again. it is ob d hp h IIV-
to be equivalent to weighting the LP cepstrum by a fact epf onfe ¢ gnnels. gr;ln, Itis olsgrve that t ehpo efz?]ro
o™ — 3. The cepstrum of(z) can be shown to be equivalent ransfer functions lower the spectral mismatch over that of the
to weighting the LP cepstrum by a factos- o™ — 3. Other all-pole LP filter.
different ways of weighting the LP cepstrum (like frequency
weighting, inverse variance weighting and bandpass weight-
ing) have been considered in [10]-[12]. The weightings we
propose have an interpretation in terms of transfer functions.A vector quantizer (VQ) classifier [15], [16] is used to
Also, like the weightings in [10], [11], the lower indexedrender a decision as to the identity of a speaker. Note that we
cepstral coefficients are deemphasized. We will examine thee not restricted to this type of classifier for the features we
effect of these weightings on the spectrum and on the speagespose. A VQ classifier is used since it is known to perform
identification performance. very well and will make our results extremely reliable. The
Fig. 1 shows the magnitude responses of the various transgstem is shown in Fig. 4. For each speaker, a training set
functions for a frame of clean speech and for the same frameabffeature vectors is used to design a VQ codebook based on

If A(z) is minimum phase, botli,;(») and7’(z) are guar-

IV. VECTOR QUANTIZER CLASSIFIER
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the Linde—Buzo-Gray (LBG) algorithm [17]. There will B¢ TABLE |
codebooks, one pertaining to each of tMespeakers. IDENTIFICATION SUCCESSRATE AS A PERCENT FORCLEAN
SpeeCH (TIMIT D ATA BASE). THE THREE SUCCESS RATES
To test the system, a test utterance from one of ilie CORRESPOND TOCODEBOOK SiZES OF 16, 32, AND 64
speakers is converted to a set of test feature vectors. Consider -
. .. . Feature Tdentification Success Rate
a particular test feature vector. This is quantized by each of the LP Cepstrum 91 96 04
M codebooks. The quantized vector is that which is closest ﬁ(?v"vz gz 22 gl
according to some distance measure to the test feature vector. Posthlter PFLL o= 1, § = 0.9 92 99 92
We use the squared Euclidean distance as the measure. Hence, Postfiller PFL2 o = 1, § = 0.9 89 94 95
ARMA cepstrum 65 66 66

M different distances are recorded, one for each codebook.
This process is repeated for every test feature vector. The

distances are accumulated over the entire set of feature vectgtsy, the New England dialect are considered. The speech
The codebook that renders the smallest accumulated diSta%C%ownsampled from 16 to 8 kHz. For each speaker, there
identifies the speaker. When many utterances are tested, 43¢ ten sentences. The first five are used for training the VQ
success rate is the number of utterances for which the speai{gksifier. Therefore, the classifier is trained on clean speech
is identified correctly divided by the total number of utterancqﬁ“y_ The remaining five sentences are individually used for

tested. _ _ _ testing. One of the test conditions corresponds to clean speech

_The VQ codebooks will be trained for one particular cong,r \which there are 100 test utterances over which the speaker
dition, namely, for clean speech. Different test conditiongentification success rate is computed. Various other test
corresponding to clean and corrupted speech will be usedcfhditions are simulated by adding different types of noise
provide a definitive and quantitative evaluation of robustnesg,q passing the speech through different channels. For each
If a feature is robust, a mismatch between the testing and traiifannel test condition, there are again 100 test utterances. For
ing conditions should cause slight degradation in performanggch of the noise conditions, the ability to use different seeds
or success rate. to generate random noise permits 300 trials.

The King data base consisting of 26 San Diego and 25
Nutley speakers is also used. The speech is recorded over
long distance telephone lines and sampled at 8 kHz. There are

The experimental approach is described below. Prior to ath recording sessions, each having one utterance per speaker.
analysis, the speech is preemphasized by using a nonrecurgide data is divided such that there is a big mismatch in the
filter 1 — 0.952~!. For the LP analysis, the autocorrelatiorzonditions between sessions 1 to 5 and sessions 6 to 10. This
method [3] is used to get a 12th-order LP polynomigk). For mismatch is due to a change in the recording equipment, which
the ARMA analysis using Shanks method [5], the denominatganslates to a significantly changed environment [18]-[20].
polynomial is the LP polynomial. A sixth-order numeratofraining is done on session 1. Testing “within the great divide”
polynomial is then computed. Both types of analyses agerresponds to the utterances in sessions 2 to 5 in which there
done over frames of 30 ms duration. The overlap betweghsome mismatch with session 1. Testing “across the great
frames is 20 ms. The all-pole functiaty A(z) is converted divide” corresponds to the utterances in sessions 6 to 10, which
into the conventional LP cepstrum of dimension 12. For tha turn provide a big mismatch. Additional results are obtained
other four features described above, the all-pole function & follows. Training is done on session 2 while the remaining
first transformed into a pole-zero transfer function. The 12ine sessions are used for testing. For the experiments, the
dimensional (12-D) cepstrum of the pole-zero function i®tal number of test utterances “within the great divide” is
the feature vector. Similarly, the pole-zero transfer functiopog for the San Diego portion and 200 for the Nutley portion.
derived from an ARMA analysis is converted into a 12-Drhe total number of test utterances “across the great divide” is
cepstrum, which we denote as the ARMA cepstrum. ThEs0 for the San Diego portion and 250 for the Nutley portion.
feature vectors are computed only in voiced frames. The
voiced frames are selected based on energy thresholding and_
by the presence of at least three LP poles in an annufar T€Sting on Clean Speech
region close to the unit circle (formant poles). The latter The first experiment involves the testing of clean speech,
concept of considering LP poles for frame selection wasghich is performed by using the TIMIT data base. Table |
introduced in [7]. The VQ classifier [15], [16] (as describedhows the results. The performance does not always mono-
earlier) is trained using the 12-D feature vectors. A separdtmically increase as the codebook size gets bigger. Therefore,
classifier is used for each feature. The distance measurerely using a large codebook size does not benefit in terms
is the squared Euclidean distance. The codebooks for eadtperformance and imposes a cost in terms of memory and
speaker are designed using the LBG algorithm [17]. Thsmarch complexity. In the limit as the codebook size equals
test speech material corresponds to various conditions. Tthe number of vectors in the training set, a nearest neighbor
performance of the features under mismatched training adldssifier is obtained. Experiments have shown that the nearest
testing conditions is a good indicator of robustness. Theighbor classifier is inferior to the VQ technique using modest
performance measure is the speaker identification success rsitee codebooks [21]. This is because overlearning of the

Two data bases are used in the experiments. For the TIMF&ining data has taken place. For a codebook size of 32 (which
data base that comprises only clean speech, 20 speakerpractically very feasible), the cepstrum and the ACW2

V. EXPERIMENTAL PROTOCOL AND RESULTS



ZILOVIC et al. SPEAKER IDENTIFICATION BASED ON THE USE OF ROBUST CEPSTRAL FEATURES 265

TABLE I
IDENTIFICATION SUCCESSRATE AS A PERCENT FORSPEECH DEGRADED BY

TABLE IV
IDENTIFICATION SUCCESSRATE AS A PERCENT FOR SPEECH DEGRADED

ADDITIVE WHITE GAUSSIAN NoISE (TIMIT D ATA BASE). THE THREE
SuccessRATES CORRESPOND TOCODEBOOK SizES OF 16, 32,AND 64

BY BABBLE NoISE (TIMIT D ATA BASE). THE THREE SUCCESS
RaTES CORRESPOND TOCODEBOOK SIZES OF 16, 32,AND 64

Test Condition Test Condition

Feature Noisy speech | Noisy speech | Noisy speech Feature Noisy speech | Noisy speech | Noisy speech

o 30 dB SNR 20 dB SNR 10 dB SNR 30 dB SNR 20 dB SNR 106 dB SNR
Lr Cépstrum 79 85.3 86.3 47 56.3 61.3 18.7 24.7 21 LP Cepstrum 89.7 93.7 92.7 81 86 83.3 44.3 58 57

ACW 82.3 84.7 87 57 64.7 64 26.3 26.7 23.3 ACW 89.7 93 93 85 89.7 89 61.7 60.7 62.7

ACW2 84.3 88.3 91.3 | 50.7 63.3 60.7 | 19.3 23.7 23.3 ACW2 88 91.7 94 84 88 86.7 51.3 60.7 63
Postfilter PFL1 a =1, 5 =0.9 87 83.3 86 63 67 68 27 28.3 22.7 Postfilter PFL1 a =1, 48 =0.9 | 90.7 92 93.7 87.3 85.3 87 62 65 63.3
Postfilter PFL2 o =1, 5 =0.9 | 82.3 85 88.7 | 52.7 62.7 63.3 22.3 24 23 Postfilter PFL2 o =1, 4 =10.9 | 84.7 92.3 94.3 | 82.3 87.7 91.3 50 56.7 61

ARMA Cepstrum 60 60.3 60.7 | 45.7 43.3 46.7 | 21 20.3 22.3
TABLE V
TABLE 1l IDENTIFICATION SUCCESSRATE AS A PERCENT FORSPEECH INFLUENCED BY

IDENTIFICATION SUCCESSRATE AS A PERCENT FORSPEECH DEGRADED BY

CoLoreD Noist (TIMIT D Ata BAsg). THE THREE SUCCESS
RATES CORRESPOND TOCODEBOOK SIZES OF 16, 32,AND 64

DIFFERENT CHANNELS (TIMIT D ATA BASE). THE THREE SUCCESS
RaTES CORRESPOND TOCODEBOOK SIZES OF 16, 32,AND 64

_ _ Test Condition
Test Condition o Feature IRS channel | CMV channel | CPV channel
Feature Noisy speech | Noisy speech | Noisy speech (with mean removal)
30 dB SNR 20 dB SNR 10 dB SNR LP Cepstrum 59 63 68 51 56 63 48 49 56
LP Cepstrum | 788943923 | 8478686 3843443 ACW 60 71 73 56 62 66 61 61 62
ACW 92.3 93 94.3 | 81.7 84.3 82.7 | 37 36.7 39.3 ACW2 58 68 63 56 64 65 54 59 58
ACW2 88.3 04.3 94.7 | 74.7 78.7 79.7 | 38.7 36 40.7 Postfilter PFL1 a =1, 8 =0.9 63 71 72 58 66 70 63 67 68
Postfilter PFL1 a =1, 3 =09 | 91.3 90.7 93.7 | 84 84.3 87.3 42 44.3 43.7 Postfilter PFL2 a =1, 8 =0.9 63 68 62 56 59 58 51 57 58
Postfiller PFL2 « =1, § = 0.9 | 84.79296.3 | 84.7 88 92.3 | 44.3 46.3 50.3 o

) of 16. When the codebook size is 32, the PFL1 is the best
features show the best performance. However, the differengg;re. An increase in the codebook size to 64 shows a nearly
in performance among all the features (except the ARMéquivalent performance among the ACW, ACW2, PFL1, and
cepstrum) is very slight. The ARMA cepstrum definitely showsg) 5 features. The PFL1 is the generally preferred feature.

a much lower performance. For speech degraded by any type of noise (that we consider)
at a relatively high SNR of 30 dB, the features show a
similar performance. As the SNR decreases, differences in

In thi . t the test his d ded by diff erformance among the features begin to emerge. The new fea-
n this experiment, the test speech is aegraded by differ§itas g4 a5 well or better than the conventional LP cepstrum.

types of noise. First, consider additive white Gaussian nOiIEﬁ)wever the best feature depends on the type of noise
(AWGN). Table Il shows the results for various SNR values. ' '

As the SNR decreases, the mismatch between the training and | .
test conditions becomes more glaring and the performarfce 1€Sting on Speech Subjected to Channel Effects
for all the features decreases. When the SNR is 30 dB, thdn this section, we present the results for test speech
ARMA cepstrum clearly shows the worst performance. Thgubjected to different types of channel effects. When clean
performance of the various other features is about the saspeech is influenced by a channel, an additive component
with the ACW?2 having a slight edge. For the lower SNRnanifests itself on the cepstrum of the clean speech. It has
values, the disparity between the performance of the ARMBeen shown that removing the mean of the cepstrum attempts
cepstrum and of the other features becomes less. The PEhHeemphasize this additive cepstral component and improves
features is the best for an SNR of 20 dB. performance [4]. Since all the features we consider are cepstral
The test speech is now corrupted by colored noise thattype features, we show the results when mean removal is done.
generated by passing white Gaussian noise through a recur$iee the LP cepstrum, a better method of mean removal known
linear predictive filter computed from a frame of speechspole filtered mean removalas been recently proposed [22].
corresponding to a sustained vowel. Table Il shows the resulste that we do not consider pole filtered mean removal in
for various SNR values. Due to the inferior performance of thtais paper.
ARMA cepstrum for clean speech and white noise, we do notFor the TIMIT data base, the test speech is obtained
find it necessary to consider it for the colored noise conditiohy passing each utterance through three types of channels,
Again, as the SNR decreases, the performance for all thamely, 1) the intermediate reference mask (IRS) channel, 2)
features decreases. For an SNR of 30 dB, the performarice continental mid voice (CMV) channel [13], [14], and 3)
of all the features is similar. For the lower SNR values, thide continental poor voice (CPV) channel [13], [14]. All three
PFL2 feature is the best particularly for a codebook size of 6dre representative of telephone channels. Table V depicts the
Consider the case when the test speech is corrupted rbgults. The cepstral features based on the pole-zero transfer
babble noise. Table IV shows the results for various SNignctions are almost always better than the conventional
values. Again, the ARMA cepstrum is not considered. FarP cepstrum. The improvement over the conventional LP
SNR values of 30 dB and 20 dB, all the features show aepstrum depends on the type of channel. For the CPV
similar performance. When the SNR is 10 dB, the ACWhannel, the PFL1 feature is better than the LP cepstrum by a
and PFL1 features are the best for a small codebook sfagtor of at least 12% depending on the codebook size.

B. Testing on Noisy Speech
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TABLE VI TABLE VII
IDENTIFICATION SUCCESSRATE AS A PERCENT FOR THESAN DIEGO IDENTIFICATION SUCCESSRATE AS A PERCENT FOR THENUTLEY
PoRTION OF THE KING DATA BASE. THE THREE SUCCESS PorTION OF THE KING DATA BASE. THE THREE SUCCESS
RATES CORRESPOND TOCODEBOOK SiZES OF 16, 32,AND 64 RaTES CORRESPOND TOCODEBOOK SIZES OF 16, 32,AND 64
Test Condition R e Test Condition
Feature Within the great divide | Across the great divide Feature Within the great divide | Across the great divide
(with mean removal) {with mean removal)
LP Cepstrum 73.1 71.6 74.6 49.6 50.8 48.1 LP Cepstrum 25 30 29.5 22.8 24.8 25.0
ACW 72.6 75.0 76.5 52.3 58.9 59.2 ACW 34 35 38.5 28.8 31.2 32.4
ACW?2 65.4 73.1 74.5 45.8 47.7 50.4 ACW?2 31 31.5 35.5 23.6 24.8 25.6
Postfilter PFLla =1, 8= 0.9 75.0 77.0 79.8 57.4 62.3 62.3 Postfilter PFLl a =1, 8= 0.9 35.5 38 38 31.6 32.0 34.0
Postfilter PFL2 « =1, 8= 0.9 711 74.0 76.9 52.4 51.6 53.1 Postfilter PFL2 o = 1, 8 = 0.9 30.5 32 33.5 26.8 28.0 28.4
Tables VI and VII depict the results for the San Diego and VI. SUMMARY AND CONCLUSIONS

Nutley portions of the King data base, respectively. We first In this paper, various new cepstral features based on pole-

discuss the results n Table VI for the San Diego portion ar}%ro transfer functions are examined with respect to robustness
relate them to two issues, namely, mean removal and frajie,ice and channel effects. The benchmark is the conven-

selection based on LP poles. Energy thresholding is alW"’\}'oc'nal LP cepstrum based on the all-pole LP transfer function.

performed. First, consider testing “within the great dlV'de'This all-pole function is converted in different ways into pole-

Due to t_he relatl\(gly lower mismatch between the rainiNgs 4 transfer functions from which the cepstral feature is
and testing conditions, all of the features show a S'm'l%rbtained Two of the pole-zero functions, namely, the ACW

performance. However, the ACW and PFL1 features dep'&ﬁd ACW?2 are based on a partial fraction expansion of the LP

a slightly better performance. When frame selection based é\?—pole function. A subsequent normalization of the residues

LP poles is done, mean removal improves performance the key to enhancing robustness. The ACW spectrum

0, 0, 1 )
14% to 18% for all the features. An expe_rlment was done":"mphasizes the formants. Another two pole-zero functions
to compare the performance of the conventional LP cepstr

. . : PFL1 and PFL2) are based on the concept of a postfilter
:\Vghmin:n V:gaostaﬁrgg]?jos:éectﬂ%n.sqaigde%]erﬁf dpoeletsa ¥Y: thich was initially configured for speech enhancement. The
S val | » (N€ Improv ue "WEL1 and PFL2 cepstra are equivalent to applying a weight to
selection is 3% to 4% depending on the codebook size. W%\ conventional LP cepstrum. Like the ACW spectrum, the
geg; relg: Z\rﬁelz’ ;Z?elgtqig?\;%nggnér?rl::ntcoefrgnk:s;riicsuol?] '?7] BL1 spectrum emphasizes the formants. Another method of
> ) ' . %%ting a pole-zero transfer function is to consider an ARMA
baseline performance (LP cepstrum without frame selectio ﬁ :
. : analysis of speech.
was compared to the ACW feature in which frame selection Experiments are conducted using both the TIMIT and
was done. If we do the same comparison of the base“??ng data bases. A vector quantizer classifier is used. The

performance with the features based on pole-zero transfer . L : "
) . . o . ; Rerformance under mismatched training and testing conditions
functions, a more glaring disparity is seen particularly wit

. 2 .. 1S,a good measure of robustness. There is some variation in
mean removal. Now, consider testing “across the great dIVId?.

For codebook sizes of 16 and 32. the ACW. PFEL1 arzge relative robustness of the features for different conditions.
PFL2 features are better than the LP cepstrum. Moreover, vrxggnvee\l/ser'o:hze?tgyvt’thTLtlr{earlic;’ Pczlbzstflfrgsa‘rgrmaﬁe;Loemlezi
PFLL is clearly the best and the ACW is the second beg nditions. For specific cases, the ACW and PFL1 cepstrum

The superiority of the ACW and PFL1 features is maintainet ]

for a codebook size of 64. When frame selection is dong, clearly better than the LP C_epstrum_. These (?ases _are.
mean removal improves performance by 23 to 45% for all 1) speech corrl_thed by additive _vvhlte Gaussian noise (SNR
the features. With mean removal and no frame selection, the  ©f 20 dB) with a codebook size of 16; .
performance of the LP cepstrum is between 9% to 14% less?) SPeech corrupted by babble noise (SNR of 10 dB) with
than with frame selection. This again shows the enhancement @ codebook size of 16;

of robustness due to frame selection. As in [7], a comparison of3) Speech influenced by the CPV channel;

the LP cepstrum without frame selection to the other features?) When testing is done “across the great divide” for the
with frame selection reveals a more glaring difference. Finally, =~ San Diego portion of King (codebook sizes of 32 and
note that we try to emulate a more practical scenario by using 64);

less training data than what is used in [18]. 5) for the Nutley portion of the King data base.

Now, consider the results in Table VII for the Nutley portion In view of this, the ACW cepstrum and the PFL1 cepstrum
of the King data base. The identification success rates are the preferred features. Note that both the ACW spectrum
consistently lower than for the San Diego portion since trnd the PFL1 spectrum show similar characteristics in that
Nutley portion is more noisy [18]-[20]. This disparity in thethe formants are emphasized and there is no spectral tilt. This
results for the two portions has also been recorded in [18]-[20Fplies that for robust speaker identification, the formants are
The ACW and PFL1 features depict the best performaneatremely important. Moreover, an accurate representation of
for both “within” and “across the great divide.” When framehe entire spectral envelope either by LP analysis or by ARMA
selection based on LP poles is done, mean removal improaslysis is not the best way of providing robustness. The
performance by 3% to 9% for all the features. overall spectral envelope changes when speech is corrupted by
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