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ABSTRACT 

Mismatched training and testing conditions for speaker recognition 
exist when speech is subjected to a different channel for both cases. 
This results in diminished speaker recognition performance. Esti- 
mating and removing the channel filtering effect will make speaker 
recognition systems more robust. It has been shown that a reliable 
estimate is obtained by taking the mean of the pole filtered linear 
predictive (LP) cepstrum. Finding the pole filtered mean requires 
factorization of the LP polynomial which is computationally inten- 
sive especially for real time applications. In this paper, we examine 
a fast method of doing pole filtering that avoids polynomial factor- 
ization. This method is much more computationally efficient and 
gives equal or better performance than the conventional way of do- 
ing pole filtering. Experimental results are given for four databases 
having a variety of mismatched conditions. 

1. INTRODUCTION 

Speaker recognition refers to the concept of recognizing a speaker 
by hisher voice or speech samples [1][2]. Some of the important 
applications of speaker recognition include customer verification 
for bank transactions, access to bank accounts through telephones, 
control on the use of credit cards, and for security purposes in the 
army, navy and airforce. The two main tasks within speaker recog- 
nition are speaker identification and speaker verification. Speaker 
identification (ID) deals with a situation where the person has to 
be identified as being one among a set of persons by using hisher 
voice samples. The objective of speaker verification is to verify the 
claimed identity of that speaker based on the voice samples of that 
speaker alone. A claimant speaker is either accepted or rejected by 
the system. 

The speaker ID problem may further be subdivided into closed 
set and open set. The closed set speaker ID problem refers to a case 
where the speaker is known a priori to belong to a set of Af speak- 
ers. In the open set case, the speaker may be out of the set and 
hence, a ”none of the above” category is necessary. Another dis- 
tinguishing aspect of speaker recognition systems is that they can 
either be text-independent or text-dependent depending on the ap- 
plication. In the text-independent case, there is no restriction on 
the sentence or phrase to be spoken, whereas in the text-dependent 
case, the input sentence or phrase is fixed for each speaker. A text- 
dependent scenario is commonly encountered in speaker verifica- 
tion systems in which a person’s password must be the same for 
enrollment and verification and is critical for verifying hislher iden- 
tity. 

0-7803-5482-6/99/$10.00 02000 IEEE 

FAST POLE FILTERING FOR SPEAKER RECOGNITION 

v-49 

Kevin R. Farrell 

T-NETIX Inc. 
67 Inverness Drive East 

Englewood, Colorado 801 12 
kevin.farrel1 @ t-netix.com 

CLASSlFICATlON 

L r 

Figure 1: A general diagram of a recognition system 

Speaker recognition consists of two stages, namely, Feature 
extraction and Classification as shown in Fig. 1. Feature extraction 
is associated with obtaining the characteristic patterns of the signal 
that are representative of the speaker in question. The parameters 
or features used in speaker recognition are a transformation of the 
speech signal into a compact acoustic representation that contains 
information useful for the identification of the speaker. This is of- 
ten done using short-time linear predictive (LP) [3] analysis which 
leads to an all-pole LP vocal tract model. The LP coefficients are 
converted to the LP cepstrum [3] which in turn, is the feature vec- 
tor. The classifier uses the features to render a decision as to the 
speaker identity or verifies the claimed identity of the speaker. 

The recognition task is highly successful if the environmental 
conditions for training and testing are the same (known as matched 
conditions). Studies have shown that recognition performance de- 
grades when the training and testing conditions are not the same 
(known as mismatched conditions) [4]. This occurs if the speaker 
is trained on one type of telephone (handset, cordless or speaker- 
phone) and during the testing phase, a different type of telephone is 
used. In this particular case, channel mismatch is encountered and 
this contributes to the degradation in the performance. Channels 
have a filtering effect on the speech and alter the overall spectral 
envelope of the speech signal. Assuming that the speech and chan- 
nel spectra are well approximated by the all-pole LP model, it is 
observed that a channel influence on the speech leads to an additive 
component on the LP cepstrum. Estimating and removing this ad- 
ditive channel component will mitigate the channel effect and make 
speaker recognition systems more robust. One method of estimat- 
ing the additive channel component is to take the mean of the LP 
cepstrum vectors over an utterance [5]. It has been shown that a 
better estimate is obtained by taking the mean of the pole filtered 
LP cepstrum (described in detail later) [ 6 ] .  Finding the pole filtered 
mean requires factorization of the LP polynomial which is compu- 
tationally intensive especially for real time applications. In this pa- 

mailto:rowan.edu
http://t-netix.com


per, we examine a fast method of doing pole filtering that avoids 
polynomial factorization [7]. This method is much more compu- 
tationally efficient and gives equal or better performance than the 
conventional way of doing pole filtering. 

2. FEATURE EXTRACTION 

The autoregressive LP model for speech is given by the difference 
equation [3] 

P 

s ( n )  = C a,s(n  - i )  + c ( n )  (1) 

where s (n )  is the speech signal, c(n) is the predictionerror and a, 
are the predictor coefficients. It can be noted that s (n )  is predicted 
as a linear combination of the previous p samples. The all-pole LP 
transfer function is given by 

*=1 

,=1 

where S ( z )  and E ( z )  are the z-transforms of s ( n )  and e(.) re- 
spectively. In practice, the predictor coefficients a, are computed 
over short intervals (typically 10 ms to 30 ms) called frames dur- 
ing which the vocal tract configuration is assumed to be stationary. 
This is done using the autocorrelation method [3][8] which guar- 
antees that W( z )  is a stable function. 

The predictor coefficients a, are converted to the LP cepstrum 
c b ( n )  ( n  2 1) by [SI 

P 

(3) 

where p ;  are the poles of H ( z )  (1p.l < 1 ) .  A more efficient re- 
cursive relation between the LP cepstrum and the predictor coeffi- 
cients is given as [3][8] 

n-I 

(4) 

Since clp(n) is of infinite duration, the feature vector of dimension 
p consists of the components c l p ( 1 )  to c l p ( p )  which are the most 
significant due to the decay of the sequence with increasing n. 

2.1. Cepstral Mean 

As mentioned earlier, when speech is subjected to channel interfer- 
ence, an additive component due to the channel manifests itself on 
the LP cepstrum. To compensate for the channel effect, this com- 
ponent is estimated as the mean of the LP cepstrum and removed 
by subtraction (known as cepstral mean subtraction (CMS)). The 
new feature vector is 

c c m s ( n )  = c b(n)  - E[clp(n)] ( 5 )  
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Figure 2: Concept of pole filtering. 

2.2. Conventional Pole Filtering 

The LP poles p ;  with narrow bandwidths that lie close to the unit 
circle usually represent the formants and are less sensitive to chan- 
nel and noise effects. Hence, these poles do not contribute to the 
channel estimate as they contain much speech information. In con- 
trast, the broad bandwidth poles model the spectral tilt, sub-glottal 
variation and the channel effects. These poles offer a better esti- 
mate of the channel. Pole filtering, modifies the LP poles so as to 
broaden the bandwidth of the formant poles [6]. Bandwidth broad- 
ening is accomplished by moving the formant poles radially away 
from the unit circle towards the origin. The pole frequency is left 
intact. Figure 2 illustrates the concept of pole filtering. The cep- 
strum (denoted as c m l p (  n ) )  formed from these filtered or modified 
poles has less speech information and more channel information. 
Hence, a much better channel estimate in the form of E[cmlp(n)] 
is found due to the deemphasis of the formant poles. 

The technique of forming the feature vector is known as pole 
filtered cepstral mean subtraction (PFCMS) and the details are given 
below. 

Select a threshold radius CY. 

For each frame of speech: 

- Calculate LP poles p ,  for i = 1 top.  
- For each pole p ,  : 

* If Ip, I > cy, modify p ,  such that its magnitude is 

- Calculate cmlp(n) based on the modified or filtered 
CY and its angle is unaltered. 

poles using Eq. (3). 

Find the channel estimate E[cmlp(n)] over all speech frames. 
Findthefeaturevectorcpfcms(n) = c j~(n)-E[cmlp(n)]. 

2.3. Fast Pole Filtering 

Broadening the bandwidth of the formant poles can also be per- 
formed by transforming the LP polynomial so as to weight the pre- 
dictor coefficients as given by 

where the expectation is taken over an utterance consisting of anum- 
ber of frames. 
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where 0 < y 5 1 [7]. Given the original LP poles p, ,  the new 
set of poles are yp i  . In contrast to conventional pole filtering, all 
the poles move radially inward by a factory. The cepstrumformed 
from these modified poles (denoted as c f l p ( n ) )  is merely related 
to the LP cepstrum as 

l P  y n  c f l p ( n )  = - = - CP: = Y n c l ~ ( n )  (7) 
i = l  i=l 

Results (next section) show that even though the poles that model . 
the channel estimate are perturbed, the channel estimate is not af- 
fected. Moreover, the performance improves synergistically with 
lower computational burden especially since no polynomial factor- 
ization is required. 

The much simpler technique of forming the feature vector is 
known as fast pole filtered cepstral mean subtraction (FPFCMS) 
and the details are given below. 

. 

Select the parameter y. 

For each frame of speech, calculate c lp (n)  and c f l p ( n )  us- 

Find the channel estimate E [ c f l p ( n ) ]  over all speech frames. 

Find the feature vector c f p f c m s ( n )  = c l p ( n ) - E [ c f l p ( n ) ]  

ing Eq. (7). 

' Training Testing CMS PFCMS FPFCMS 
Condition Condition Conventional Fast 

ISR a ,  ISR 7, ISR 
Clean CMV 53.7 0.95,56.8 0.90,58.4 
Clean CPV 53.2 0.85,58.9 0.90,59.5 
CMV CPV 61.6 0.85,70.0 0.85,66.3 
CPV CMV 58.4 0.80,64.2 0.80,66.8 
Clean EMV 57.9 0.80,65.8 0.80,65.8 
Clean EPV 57.9 0.85,68.9 0.85,68.9 
EMV EPV 61.1 0.80,69.5 0.80,74.2 
EPV EMV 56.8 0.80, 71.1 0.80,71.1 

3. EXPERIMENTAL RESULTS 

The first experiment is on comparing the computational complexity 
of the conventional and fast pole filtering approaches. All compu- 
tations were carried out using MATLAB which gives us the num- 
ber of floating point operations (flops). A 12th order LP analysis 
was done on 1 second of 8 kHz sampled speech partitioned into 30 
ms frames having an overlap of 20 ms. Both fast and conventional 
pole filtering was done using the predictor coefficients. The ratio 
of the number of flops for doing LP analysis and finding the fea- 
ture vectors using the conventional and fast methods for the entire 
speech signal is about 3.1:l. The ratio of the number of flops for 
finding the feature vectors from the predictor coefficients using the 
conventional and fast methods for the entire speech signal is about 
1600:l. The fast method is clearly more efficient especially since 
no polynomial factorization is involved. 

Closed set, text-independent speaker identification experiments 
are carried out using the TIMIT database. Thirty eight speakers 
from the New England dialect are considered. The speech is down- 
sampled from 16 kHz to 8 kHz. For each speaker, there are 10 
sentences. The first five are used for training a vector quantizer 
(VQ) classifier using the Linde-Buzo-Gray (LBG) method [9] and 
the squared Euclidean distance as the distortion measure. A VQ 
codebook is designed for each of the 38 speakers. The training con- 
ditions include clean speech and speech subjected to representative 
bandpass telephone channels [lo]: ( I )  the Continental Mid Voice 
(CMV) channel, (2) the Continental Poor Voice (CPV) channel, (3) 
the European Mid Voice (EMV) channel and (4) the European Poor 
Voice (EPV) channel. The remaining five sentences are individu- 
ally used for testing thereby giving 190 test utterances. 

The testing conditions correspond to channel corrupted speech. 
Consider a particular test feature vector. This is quantized by each 
of the 38 codebooks. The quantized vector is that which is clos- 
est (according to the squared Euclidean distance) to the test feature 
vector. Hence, 38 different distances are recorded, one for each 
codebook. This process is repeated for every test feature vector. 

Table 1: Speaker identification success rate (ISR) as a percent. The 
best values of a and y are shown. The acronym CMS is for cep- 
stral mean subtraction. The acronym PFCMS is for pole filtered 
cepstral mean subtraction (conventional approach). The acronym 
FPFCMS is for fast pole filtered cepstral mean subtraction (the fast 
approach). 

The distances are accumulated over the entire set of feature vec- 
tors. The codebook which renders the smallest accumulated dis- 
tance identifies the speaker. The identification success rate (ISR) 
is the number of utterances for which the speaker is identified cor- 
rectly divided by the total number of utterances tested. The VQ 
codebook size is 64. For both training and testing, silent or low- 
energy frames are discarded by energy thresholding. Also, a 12th 
order LP analysis is used with 30 ms frames having an overlap of 
20 ms. 

Table 1 shows the results for speaker identification. Different 
values of a (conventional approach) and y (fast approach) were 
tried. The best values of a and y are from 0.80 to 0.95. In Ta- 
ble l ,  the result for the best values of a and y are given for each 
traininghesting combination. The performance of the fast method 
is equal to or better than the conventional approach (except for the 
CMVKPV combination) and simultaneously offers great compu- 
tational savings. 

The T-NETIX Voiceprint text-dependent speaker verification 
system based on a user supplied password [ l l ]  is used to further 
test our fast pole filtering approach. Both the neural tree network 
(NTN) [12] and Gaussian mixture model (GMM) [13] classifiers 
are used. During training, the password is segmented into subwords 
using the blind segmentation algorithm in [ 141. An NTN and GMM 
model is trained fol: each subword. A leave-one-out strategy [IS] 
is deployed in that a password is repeated N times to train N sub- 
word models for both classifiers. Each subword model is trained 
with N - 1 repetitions with a different repetition "left-out" for each 
model. In our experiments, N = 3. The left-out repetition is ap- 
plied as a test utterance to get an unbiased score that is used to set 
the threshold for accepting or rejecting a claimant speaker. The 
mean and diagonal covariance matrix of the feature are used to ob- 
tain the GMM parameters. Hence, the GMM is trained only us- 
ing the speech of the speaker being trained. For the NTN, both 
speaker and anti-speaker speech data are used to obtain the hyper- 
planes that partition the feature space into feature and anti-speaker 
feature vectors. The anti-speaker data corresponds to the subNords 
of other speakers enrolled in the database from which the extracted 
feature vectors are close to the feature vectors of the subwordof the 
speaker being trained. 

During testing, a test utterance and a claimed speaker identity 
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Database # Enrolled # Development # True 
Speakers Speakers Trials 

Landline 56 47 195 

# Impostor 
Trials 
11,129 a ,  EER 7, EER 

Multimedia 
Wireless 

Table 2: Database specifications. 

50 30 90 1,638 
26 15 273 6,825 

are the inputs. The utterance is segmented [14] into the same num- 
ber of subwords as for the claimed speaker that was done during 
training. Each subword is scored by ( I )  the corresponding N sub- 
word NTN models to obtain an overall average NTN score and by 
(2) the corresponding N subword GMM models to obtain an over- 
all average GMM score. Both the scores are in the range 0 to 1 (like 
a probability). The average of the overall NTN and GMM scores 
is the final score which is compared against a threshold to decide 
upon acceptance or rejection. For both training and testing, the fea- 
ture vectors are computed for each subword using a 12th order LP 
analysis with 30 ms frames having a 20 ms overlap. Energy thresh- 
olding eliminates the silent frames. 

Three databases are used to obtain the results. The landline 
database is configured by collecting speech data over a standard 
telephone having an electret microphone. Each speaker has the same 
password ”open sesame”. The multimedia database is configured 
by collecting speech data over a Lucent noise canceling microphone 
connected to a personal computer. Each speaker has the same pass- 
word ”open the door”. The wireless database is configured by col- 
lecting speech data over a cellular telephone and hence, has the most 
severe channel effect. Each speaker has the same password ”AI 
Capone”. Table 2 gives, for each database, the number of enrolled 
speakers, the number of development speakers (used as anti-speaker 
data in training the NTN), the number of true trials (test speaker 
matches the claimed identity) and the number of impostor trials (test 
speaker does not match the claimed identity). Note that the devel- 
opment speakers are not used as impostor trials. 

Two types of errors occur in speaker verification. The first is 
known as a false accept (FA) and occurs when the user is accepted 
as the claimed speaker but in fact, is not the claimed speaker. This 
is when an imposter breaks in to the system. The second is known 
as a false reject (FR) and occurs when the user is rejected as the 
claimed speaker but is in fact the claimed speaker. 1.n the experi- 
ments, the threshold for acceptancelrejection is varied to get differ- 
ent FA and FR rates. Then, a receiver operating curve (ROC) curve 
is obtained as a plot of the FA rate versus FR rate for various thresh- 
olds. The point on the ROC curve when the FA rate equals the FR 
rate is known as the equal error rate (EER) and is the performance 
measure used. Table 3 gives the EER results for the best values of 
a and y which again occur between 0.80 and 0.95. The fast pole 
filtering approach is generally better especially for a severe channel 
corruption manifested in the wireless database. Our extensive ex- 
perimental results show that the fast method of pole filtering gives 
equal or better performance than the conventional method. 
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