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ABSTRACT 

The denominator polynomial of a given causal stable :-domain trans- 
fer function is modified so that the magnitude of the frequency re- 
sponse remains the same. This simple modification permits an in- 
finite number of decompositions of the modified denominator into 
a mirror-image polynomial (MIP) and an anti-mirror-image poly- 
nomial (AMIP). Two types of Discrete Reactance Functions (DRF) 
are constructed. From these DRFs, continued fraction expansions 
(CFE) are considered and some properties are obtained. These prop- 
erties indicate whether the original denominator polynomial has all 
its roots within the unit circle (is minimum phase) or not. 

1. INTRODUCTION 

The stability of a one-dimensional (I-D) discrete transfer function 
is determined in several ways. A popular approach is the Jury cri- 
terion [ 11 Another approach is to decompose the 11th order denom- 
inator polynomial D,, ( 2 ) as a sum of a mirror-image polynomial 
(MIP) and an anti-mirror-image polynomial (AMIP) and based on 
their properties, the stability is determined. One of the decompo- 
sitions is due to Schussler [ 2 ] .  This is used in the implementation 
of a stability test [3].  Another decomposition is due to Davis [4] 
which can also be used to determine the stability of the system [5]. 
In this paper, it is shown that several other new possibilities of de- 
composing (:) into a sum of a MIP and an AMIP exist and 
some of the properties of such polynomials are discussed especially 
in terms of stability. For the stability checks, two new types of Dis- 
crete Reactance Functions (DRF) are constructed and new contin- 
ued fraction expansions (CFE) are considered. It is noted that for 
a given numerator polynomial in the transfer function, the magni- 
tude response is unaltered, when the denominator is either D,, ( : ) 
or :"D?,(:).  

2. MIRROR-IMAGE AND ANTI-MIRROR-IMAGE 
POLYNOMIALS 

Let 
,1 

D 2 , ( : )  = Cd(r)r' (1) 
i = o  

be a minimum phase polynomial in that all its roots are within the 
unit circle in the :-plane. Then, Jury's necessary conditions [ 11, 
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namely, 

DW(1) > 0 ( 2 )  
(-l)?'D,?(--l) > 0 (3) 

are satisifed. One can formulate a stable allpass transfer function 
given by 

(4) 

where (I 2 0 and it + (I is the order of H?2+q ( 2 ). Based on D,, ( 3 j, 
we can now define a mirror-image-polynomial (MIP) AUl,+q ( z ) and 
an anti-mirror-image-polynomial (AMIP) .A,+q( : ) as follows: 

z1'D7, ( z - l )  

zqDl,( z )  
H , , + q ( z )  = 

1 
= - [ z q D 7 , ( z )  - zT1D7, ( : - ' ) ]  (6) 

In general, a polynomial of order t t ,  namely, P,,( :) is an MIP if 
f ' , l ( z )  = :"P21( : - ' ) .  Similarly,P,,(;)isanAMIPifP,,(z) = 
- : " P,, ( : -' ) . Obviously, AI, + ( 2 ) is an ( n + (I ) th order polyno- 
mial obtained as half the sum of the denominator and the numerator 
polynomialsofH,,+,(z). Similarly, A,,+ , (z ) i san( i~+y)thorder  
polynomial obtained as half the difference of the denominator and 
the numerator polynomials of H,,+q ( z ) .  It is clear that, depending 
on the value of (I chosen, an infinite number of pairs of MIPS and 
AMIPs is obtained. Reconstruction of D,, ( 2 ) is possible as 

We will now consider some properties of these polynomials. The 
proofs of the various results are not given due to space considera- 
tions. 

3. PROPERTIES AND IDENTIFICATIONS OF MIP AND 
AMIP 

First, we have introduced a novel general MIP and AMIP identifi- 
cation given in Eq. ( 5 )  and Eq. (6). The general factorization prop- 
erties of N,, + ', ( : ) and .-I ,, + <, ( 3 ) are given as: 

Case 1: Suppose 1(1 - i t  I is odd. Since ( : + 1 ) is only a factor 
of M,,+,( :) and (: - 1) is only afactorof -471+q( z ) ,  one can write 

.U2,+<,(3)  = ( 2  + l ) L u : & ( : )  ( 8 )  

(9) .4,,+<,(Z) = (. - 1 ) l l J 7 1 + q - , ( : )  ( 1 )  
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where M!TiLl ( e )  and ilf!~q-l ( 3 )  are different MIP’s of order 
/ I  + y - 1. The superscript ( - 1 )  indicates that the MIP was de- 
rived from an MIP obtained from D,, ( z  ) using Eq. ( 5 )  with the root 
at z = -1 removed or deconvolved. Similarly, the superscript 1 
indicates that the MIP was derived from an AMIP obtained from 
D,  ( 2 )  using Eq. (6) with the root at z = 1 deconvolved. 

Case 2: Suppose (q - 11 I is even. Since ( : + 1 ) and ( : - 1 ) 
are only factors of A,+(,( z ) ,  one can write 

(10) 111 
A n + q ( c )  = ( 2  - l ) A 1 7 1 + q - l ( : )  

= (. + l)A!,;:;-l(z) ( 1 1 )  

where AI:lYq-l ( z )  is an MIP of order n + q - 1 and ( e )  
is an Ah4IP of order 71 + q - 1. Roots at z = &1 are approriately 
deconvolved. 

The new identification and general factorization properties we 
give above have special cases. First, consider (I = 0. For r I  odd, 
the factorization given in Case 1 above holds in that 

and 
1 

A??(:) = < [ D , , ( Z )  - ?D?,(:-I)]  (14) 

(15) 

Similarly, for U even, the factorization given in Case 2 above holds 
in that 

- L ( z )  = 5[D,,(:)  - 3 - D , 1 ( z - 1 ) ]  (16) 

= (.- 1 ) A p l ( . )  (17) 

11) = (: - l)l~I~,-l(.) 

1 

= (: + l)A;l:lll( z )  (18) 

The special case q = 0 is Schussler’s identification [ 2 ] .  Recon- 
struction is possible using D,, ( : ) = AI, ( : ) + An ( z ). For D,, ( : ) 
to be minimum phase, it is necessary and sufficient that ( I )  I d ) )  I > 
/ d o  1 and ( 2 )  the roots of the MIP M7, ( 2 ) and the AMIP -A,, ( z ) are 
on the unit circle, simple and interlace. This has been further imple- 
mented as a part of a stability test [3] and a subsequent formulation 
for the design of optimum least-squares infinite impulse response 
filters in which stability is guaranteed [6]. 

Another special case arises when q = 1. For 71 even and ) t  odd, 
the factorizations given in Cases 1 and 2 respectively, are applica- 
ble. For even t i ,  

and 

Reconstruction is possible using D,, ( : ) = :-I( i Z 1 , , + 1 (  3 )+-&,+I ( 2 ) ). 
Again, for a minimum phase D,, ( 2). it is necessary and sufficient 
that the roots of the MIP M,,+.I ( 2 )  and the AMIP -4,,+1 (:) are on 
the unit circle, simple and interlace. This special case is the line 
spectral frequency (LSF) formulation commonly used in speech pro- 
cessing. The LSFs were first introduced by Itakura [7] as the angu- 
lar frequencies of the unit circle roots of the MIP AI,, + 1 ( 3 ) and the 
A M P  -An+, ( z )  neglecting the roots at 2 = k1. The polynomial 
D,, ( 2 ) is derived by linear predictive analysis [SI. The LSFs are 
commonly used in speech coding due to their intimate relationship 
with the speech spectral envelope thereby making them conducive 
for transmission at low bit rates [9][ lO][ll]. 

The case y = I has also resulted in Davis’ identification of 
D,, ( z ) as the sum of an MIP and an AMIP of different orders de- 
rived from the Schussler and LSF formulations [4]. This has also 
been implemented as a part of a stability test [5 ] .  For even 1 1 ,  Davis’ 
identification is 

where Ilf!- ‘ ( 2 ) is defined in Eq. (20) and A:,:’; ( z ) is defined in 
E Q  (18). For odd 1 1 ,  Davis’ identification is 

D , , ( z )  = L U ~ ~ ~ ~ ) [ : )  +-4‘,,-’)(:) (27) 

where .U!::)(:) isdefinedinEq. (13)and.-l;,-”(:) isdefinedin 
Eq. ( 2 5 ) .  

4. STABILITY CONSIDIERATIONS BASED ON 
PROPERTIES OF MIP AND AMIP 

Here, we inlroduce new results based on JI,,+,( z )  and -4,,+(,( z )  
defined in Eq. ( 5 )  and Eq. (6). 

:) 
(see Eq. (4)) on various circles in the ;-plane of different radii r is 
given as 

Theorem 1: The magnitude of the allpass function 

> 1  f o r r < 1  

< 1  f o r r . > l  

This result leads to Theorem 2. 
Theorem 2: Let 

(28) 

(29 ) 

Then, 

R e (  E,,+,( r f ’ ”  ) )  is l = < ”  0 for I = 1 1 for i  > 1 
(30) 

where Re() denotes the real part. 
Theorem 2 shows that R,,+u ( ; ) is a Positive Exterior Function 

(PEF). Therefore, R,,+Y( z )  contains all its poles and zeros on the 
unit circle, which are simple and interlace [ 121. The PEF I?,,+,( 3 )  

and its reciprocal 1 / R,, +. , ( z ) are Discrete Reactance Functions (DRFs). 
This permits us to define two types of DRFs, namely: 

1. Type A: The degrees of the numerator and the denominator 
polynomialsare thesame. TheDRFsare:U,,+,( .)/ 4,1+c/(:) 
and its reciprocal for varioiis values of (I 2 0. 
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1 -  

0.8 

0.6. 

- 

0.4 - 

0.2 - 

0: 

DRF 
1117 ( 3 )/-A: ( 3 ) 

1 1 1 "  ( ( I I  1 I ,  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

CFEl cFE2 
bl = I 

h i  = T / 8  
h? = 8 

a 1 does not exist 
(12 = 1/9 

( 7 1  = 81/56 

Table I: Coefficients of CFE I and CFE2 for three different Type A 
DRFs corresponding to q = 0, 1 and 2. 

Figure 1 : Roots of Dz ( 2 ) (denoted by a +), AI, ( 3 ) (denoted by a 
0) and -45 ( 3 ) (denoted by an S). 

2. Type B: The degree difference between the numerator and 
the denominator polynomials is one. For any (I 2 1, the var- 
ious DRFs are 3 ) / - 4 7 1 + q - ~  ( : ), J1,,+, ( 3 )/.-ln+v+i ( 3 1, 

the CFE can still be considered or the CFE of the reciprocal can be 
considered. Whether the first coefficient exists or not, the number 
of coefficients in the CFE will still be equal to the order of the MIP 
or AMIP. 

Theorem 4: Type B DRF permits the following form of CFE: 
cFE4: 

AI,, +vs ( 2 ) /A471 ( : 1, dl , ,  + y-  1 ( : 1 /+4 + 'I ( 3 1 and their re- 
ciprocals. 

Each type of DRF can be expanded into continued fractions (CFEs). 

Theorem 3: Type A DRF permits the following forms of CFEs: 

(31) 
CFEI: 

r - 1  1 
r11 - 

- - + I  + ( 1 2 - 1  + 
L - - 1  

- + I  a-,- 
:+1+ ' 

~ ~ ~ + 9 ; + 1  

CFE': 
3 + l  1 

bl - (32) 

CFE3: When n + CJ is even, we get 

; + 1  ; - 1  1 

CFE3: When I I  + q is odd, we get 

1 
I (34) 

d r , + , l - 2  g?++d,,+7-l .+1 . - I  

The CFEs CFI and CF2 have been indicated in [13]. Stability of 
1 / D,, ( : ) is ensured when each of the set of coefficients ( I  b ,  , and 
either of c, or (1 I is positive. Each individual set of coefficients pro- 
vide the necessary and sufficient conditions for stability. Hence, 
any one CFE can be used. Note also that some of the coefficients 
may not exist. For example, if : + 1 is not a factor of the denomi- 
nator polynomial of the DRF, (1  1 and c 2 will not exist. In this situ- 
ation, the CFE can still be considered or the CFE of the reciprocal 
can be considered. Similarly, if : - I is not a factor of the denom- 
inator polynomial of the DRF, , c 1  and d o  will not exist. Again, 

1 (35) 
.L 

e l ( :  - 1) + 
es(:-l)+ 

t ? ( l  - 2 - 1 )  + 
c 4 [ l - : - '  I + .  ' 

The number of coefficients in the CFE is equal to the order of the 
MIP or AMIP, whichever is higher. If there is a common factor be- 
tween the MIP and AMIP, the number of coefficients of the CFE 
reduces by one. The set of coefficients z being positive provides 
only a necessary condition for stability of 1 /D,,  ( z ) .  

Numerical Example: Consider the minimum phase polyno- 
m i a l D , ? ( z ) = : ~ ~ " + 2 ~ ' + ; + 1 . F o r p = O , t h e M I P a n d A M I P  
are given by 

2 J I ? , ( 2 )  = 4 2 ! . + : 3 3 2 + . 3 3 + 4  (36) 
?-A?,(:) = ' ) - 7  - _  + - - 2  - z - L' (37) 

For q = 1,  the MIP and AMIP are given by 

?;\I4 ( 3 )  = :3z4 + E' + L':? + 3s + :3 (38) 
= 1 -  ] - 4 + : ? , - : - : 3  (39) 

For p = 2. the MIP and AMIP are given by 

(40 ) : 3 - 5  + 4 + + L';.? + 9 -  - -  + :] 2 N 5 ( z )  = - '3 - -  
?--I5(:) = :3? + 2 2 4  - 23 - .J (41) 

Figure I shows the roots of U ? , ( ; ) ,  J f : , ( z )  and .+,(;).'Note how 
the roots of .-I5 ( 3 ) and df ( 3 ) interlace on the unit circle. 

The coefficients of the CFEs for the DRFs of Type A are given 
in Tables 1 and 2 .  It is readily observed that all the coefficients of 
the CFEs are positive, thereby showing that the roots of D 1, ( z ) are 
contained within the unit circle. Note also that since 2 + 1 is not a 
factorof .-I?(:) and .45(z), ((1 does notexist in either case. How- 
ever, the number of CFE coefficients is still equal to the order of 
the MIP or AMIP. 
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Table 2: Coefficients of CFE3 for three different Type A DRFs cor- 
responding to (I = 0, 1 and 2 .  

DRF 

The coefficients of the CFE for the DRF of Type B are given in 
Table 3. It is readily observed that all the coefficients of the CFE are 
positive which is a necessary condition for the roots of D 7 ( 3 ) to be 
within the unit circle. Note also that -44 ( : )/N? ( 3 ) and 121: ( : ) / -A4 ( ; ) 
each have a common factor of : + 1 thereby reducing the number 
of CFE coefficients by one. 

Theorem 5: The MIPs and AMIPs defined in Eq. (5) and Eq. (6) 
have the following properties: 

I .  JIn+</+l(:) = ( z  + 1 ) M 7 , + < / ( Z )  + ( z  - 1)-4,z+</(:) 

2. .4,?+</+1(3) = ( 2  - l)M,7+</(:) + ( 2  + 1 ) - 4 n + y ( 3 )  

3. lu?7+</+l(=) +-4,,+<,(3) = :</-l(: + l)ol?(:) 

This allows us to easily calculate the MIPs and AMIPs of higher 
order from the lower order MIPs and AMIPs. 

CFE 

5. SUMMARY AND CONCLUSIONS 

It is shown in this paper that a polynomial of the type :(ID,, ( : ) 
(containing all its zeros within the unit circle) can be decomposed 
into a sum of an MIP and an AMIP. Such a polynomial is consid- 
ered. because the magnitude response of any transfer function con- 
taining such a denominator polynomial remains invariant to the value 
of q .  For each value of y, there exists an MIP and AMIP pair whose 
roots are on the unit circle, are simple and interlace. The value 
q = 0 corresponds to Schussler’s identification. The value p = 1 
corresponds the LSF formulation and Davis’s identification. These 
are particular cases of the new general MIP and AMIP decomposi- 
tion presented here. From the various MIPs and AMIPs obtained, 
a number of Discrete Reactance Functions (DRFs) broadly classi- 
fied as b o  types (Type A and Type B) can be constructed. From 
the DRFs, new Continued Fraction Expansions (CFE) are possible. 
In the Type A DRF, if the coefficients of the CFE are positive, the 
polynomial contains a11 its roots within the unit circle. This is not 
always the case for the Type B DRF. The coefficients of the CFE 
being positive constitutes only a necessary condition for minimum 
phase. Additional conditions have to be satisfied in order to ensure 
that the roots of the polynomial are contained within the unit circle 
[51[ 141. 
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