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ABSTRACT 
This paper will focus on developing invariant pattern 
recognition algorithms for a class of parametric variations that 
are a significant cause of image transformations - variations in 
image gray level that occurs as a result of inadequate control of 
the imaging system. Situations such as these occur in many 
industrial applications - the one discussed in this paper is the 
magnetic imaging of gas pipeline faults. A general invariance 
transformation algorithm is developed and successful 
applications of the procedure are presented for the following 
two cases. The algorithm is first applied towards compensating 
for gray level variations in experimental signals obtained from 
gas pipeline inspections. The technique is then exercised with 
synthetic images to determine its ability to compensate for the 
effects of a “classical” image transformation - image scaling 
that occurs as a result of camera-object relative position. The 
results demonstrate that this invariance transformation 
technique can be applied effectively towards both types of 
image transformations. 

1. INTRODUCTION 

The development and application of invariant pattern 
recognition algorithms has been the focus of a significant 
number of image/object recognition techniques. Many of these 
methods deal with the “classical” invariants to compensate for 
the effects of camera-object relative translation, rotation and 
scaling. However, there exists yet another class of parametric 
variations that are a significant source of image transformation. 
These occur in a number of industrial situations when there is 
inadequate control of the actual test parameters associated with 
the imaging operation. For example, during the in-line 
inspection of gas pipelines, magnetic images of the pipe-wall 
are obtained by magnetizing the pipe. The images that are 
obtained depend on the magnetizer strength, orientation and 
location of the sensor, etc. Any and all of these cannot be 
controlled precisely in an actual test situation: in fact the exact 
values of these parameters are seldom known. Similar effects 
occur in remote sensing applications, imaging of components on 
an assembly line, etc. Such random and poorly defined 
parametric variations are reflected in the gray level values of 
the image. These effects must be compensated for, if any 

meaningful interpretation of the image is desired - for example, 
the magnetic image of a pipe-wall fault represents the fault 
depth and severity. 

A general algorithm for compensating for such unknown or 
imprecise variations has been developed [1,2]. In this paper, 
some application results are presented for two situations. The 
algorithm is applied for compensating the effects of gray-level 
variations in magnetic images of gas pipeline faults that occur 
due to poor control of the imaging test parameters. The 
versatility of the algorithm is demonstrated by applying it 
towards compensating for the effects of a “classical” image 
transformation - image scaling that occurs as a result of 
camera-object relative position. 

This paper is organized as follows. The invariance 
transformation algorithm is described in Section 2. In Section 3, 
results of applying the algorithm to compensate for parametric 
variations in experimental and synthetic images are shown. 
Finally the major findings are summarized and future work in 
this area is indicated. 

2. INVARIANCE TRANFORMATION 

The objective of the invariance transformation is to isolate 
information relating to the object (geometry and gray level) 
irrespective of the operational parameters associated with the 
imaging process. The algorithm should not only compensate for 
these variables, but also ideally, be able to operate without a 
precise knowledge of these variables. Such algorithms are, in 
fact, a part of many biological systems. For example, the human 
visual system is able to estimate the size of an object, regardless 
of its distance from the observer (obviously within a certain 
range of distances). The visual system accomplishes this by 
making two measurements, one with each eye. These two 
measurements are dissimilar and this dissimilarity is exploited 
in the visual cortex for synthesizing the composite 3-D view of 
the object, along with fairly accurate estimates of its size. The 
key process that allows for distance-invariant object size 
estimation is the fact that the image seen by each eye differs 
slightly from the other. This procedure can be modeled 
mathematically, and a generalization of the mathematical 
procedure can be developed for performing parameter-invariant 
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image characterization. Two dissimilar “views” of the test 
I specimen can be obtained by utilizing the two inspection 

modalities. The invariance transformation is an algorithm that 
can combine disparate signals by selectively promoting desired 
parametric variations (e.g. object geometry related changes) and 
suppressing unwanted ones (operational procedure related 
changes). 

A transformation that combines disparate signals can be 
designed when the signal interpretation problem is recast as a 
problem in the interpolation of scattered multidimensional data. 
The field of computational mathematics is rich with 
sophisticated techniques for data interpolation. Of all these 
techniques, feed-forward neural networks have triumphed as the 
ones possessing the widest range of application. These include 
multiquadnc surface interpolation, as in a radial basis function 
(RBF) networks [3] fuzzy inference systems (FIS) [4] and 
wavelet transform based networks (WaveNets) [5 ] .  The keq 
requirement for designing an invariance transformation 
procedure is a set (consisting of at least two) signals that 
originate from the same process. 

Given two signals, XA and XB, characterizing the same 
phenomenon, two distinct initial features, X A ( ~ ,  1, t) and xdd, I, 
t), are chosen, where t represents an operational variable (for 
instance, camera orientation) and d and 1 represent geometrical 
parameters (for instance, angle and length, respectively). XA and’ 
XB are chosen such that they have dissimilar variations with t. A’ 
systematic procedure is developed to obtain a feature, h, which 
is a function of XA and XB and invariant to the parameter, t. For 
simplicity, XA and XB are considered to be dependent on only 
three parameters d, 1 and 1. We need to find a function, f ,  such, 
that 

(1 )  
I 

f( XA (d, 1, t). X B  (d 1, 0 )  = h(d,l) 

Given two functions g1 and g2,a sufficient condition to obtain a 
signal invariant to t can be derived as 

h(d,l) + gi ( X A )  = g2 ( X B )  ( 2 )  

where + refers to a homomorphic operator. Then the desired t- 
invariant response is defined as 

@A, XB)  = g2 ( X B )  + gii’(Xa) = Md.0 (3) ’ 
To implement this procedure, the functions h, g1 and g2 need 

to be obtained. Since h is a user-defined function, it can be 
chosen conveniently; for example, a linear combination of d and 
1. The function g2 could be used to serve as a “conditioning” 
function, chosen to better condition the data. For example, if XB 
contains widely spread values, g2 can be chosen to be a 
logarithmic function. Having chosen h and g2 arbitrarily, a 
suitable functional form is assumed for g1, whose coefficients 
are to be determined. This is done by solving a set of 
simultaneous equations at discrete points, (di, 4, t k ) ;  i: 1 to rn; j :  
1 to n; k: 1 top, in the data space. That is, 

should be solved exhaustively. This is nothing but a problem in 
multidimensional interpolation. Invariance is possible using this 

method only if a unique solution to (4) exists, which depends on 
an appropriate choice of gl. Designing an invariance 
transformation function in essence boils down to finding the 
most suitable gl for the data set given. As mentioned earlier, 
functions modeled by feedfonvard neural networks are ideal 
functional forms for g1. In a practical application, images from 
two different camera location could be the two dissimilar signals 
that are required by this invariance transformation technique. 

3. APPLICATION EXAMPLES 
Two application examples are presented - one using 
experimental magnetic images of gas pipeline faults and the 
other using synthetic images that simulate the effects of 
variation in camera-object relative position. Each of these 
examples are described below. 

3.1 Gas Pipeline Inspection 

The natural gas industry plays a vital role in the economic well- 
being of the United States. Over 30% of the energy produced 
domestically is derived from natural gas; ensuring a safe and 
uninterrupted supply is extremely important. Today, natural gas 
is transported and distributed to consumers via a vast pipeline 
network that consists of over a million miles of pipe [6, 71. 
About 280,000 miles of these are 24”-36” diameter pipes, which 
are usually buried underground. The pipeline system requires 
routine maintenance to continue safely and efficiently 
transporting this key energy supply. 

The gas pipeline industry has developed procedures for in-line 
inspection of gas transmission pipelines starting in the early 
60’s. The latest inspection procedure employs a device known 
as a “pig” that is conveyed though the pipe under the pressure of 
natural gas (see Figure 2) .  The pig consists of a strong 
permanent magnet that magnetizes the pipe wall as it travels. 
When the magnet encounters surface-breaking defects on the 
pipe wall, a phenomenon called “magnetic flux leakage” occurs 
[8]. Some of the induced magnetic flux in the pipe “leaks” out 
of the pipe wall in the vicinity of the defect. This can be 
detected by flux sensitive devices on the pig. The pig also 
contains an on-board computer for digitizing and storing the flux 
leakage data. Such pipeline inspection devices can travel in the 
pipe for a few hundred miles; at the conclusion of the pigging 
operation, the stored data is retrieved and analyzed. 

Permanent Hall- Data 
Magnet effect Acquisition 

Sensors and Storage 

Figure 2. Gas pipeline inspection vehicle, the “Pig.” 
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Magnetic flux leakage (MFL) signals are indicative of the 
location and geometry of the defect. This method of 
nondestructive testing (NDT) finds extensive applications, not 
only in the pipeline industry, but can be used wherever 
ferromagnetic materials are involved. There have been a variety 
of techniques developed for interpreting such signals in terms of 
defect geometry, starting from simple calibration methods [9] to 
artificial neural networks [ I O ,  111. 

A significant problem associated with interpreting MFL images 
is that the gray-levels of these magnetic images in regions 
containing pipe-wall defects vary depending both on the 
magnetization level in the pipe-wall and also on the depth of the 
defect. It is desired to suppress the former variation since very 
little knowledge or control exists for the magnetization level. On 
the other hand - image gray-level variation with respect to the 
defect depth must be retained - that is the whole point of the 
inspection process. The invariance transformation mechanism 
described in Section 2 is ideal for performing this operation. 
The algorithm requires two signals that are indicative of the 
defect geometry - these are obtained from the normal and 
tangential components of the leakage magnetic flux density 
vector (a 3-dimensional quantity). Figures 2 and 3 show input 
magnetic images from identical sections of pipe-walls with 
defects and output magnetic images from the invariance 
transformation algorithm respectively. Gray level variations due 
to changing magnetization level are reduced/eliminated whereas 
gray level variations due to defect geometry are preserved. 

0.3” deep defect 

3.2 Camera-Object Relative Position 

This portion of the study investigates the capability of the 
invariance transformation to compensate for the effects of 
classical image transformations that consist of image translation, 
rotation and scaling. In particular, the investigation focuses on 
the effects of image scaling that occurs as a result of unknown 
variations in the relative position of the camera and the object. 
For purposes of this initial a square object is chosen as the 
image template. The square object is imaged by placing a 
camera in two asymmetric positions about the center of the 
square - these generate two differing perspective views of the 
object, required for implementing the invariance transformation 
algorithm. The imaging geometry is shown in Figure 4. The 
purpose of this exercise is to determine if the invariance 
transformation algorithm is capable of characterizing the size of 
the square object, irrespective of the relative distance between 
the camera and the object. 

Square objects generate trapeziodal shaped images, when 
imaged as described above. The effect of the relative positional 
shift can be described using the cross-ratio - which is defined as 
the ratio of the largest side of the image to its smallest. As the 
square object changes in size, and the distance of the camera 
varies, the cross-ratio does not remain constant for each 
square. This effect 

0.2” deep defect 

t -+ 

Magnetization 1 2 3 1 2 3 

Figure 2. Input magnetic images to the invariance transformation technique - images from pipes of 
varying magnetization embedded with flaws of varying depth 
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Figure 3. Output images from the invariance transformation technique - images lrom pipes of varying 
magnetization embedded with flaws of varying depth 
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Figure 4. Imaging geometry. 

is shown in Figure 6 which is obtained by simulating a set of 
square objects varying in dimension from 2x2 units to 14x14 
units, when the camera is positioned is varied from { (3,3); (3,- 
3tan60’)) to {(lO,lO); (10,-10tan60°)}. However, after applying 
the invariance transformation algorithm described in Section 2, 
square objects of a given size will retain the transformed cross- 
ratio parameter, irrespective of the relative position from the 
camera. These results are also shown in Figure 6. 

4. SUMMARY AND FUTURE WORK 

As can be seen from the application examples, the invariance 
transformation algorithm described in this paper can not only 
compensate for the effects of classical image transformations, 
but also can be used to provide invariance with respect to 
operational parameters. Ongoing research in this area will 
consist of validating the technique using images suffering from 
the effects of simultaneous multiple transformations. Both 
synthetic and experimental images will be used for this study. 

Cross 
Ratio 

15 - 

10 

01 I 

Square Side 
0 5 10 15 20 

Figure 5. Cross-ratios before and after transformation. 
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