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     Abstract – It is shown that variable
magnitude characteristics can be
obtained by the application of a
general bilinear transformation of the

type 
01
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→  to a known analog

filter. Stability considerations dictate
the limits of the values of a1, a0, b1and
b0; and these limits have been
determined.  Starting from some
known filter characteristics in the
analog domain, it is shown that
different magnitude characteristics
can be obtained in the discrete
domain.

I. INTRODUCTION

The subject of obtaining variable
magnitude characteristics in a filter has
attracted considerable attention in recent
times [see 1-3, for example].  The
technique generally used is to start from
a known stable filter and then apply a
feedback path having a multiplier k.  As
an alternative, the multiplier can be put
in the forward path and the starting filter
can be put in the feedback path.  In both
-
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cases, by varying the values of k, the
magnitude characteristics can be varied.
The value  of the multiplier k is determi-
ned based on stability considerations.  Its
limits are governed by the starting filter.
In both the cases discussed above, if the
starting filter is the same, identical limits
of k are obtained. This treatment can be
applied in both one-dimensional (1-D)
and two-dimensional (2-D) cases.

A familiar technique of designing
a discrete filter is to start from an analog
filter and then apply the bilinear transfo-
rmation
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in order to obtain the discrete transfer
function.  (This can be applied to 2-D
systems also by using bilinear transform-
ations to both the variables).

In this paper, a new approach for
obtaining variable magnitude character-
istics is given by the generalization of
the bilinear transformation given in (1).
Specifically, a general bilinear transfor-
mation of the type
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is applied to the starting analog transfer
function.

II. STABILITY CONSIDERATIONS.

The first problem to be resolved
is to obtain the conditions under which
stability is maintained.  These are given
by Theorem 1.

Theorem 1: The conditions for stability
to be maintained when (2) is applied to
an analog transfer function are:
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Proof: Letting
s = σ + jω                  (3a)

and                    z = u + jv                  (3b)
in (2), we have
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For purposes of stability, it is required
that for σ = 0,

r2
  = u2 + v2 ≤ 1               (5)

 Letting u = r cos(θ) in (4a), the equation
to be satisfied will be
 a1b1r2 + (a0b1 + a1b0)r cos(θ) + a0b0 = 0

(6)
The roots of (6) are given by
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The magnitude of these roots should be
less than unity.  It can be shown that the
only acceptable extrema are located at θ
= ± π.  The corresponding roots are

r1 = ± a and r2 = ± b             (8)
This shows clearly  a  ≤ 1 and  b  ≤ 1.

Also, the requirement σ < 0 for r = 0
leads to

a0b0 < 0.                      (9)
Hence the theorem is proved.

Without any loss of generality,
one can assume k in (2) to be positive,
which means that a and b should be of
opposite signs and

1    b   and   1    a ≤≤                 (10)
Consider the imaginary axis in

the analog domain.  It can be shown,
after some algebraic manipulations, that
the condition to be satisfied is
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This shows that the imaginary axis in the
analog domain maps as a circle in the z-

domain with center �
�
�

� ++− j0
2

ba ,

which is on the real axis and radius =

2
b-a .  In order that a circle of finite

radius is obtained,
a ≠ b                        (12)

Because of the inequalities (10), the
radius of this circle is always less than
unity.  It can be readily verified that the
region corresponding to σ < 0 maps into
the region inside the circle given by (11).
As an illustration, Fig.1 shows a typical
region of stability when a1 = 1, a0 = -
0.5, b1 = 1 and b0 = 1. The arcs of circles
shown correspond to the circles given by
(4b).  The stability region is given by a
circle having the center at (- 0.25 + j0)
and radius = 0.75. It is clear that only
when a1 = 1, a0 = -1, b1 = 1 , b0 =1, the
circle in the z-domain corresponding to
the imaginary axis in the analog domain
will have unity radius with center at the
origin.  For all other general bilinear
transformations, the circle so obtained in
order to ensure stability is contained
within this unit circle.



III. NUMERICAL EXAMPLE
       As an example, a Butterworth
second-order low-pass filter is conside-
red as the starting point.  Fig. 2 shows
magnitude plots of the transformed
transfer  functions k = 2, -1 ≤  a ≤ 1 and
0 < b ≤ 1.  The curves marked  xxx
correspond to the normalized
Butterworth response with k = 2, a = -1
and b = 1.  Four families of curves are
given corresponding to four different
values of b.  For each family, the value
of ‘a’ is varied from –1 to 1.  As can be
seen, different magnitude characteristics
are obtained.

IV.     CONCLUSIONS

In this paper, it is shown that, by
the application of a general bilinear
transformation to a starting analog filter
transfer function, the magnitude
response of 1-D IIR discrete filters can
be varied.  Though a general bilinear
transformation is proposed, stability
considerations dictate that certain
conditions given by Theorem 1 need be
satisfied.  Since they are inequalities,
infinite number of possibilities exist and
therefore, the magnitude characteristics
can be varied in a large number of ways.
The  above treatment can be readily
extended to other types of filters like
Chebyshev, elliptic, etc., [4].  After the
application of the general bilinear
transformation to the analog transfer
function, the discrete transfer function so
obtained can be implemented in varieties
of ways.
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Figure 1: A typical region of stability when a1 = 1, a0 = -0.5, b1 = 1 and b0 = 1.
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Figure 2: Various Butterworth responses with k = 2 and for different values of a and b.
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