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ABSTRACT 

The properties of a two-dimensional (2-D) discrete transfer func- 
tion with the degree of each variable being unity are discussed. The 
coefficients of the denominator polynomial contain a parameter k 
(having real values) whose bounds are determined by stability con- 
siderations. These bounds are obtained by testing the overall poly- 
nomial at only four points 31 = hl and ;? = i k l .  A suitable 
numerator polynomial can be associated to get the overall transfer 
function. By varying the values of k, different magnitude and con- 
tour characteristics are obtained. Such structures can be cascaded 
so that the magnitude responses can be varied. 

1. INTRODUCTION 

There has been much research done on two-dimensional (2-D) IIR 
filter design [I].  The classical least-squares minimization technique 
whose objective function includes a penalty function term to ensure 
stability is formulated in [ 2 ] .  A minimax criterion that is solved by 
a linear programming approach is discussed in [ 3 ] .  The McClellan 
transformation can also be applied to the numerator and denomina- 
tor of a one-dimensional (I-D) filter [ I ] .  Another method is to de- 
sign an analog filter and apply the bilinear transformation [4]. The 
singular value decomposition has been applied in [ 5 ] .  Obtaining 
desired magnitude and group delay characteristics are discussed in 
[61[71[81[91. 

A popular design method for variable digital filters is based on 
frequency transformations [IO]. A more recent approach is to rep- 
resent the transfer function as a multidimensional polynomial of 
frequencies thereby making the frequency response variable [ 1 11. 
This design technique is time consuming due to the many coeffi- 
cients that need to be optimized and no guarantee of stability is 
achieved [I?]. The technique in [I21 reduces the design complex- 
ity, guarantees stability and achieves approximately linear phase by 
decomposing the complex frequency response specifications into 
the product of two parts. The first part corresponds to the frequency 
responses of constant (not variable) 2-D filters and the second part 
corresponds to the desired values of 1 -D polynomials which are rel- 
atively easier to approximate. 

In 2-D digital filter design. it is highly desirable to be able to 
adjust a single parameter so as to obtain variable magnitude charac- 
teristics in that the 2-D magnitude response and the corresponding 
contour plots can be varied. In this paper. we present an approach 
that involves adjustment of a single scalar parameter to achieve vari- 

Figure 1: Basic structure considered 

able magnitude characteristics of 2-D IIR filters. Stability is guar- 
anteed by deriving bounds on the scalar parameter. One of the pos- 
sible approaches is to use a multiplier k in the feedback path [ 131 
which can be varied, subject to the constraints imposed on it due to 
the stability considerations. As has been shown in [13], the com- 
plexity of the determination of the limits of k increases with the 
degree of each of the variables. To a certain extent, this difficulty 
can be overcome by employing the graphical technique [ 141. An 
effective alternative approach to the graphical technique, which is 
described in this paper, is to design a 2-D filter so that the degree 
of each variable is unity (the overall degree being two) and to cas- 
cade several such sections. The advantage of this method is that the 
stability of each section can be ensured independently. The overall 
response is the product of the responses of each individual section. 

2. STRUCTURE AND STABILITY CONSIDERATIONS 

Figure 1 shows the basic structure considered. The transfer func- 
tion of the generating filter is given by 
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Analysis of the structure yields 

Theorem 1: In order that H (  21 ,  z 2 )  is always stable, the con- 
ditions to be satisfied are given by tl( 1 .  1 ) > i), ( I (  -1. - I  ) > 
0, d(1. - 1 )  < 1)  and d(- l .  1) < 0. The proof is omitted due 
to space considerations. This theorem clearly shows that stability 
conditions need be tested only at the points = & I  and z 2  = *1 
and no other points need be tested on the unit bidisc. 

3. CLASSIFICATION AND REALIZATIONS 

Depending on where X is manifested in the overall denominator, 
different classifications are possible. This manifestation depends 
on the nature of iVrf( :I. 2 2 ) .  For each of these cases, the bounds 
on X for stability can be obtained using Theorem 1. Also, for each 
type, separate signal-flow graphs can be given leading to possible 
implementations without delay-free loops. Throughout the paper, 
it is assumed that the starting or generating filter H,,( 11 :? ) is sta- 
ble and it does not contain any non-essential singularities of the sec- 
ond kind [15]. Also, without loss of generality, the form of D,, is 

Type 1: This is the simplest type in which I, occurs in only one 
type of term. Further subclassification is possible into three sub- 
classes. In the first subclass, Type l(a). A-,/( 

Dd(ZJ.32) = + c J o 3 l  + ( 0 ] ; 2 . + ( 0 0 .  

. 3 2  ) = boo and 

w1 

Figure 3: Contour plot of transfer function (Eq. ( I  1 ) )  with I ,  = 1)  

In the second subclass, Type l(b). X occurs only in the first order 
terms or terms having the factors ;I and 3'. Then, A-,{( zl .  z 2  ) = 
/)lo z1 + bol 32 and 

In the third subclass, Type l(c), k occurs only in the 31 ;> term, 
.\-</(z1. - 2 )  = b ~ l ; ~ : ~  and 

Type 2: In this type, X occur:; in two types of terms. There are 
three subclasses. In the first subclass, Type 2(a), X occurs in the 
constant arid first order terms. 31. 3 2 )  = b l o  31 + bo1 3 2  + boo 
and 

In the second subclass, Type 2(b). X occurs in the constant and 3 1  z2  
terms, L\-c/( , 32 ) = hl  1 3 1  :I + /ioo and 

(8) 

In the third subclass, Type 2(c). I occurs in the first order and 31 3 2  

terms,- \</(z , .z2)  = / j l l : ~ : 2 + / l ~ ~ z ~  + b o ~ z i a n d  

h l l 3 1 3 2  + boo 
D,r ( 21 . z > ) + I ,  ( b l ~  : 1 ;? + boo ) 

H(:1. ._.) = ~ 

Type 3: In this type, 1. occurs in all three types of terms. Ac- 
cordingly, the only possible transfer function is 

(10) 
resultingfrom~\-,r(;l.;.) = bll:,;2 + 0 1 o z 1  + b o l ; + O O 0 .  A 
signal flow graph for the Type 3 filter is given in Fig. 2. The Type 
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Figure 4: Magnitude response plot of transfer function (Eq. ( 1 I )) 
with k = I1 

Figure 5: Contour plot of transfer function (Eq. ( I I ) )  with 1 = (1.1 

1 and Type 2 filters are special cases of the Type 3 filter in that cer- 
tain terms in 12,( 21. 3 2  ) are zero. Simpler signal flow graphs can 
be obtained for Type 1 and Type 2 filters but are not shown due to 
space constraints. 

4. NUMERICAL EXAMPLE 

This example shows how the contour plots vary as the value of 1 is 
varied. For purposes of illustration. a Type 1 (a) filter is considered 
withA\c!(zl . :2)= 1 , a n d D c / ( : , , z 2 ) =  ( : ] - ( I  5 ) ( : 2 - 0  :).The 
transfer function is 

Using theorem 1, it can be determined that --(l.2.5 < k < 0.7.5 is 
required for stability. Figures 3 and 4 show the contour and magni- 
tude response plots of the transfer function in Eq. (1 1) when k = (1.  
Figures 5 and 6 show the contour plots of the transfer function in 
Eq. ( 1  1)  when k = 11.1 and k = -11.1 respectively. Figures 7 and 
8 show the contour plots of the transfer function in Eq. ( 1  I ) when 
k = 0.2 and k = -0.2 respectively. There is a clear variability in 
the responses with varying k .  The value k = - 0 . 2  is close to the 
threshold of instability. 

5. SUMMARY AND CONCLUSIONS 

This paper considers the generation of 2-D discrete-domain trans- 
fer functions having the following properties: ( I ) the degree in each 
variable is unity, and ( 2 )  by changing the value of the feedback mul- 
tiplier coefficient k ,  the magnitude and the contour characteristics 
can be varied. The denominator polynomial of the transfer function 
can be derived bv a basic structure. Seven different tmes are Dossi- 

big advantage in terms of numerical complexity. It is also shown 
that by varying the multiplier value k (within the bounds of stabil- 
ity), the magnitude and the contour characteristics can be varied. 
By cascading several structures. different characteristics can be ob- 
tained. 
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Figure 8: Contour plot of transfer function (Eq. (11)) with k = 
- ( I . >  
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