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Abstract 
 This paper discusses a method of 
designing translational and rotational 
mechanical systems having maximally 
flat response at the lower end of the 
frequency spectrum. 
 

Introduction 
 One of the methods of analyzing 
a system is to obtain an analogous 
electrical network and then use known 
analysis techniques to obtain the 
required information [1].  The system 
may be mechanical (translational and 
rotational), fluid, thermal or of any other 
type.  The analysis can be carried out 
either in the time-domain or in the 
frequency-domain.  Also, Laplace-
transform techniques can be 
conveniently used in all cases, when the 
system considered is linear [2]. 
 It is the purpose of this paper to 
show that the same concept can be 
applied in the design of such systems.  
Specifically, since a considerable 
amount of literature exists in the design 
of  electrical low-pass filters,  it can be 
made use of in the design of similar 
mechanical systems also. 
 

Magnitude of the Transfer function 
 One starts with the magnitude of 
the transfer function 
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where Vin is the input velocity, 
     Vout is the output velocity, 

    0Ω  is the normalized frequency = 
cω

ω0 , 

      ω0 is the operating frequency, 
      ωc is the cut-off frequency, 
and n is the order of the system.   
 Since the velocity is an across-
variable, the analogous variable in the 
electrical system is the voltage and 
therefore  Eq.(1) can be considered to be 
a voltage transfer function.  This permits 
one to use the theory of electrical  filters 
to study the properties of Eq.(1) and its 
design. 
 

Some important properties of the 
magnitude transfer function 

considered. 
Property 1 : At zero frequency, that is, at 
Ω0 = 0, the response is always unity. 
Property 2 : At unity normalized 
frequency, that is, at Ω0 = 1, (which is 
the cut-off frequency), the response is 
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always 
2

1
, irrespective of the order of 

the system. 
Property 3 : It is readily verified that the 
first (2n-1) derivatives at Ω0 = 0 will 
always be zero.  This gives rise to the 
maximally flat response in the 
neighbourhood of Ω0 = 0. 
 These three properties do not 
give any information regarding the 
selection of order n. 
Property 4 : The magnitude response is 
monotonically decreasing. 
Property 5 : It can be shown that 
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This gives the slope of the magnitude 
response at the cut-off frequency.  This 
is a possibility for the specification of 
the system. Note that n has to be an 
integer.  If n comes out to be a fraction, 
it is converted into the next higher 
integer. 
 Alternatively, the order n could 
be determined by specifying the 
magnitude response at a frequency Ω0 > 
1.  In this case also, if n comes out to be 
a fraction, it is converted into the next 
higher integer.  Table I gives the 
magnitude of the transfer functions for 
different orders for Ω0 = 1.5 and Ω0 = 
2.0. 
 
Determination of the transfer function 
 After the determination of n, the 
order of the system, the next step is to 
generate the appropriate transfer 
function.  This is carried out with the 
help of the complex frequency given by 

S0 = σ0 + jΩ0                 (3) 
and S0 can also be considered as a 
Laplace-transform variable.  This 
permits one to write 
 
 

 
Table I 

Magnitudes of the transfer function for 
different orders at Ω0 = 1.5 and Ω0 = 2.0 

radians. 
Order Ω0 = 1.5 Ω0 = 2.0 

 Magni-
tude 

in dB Magni-
tude 

in 
dB 

1 0.5547 -5.12 0.4472 -7.00 
2 0.4061 -7.83 0.2425 -12.31 
3 0.2840 -10.93 0.1240 -18.12 
4 0.1938 -14.25 0.0629 -24.03 
5 0.1306 -17.68 0.0315 -30.04 
6 0.0875 -21.16 0.0223 -33.05 
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It is evident that when the denominator 
is equated to zero, it contains 2n roots 
S1, S2, . . . ., S2n-1, S2n, each one having 
magnitude of unity.  In other words, all 
of them lie on the unit circle in the 
complex-plane S0.  Since the function 
has to be stable, H(S0) shall contain all 
its poles in the left-half of the S0-plane, 
or 
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where D(S0) is a strictly Hurwitz 
polynomial.  It is readily shown that the 
roots of the equation 

1 + (-1)n 2n
0S  = 0              (6a) 

are given by 

S0k = 2n
1)-(2k

j
e

π

, k = 1,2,…,2n     (6b) 
From these roots,  
D(S0) = a0 + a1S0 + a2S0

2 +…+akS0
k + .. 

(6c) 
can be readily obtained and these are 
given upto n = 6 in Table 2. 
For details, please see [3] 
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Table 2 

Coefficients of the denominator 
polynomial of the transfer function upto 

order 6. 
Order  

1 a1 = a0 = 1 
 2 a2 = a0 = 1, 

a1 = 1.414214  
3 a3 = a0 = 1 

a2 = a1 = 2 
4 a4 = a0 = 1 

a3 = a1 = 2.613216 
a2 = 3.414214  

5 a5 = a0 = 1 
a4 = a1 = 3.236068 
a3 = a2 = 5.236068 

6 a6 = a0 = 1 
a5 = a1 = 3.863703 
a4 = a2 = 10.097835 
a3 = 9.14162 

 
Implementation of the generated 

Transfer Function 
 We are mainly interested in a 
mechanical system, which results in the 
generated transfer function.  One 
possibility is to design a passive 
electrical network and then obtain the 
corresponding mechanical system by 
appropriate modeling.  One such 
network is shown in Fig.1.  
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Fig.1: The passive electrical network 

considered. 
 
The LC-network consists of only 
inductors and capacitors and the mutual 
inductances are absent.  (There are other 
possibilities and they are not considered  
here).  It can be readily shown that 
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where 
y22 = input admittance at 2-2’ with 1-1’  
         short-circuited and RL removed, 
and 
-y12 = feedback transfer admittance  
          between 2-2’ and 1-1’ with RL  
          removed and 1-1’ short- 
          circuited. 
It can be shown that y22 and –y12 are the 
ratio of even to odd polynomials [3], 
because they are obtained for LC-
networks only. 
Writing        

D(S0) = M(S0) + N(S0)        (8) 
where  M(S0) = Even part of D(S0), 
and      N(S0) = Odd part of D(S0). 
It can be shown that 

-y12 = 
( )0SN
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-y22 = ( )0
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with RL = 1Ω (taken without any loss of 
generality). 

Expanding ( )0

0

SN
)M(S

 around S0 = ∞ into a 

continued fraction expansion, the 
required LC-network is obtained. Once 
the electrical network is realized, the 
corresponding mechanical system is 
obtained by replacing the resistor by a 
damper, the inductor by a spring and the 
capacitor by a mass (for translational 
systems) and a flywheel (for rotational 
systems). 
 This is illustrated by the follow- 
ing two examples where the orders 
considered are n = 3 and n = 4 respect-
ively. 
 
Example 1 
Let the order n be 3.  The transfer 
function will be 
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y22 has to be expanded into continued 
fractions and this yields 
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This results in the electrical network 
shown in Fig.2(a). 
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Fig.2(a): A third-order low-pass filter 
having maximally flat response around 

ω0 = 0. 
 
The corresponding normalized mech-
anical translation system is shown in 
Fig.2(b) and the normalized mechanical 
rotational system is shown in Fig.2(c). 
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where k1n  = 2 , k2n = 
3
2

, m1n = 
3
4

 and b0 

= 1.  
Fig.2(b): A third-order normalized 

mechanical translational system 
corresponding to the electrical network 

of Fig.2(a). 

1nK2nK 1nJ

0B

 

where K1n  = 2 , K2n = 
3
2

, J1n = 
3
4

 and 

B0 = 1.  
 

Fig.2(c): A third-order normalized 
mechanical rotational system 

corresponding to the electrical network 
of Fig.2(a). 

 
Example 2 
Let the order n be 4.  The transfer 
function will be 
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where   a3 = a1 = 2.613126, 
and a2 = 3.414214. 
This yields 
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The continued fraction of y22 around S0 
= ∞ yields 
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where  L1 = 1.530734, 
 C2 = 1.577161, 
 L3 = 1.082392, 
 C4 = 0.382638. 
This results in the electrical network 
shown in Fig.3(a). 
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Fig.3(a): A fourth-order low-pass filter 
having maximally flat response around 

ω0 = 0. 
 
The corresponding normalized mech-
anical translational system is shown in 
Fig.3(b) and the normalized mechanical 
rotational system is shown in Fig.3(c). 
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where k1n = 0.9238797, k2n = 0.6532813, 
m1n = 0.38263, m2n = 1.577161, b0 = 1. 
 

Fig.3(b): A fourth-order normalized 
mechanical translational system 

corresponding to the electrical network 
of Fig.3(a). 
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 where K1n = 0.92388, K2n = 0.6532813, 
J1n = 0.38263, J2n = 1.577161, B0 = 1. 

 
Fig.3(c): A fourth-order normalized 

mechanical rotational system 
corresponding to the electrical network 

of Fig.3(a). 
 

Scaling 
 Having obtained the normalized 
values in the design, one has to 
denormalize them in order to obtain the 
actual values.  This process is known as 
scaling.  There are two types of scaling, 

namely (a) Impedance scaling and (b) 
Frequency scaling.  Both these can be 
carried out independently or simult-
aneously, depending on the require-
ments.  They are discussed below: 
 (a) Impedance scaling : This is 
necessitated by the fact that b0 or B0 is 
taken to be unity initially.  By 
impedance scaling, the impedance of 
every component has to be scaled by the 
same quantity. However, the transfer 
function remains unaltered. Let α be the 
impedance scaling factor.  It is readily 

seen that b0 and B0 become 
α

0b
 and 

α
0B

respectively.  The impedances 
k
S0  

and 
K
S0  becomes 

k
S  0α

 and 

K
S  0α

respectively.  These yield the 

results that the spring constants becomes 

α
k 

 and 
α
K 

 respectively.  Considering 

the masses, the impedances 
mS

1

0

 and 

JS
1

0

 become 
mS0

α
and 

JS0

α
 respectively, 

giving us the new values as 
α
m

 and 
α
J

 

after impedance scaling.  These new 
values may be further subjected to 
frequency scaling discussed below. 
 
 (b) Frequency scaling :  This is 
required because the operating frequency 
has been normalized to unity.  We can 

readily put 
β

0
0

s
S = , where β is the 

frequency scaling factor.  The quantities 

α
0b

 and 
α

0B
 remain unchanged.  By a 

similar treatment as given in the case of 
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Impedance scaling, it can be shown that 
the quantities k, K, m and J become kβ, 

Kβ, 
β
m

 and 
β
J

 respectively. 

(c) Combined Impedance and 
Frequency scaling : 
 Both the scaling operations can 
be combined and the final results are 
given in Table III.  The quantities in 
column 3 are given after they are 
subjected to frequency scaling only.  The 
quantities in column 2 can be obtained 
from those in column 4 are obtained by 
putting α = 1 and those in column 3 are 
obtained by putting β =1 in those given 
in column 4. 
 

Table 3 
Effect of scaling on the component 

values 
Quantity Imped-

ance 
scaling 

Frequ-
ency 

scaling 

Comb-
ined 
scal-
ings 

b0 

α
0b

 
b0 

α
0b

 

B0 

α
0B

 
B0 

α
0B

 

k 

α
k

 
kβ 

α
βk

 

K 

α
K

 
Kβ 

α
βK

 

m 

α
m

 
β
m

 
αβ
m

 

J 

α
J

 
β
J

 
αβ
J

 

 
By using these scalings, we shall now 
determine the actual values to be used 
for the two examples considered above. 
 
Example 3  
 In this example, we shall 
consider the scaling of a third order 

translational system considered in 

Fig.2(a) with b0 = 
3

100
 N.s/m and a cut-

off frequency of 5 radians/second.  This 

gives α = 
100

3
 and β = 5.  The various 

denormalized  component  values   come  

out to be: k1n → 
3

1000
 N/m, k2n → 

9
1000

 

N/m and m1n → 
9

80
 kg.  If the fourth 

order system considered in Fig.3(a) is 
considered with the same scaling factors, 
the various denormalized will be k1n → 
153.98 N/m, k2n → 108.88 N/m, m1n → 
2.5509 kg and m2n → 10.5144 kg. 
 
Example 4 
 In this example, we shall 
consider the denormalization of the 
rotational system considered in Fig.2(c). 
Let B0 = 20 N.m.s and the cut-off 
frequency be 5 radians/second.  The 
various component values come out to 

be K1n → 200 N.m/radians, K2n → 
3

200
 

N.m/radians, and J1n → 16 kg.m2.  When 
the fourth order rotational system given 
in Fig.3(c) is considered, the various 
denormalized component values come 
out to be K1n → 30.796 N.m/radians, K2n 
→ 21.776 N.m/radians, J1n → 1.13052 
kg.m2 

 and J2n → 7.308644 kg.m2. 
 The responses for the orders 3 
and 4 are shown in Fig.4. 
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Fig.4:  Magnitude responses for n = 3 

and n = 4. 
 
Conclusions 
 In this paper, it is shown that the 
design method used in electrical wave 
filters can be effectively used in the 
design of mechanical low-pass systems.  
Specifically, maximally-flat response 
near the zero frequency has been 
considered and the corresponding 
mechanical system has been designed.  
Though lower order systems are 
considered, the same concept can be 
used to design higher order systems as 
well.  It is envisaged that the same 
concept can be used when other types of 
responses are considered. 
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