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Abstract-- An important concept in the study of
beth continuous (or analog) and discrete (or
digital) control systems is that of stability in
that engineers must always design a stable
system. The criteria for ensuring stability for
an analog system is that the poles lie in the left
half plane. For a discrete system, the poles
must lie within the unit circle. Checking for
stability without factorizing the system
polynomial has been a topic heavily researched
since factorization is computationally
expensive. Stability checks are based on
recursive arithmetic operations involving the
system polynomial coefficients. The Routh-
Hurwitz criterion is used for analog systems
and the Jury criterion is used for discrete
systems. For students to appreciate the
significance of these stability checks, computer
experiments have been devised. Students
continue to refine their programming skills
and apply it to learning about stability.
Further depth into the study of system
polynomials is achieved by randomly
generating polynomials and checking for
stability.

Index terms—stability, Routh-Hurwitz criterion, Jury
criterion, random, control systems, transfer function, impulse
response.

I. INTRODUCTION

A linear system is completely described by its impulse
response h () in that given any input, the output can be
calculated using convolution [1][2]. A continuous time or
analog system will have impulse response h(t) and a discrete
time or digital system will have impulse response h(n). A
system is causal if the output only depends on present and

i

previous inputs and outputs. Causality is necessary for
realizing a system and will be assumed to hold. For an
analog system, the transfer function is the Laplace transform
[1][2] of the impulse response denoted as H(s). For a
discrete system, the transfer function is the z-transform of
the impulse response denoted as H(z) [3](4][5]. In either
case, the transfer function is commonly expressed as the
ratio of two polynomials. The roots of the numerator
polynomial are the zeros of the transfer function and the
roots of the denominator polynomial are the poles of the
transfer function. The pole positions reveal whether or not
the system is bounded-input, bounded-output (BIBO)
stable. Stability in the BIBEO sense means that any bounded
input results in a bounded output. This is crucial to system
implementation since any control system must be BIBO
stable. For an analog system, the poles must be within the
left half plane in that the real part of every pole must be
negative [1][2]. For a digital system, the poles must be
within the unit circle in that the magnitude of every pole
must be less than one [3][4][5].

In practice, the denominator polynomial of the transfer
function is known in terms of the polynomial coefficients
only. From the coefficients, the issue of whether the system
is stable or not must be determined. An obvious method is
to use polynomial factorization to get the poles and then,
test for stability. Numerical factorization routines like
Laguerre's method [6] or those based on finding the
eigenvalues of a Hessenberg matrix containing the
polynomial coefficients [6] are computationally intensive.
The Routh-Hurwitz criterion [1] for analog systems and the
Jury criterion [3][4][5] for digital systems detect the
stability purely based on arithmetic operations involving the
polynomial coefficients and hence, avoid polynomial
factorization. Therefore, both criteria are much less
computationally demanding.

[I. COMPUTER EXPERIMENTS

Students gain an appreciation for the computational

efficiency of the Routh-Hurwitz and Jury criteria by

doing the following computer experiment.

1. Write a MATLAB [7] code to implement the Routh-
Hurwitz and Jury criterion.



2. Compare the floating point operations ({.ops) required
to check stability by doing root finding and
implementing the Routh-Hurwitz and Jury stability
checks. The number of flops can be easily obtained in
MATLAB.

3. Do the comparison for polynomial orders ranging from
1 to 20.

Students continue to refine their programming skills and
apply it to learning about stability. It was found that as the
polynomial order increased, the Routh-Hurwitz and Jury
stability checks became more and more efficient than root
finding. Figures | and 2 show the results. In Figure 1, the
ratio of the number of flops required for polynomial
factorization to the number of flops required for the Routh-
Hurwitz criterion is shown for varying polynomial orders.
In Figure 2, the ratio of the number of flops required for
polynomial factorization to the number of flops required for
the Jury criterion is shown for varying polynomial orders.
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Figure 1 Comparison of polynomial factorization with the
Routh-Hurwitz criterion

Further depth into the study of system polynomials is

achieved by doing the following for polynomial orders from

1 to 10. The students perform this experiment for an analog

system only as the concept easily carries over to digital

systems.

1. Randomly generate polynomials and check for stability
using the Routh-Hurwitz criterion.

2. From the above, calculate the probability [8] of getting
a stable system from a set of random coefficients,

3. Analytically verify the result for orders 1 and 2.

As the polynomial order increases, the probability of getting

a stable polynomial decreases. This explains the
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Figure 2 Comparison of polynomial factorization with the
Jury criterion

reason why control engineers want to model systems with as
low order as possible. A first order system polynomial is
given by

D(s)=as+b

By using the Routh-Hurwitz criterion, the conditions on a
and b for left half plane roots which lead to stability are

a>0,b>0 or a<0,b<c0

If the coefficients a and b are uniformly distributed in two
dimensional Euclidean space, the probability of randomly
generating a stable polynomial is 0.5. A second order
system polynornial is given by

D(s)=a52+b+{:

By using the Routh-Hurwiltz criterion, the conditions on a, b
and c for left half plane roots which lead to stability are

a>0,b>0,c>0 or a<0,b<0,c<0

If the coefficients a, b and c are uniformly distributed in
three dimensional Euclidean space, the probability of
randomly generating a stable polynomial is 0.25. As the
polynomial order increases, there are more nonlinear
restrictions on the coefficients thereby diminishing the
probability of randomly obtaining a stable polynomial. This
probability is computed using computer simulations. One
thousand polynomials were randomly generated for each of
polynomial orders 1 to 10. For each of the 1000
polynomials, the Routh-Hurwitz criterion was used to test
for stability. The number of occurrences of stability divided



by 1000 is the numerical calculation of the probability of
obtaining a siabie polynomial. This probability is computed
for polynormial orders ranging from 1 to 10. Figure 3 shows
the results.
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Figure 3 Probability of stability versus polynomial order

It can be seen from Figure 3 that for orders 1 and 2, the
probabilities are about 0.5 and 0.25 respectively. This is in
accordance with the analytical results. It is also noted that
for orders greater than or equal to 5, the chances of
obtaining a stable polynomial is practically zero. This
experiment was repeated with 6000 randomly generated
polynomials. However, the results did not change
significantly.

1. SUMMARY

In this set of experiments, students perform and benefit

from the following:

1. A study of control system stability in greater depth and
an appreciation of stability checks that avoid
polynomial factorization.

2. A refinement of programming skills.

3. Application of the knowledge gained in mathematics
(particularly probability theory) to observe how
stability and polynomial order are related.
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