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ABSTRACT 
Addition of surfactants, detergents and emulsifiers has been suc- 
cessfully applied for cleanup of petroleum-contaminated sites. How- 
ever, a certain groupof widely used alkylphenolethoxylates (APEs) 
surfactants was recently banned in Europe because scientists dis- 
covered that APE breakdown products are estrogenic and highly 
toxic to aquatic organisms. Nonylphenol is one of the very toxic 
breakdown products. The process of nonylphenol biodegradation 
is very important to many scientists because of its potential effec- 
tiveness as a treatment tool for pollution. However, very little in- 
formation is available on the biodegradation kinetics of nonylphe- 
nol. Kinetic information is necessary for predicting the fate of pol- 
lutants. We start with Monod's model for nonylphenol biodegra- 
dation which is based on a coupled system of nonlinear differen- 
tial equations. We prove that the states of the system and the pa- 
rameters of Monod's model are locally observable. This enables us 
to perform a meaningful parameter estimation analysis. By using 
nonlinear least-squares optimization, we obtain the biodegradation 
kinetics and verify physical feasibility on independent datasets. 

1. INTRODUCTION 

Researchers have indicated that solubilization followed by micro- 
bial metabolism of organic contaminants is technically feasible and 
has potential as aremedial technology [ I ] .  Addition of surfactants, 
detergents andemulsifiers has been successfully applied for cleanup 
of petroleum-contaminated sites. However, acertain group of widely 
used alkylphenolethoxylates (APEs) surfactants were banned in Eu- 
rope because scientists discovered that APE breakdown products 
are highly toxic to aquatic organisms. Recent evidence that some 
APE breakdown products are estrogenic has intensified concern over 
their environmental and human health effects [2]. 

APEs are nonionic surfactants made up of a branched chain 
ethylene oxide to produce an ethoxylate chain. Most APEs enter 
the aquatic environment from wastewater treatment plant discharges. 
Nonylphenol, one of the breakdown products of APEs, is known 
to be extremely toxic. Nonylphenol, adsorbs to soils and sludges, 
tends to bioaccumulate, and has been shown to be mildly estro- 
genic. Sewage sludge thus applied to agricultural land may con- 
tain nonylphenol. European studies indicate high concentrations 
of nonylphenol in treated sewage sludge thereby indicating sludge 
disposal as a source of aquatic contamination. Nonylphenol biodegra- 
dation is therefore a significant environmental issue [31. However 
very little information is available on the biodegradation kinetics of 

nonylphenol. Kinetic information is important for predicting the 
fate of pollutants. It has been demonstrated that it is possible to 
determine intrinsic kinetics of single organic compounds by using 
oxygen uptake data from electrolytic respirometry 141. 

The purpose of this paper is to use nonlinear least-squares op- 
timization to obtain the intrinsic kinetic parameters of nonylphe- 
no1 biodegradation from oxygen uptake data. These parameters are 
part of an existing mathematical biodegradation model of coupled 
nonlinear differential equations known as Monad's model [SI. The 
model has three states, namely, oxygen uptake. substrate (or pol- 
lutant) removal and bacterial cell growth. Only theoxygen uptake 
is experimentally measurable. We perform an analysis of Monod's 
model to show that its states and parameters are locally observable 
about the entire state space except for some isolated points. The 
model parameters obtained by nonlinear optimization are in agree- 
ment with the experimental measurements for all three states. This 
not only makes oxygen uptake data very attractive as it can elimi- 
nate monitoring of substrate removal and bacterial cell growth but 
also verifies the feasibility of using nonlinear optimization. The 
oxygen uptakedatais obtainedusing electrolytic respirometry. This 
i s  relatively inexpensive and gives fast. accurate and reliable data. 

2. MODELING OF THE NONYLPHENOL 
BIODEGRADATION PROCESS 

The process of nonylphenol biodegradation is given by a set of non- 
linear differential equations that describe its kinetic behavior. This 
is known as Monod's model of bacterial kinetics and is given by 
151 

dS 1 umsx . - - -  
dt Y K , + S  

This system has three states: S is theconcentrationof substrate. 
X is the active cell mass concentration, and 0, is the cumulative 
oxygen consumption in the reactor (oxygen uptake which we mea- 
sure). The time evolution of the system is also determined by the 
several system parameters or biodegradation coefficients involved 
pm is the specific growth rate of substrate; hh is the endogenous 
decay coefficient: K, is the substrate utilization coefficient; Y is 
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the cell yield coefficient (mass of cell produced divided by mass 
of food consumed); Yox is the oxygen consumption coefficient 
for substrate (mg oxygedmg of cell mass); and YOXD is the oxy- 
gen consumption coefficient for endogenous respiration (mg oxy- 
gedmg of cell mass). 

3. OBSERVABILITY OF MONOD'S EQUATION 

Forconvenience. weletX = [ X, S, 0,lTandwere-writeMOnod's 
equation (I) as 

We linearize (2) about some point X = [x, S ,  0,IT E R3 in or- 
der to study observability of the linearized system. Letting A = gflx=*, i t  can be easily shown that 

A =  1::: :::: 3 (3) 
n3.1 a3.z 

na,,  = whereal,, = p m ~  - fih, 01.2 = K . f i m w .  
+ 

!Yo.YDK~ andar.2 = YoxemKI&.  Forthelinearizedsys- 
:tem, one can define the output equation as y = CX with C = 
;[O, 0,1] (since the on1y:measurable state is 0%). One can then build 
the observability matrix[9] 

3 

- ~ & 3 , 0 2 , z  = --&, a3.1 = Y O X P , ~  3 

Obs =: [J ,CA = [a: a3,1 4 a] (4) 

with ar = a1.1a3.1 + a z . 1 ~ 3 , ~  and a5 = a1.2a3.1 + a2 .2a3 ,~ .  

Clearly, Obs is invertible if and only if a3,1(15 - 03,2(14 # 0. 
This result shows that the linearized system is locally observable 
in most of the state space (except for some isolated points or re- 
gions). While this does not imply the existence of a global OhseN- 
ability diffeomorphism for ( I ) ,  it does imply that the states can he 
observed at least about carefully chosen operating points or possi- 
bly within a significant region. 

Consider, for example. the point X = [n, 0, 0IT. Then, the 
parameters ofthe observatiility matrix are 

u3.1 = Yoxoh'd 
YOXP." 

= 7 

Clearly, for most combinations of values of the parameters and X 
the system will he observable at this operating point. Note, more- 
over, that the system is not observable at X = [0, 0, 0IT, which 
confirms the intuition that, without m y  cells or food, no reaction 
is possible and no information can be obtained about the system 
states. 

We are also interested in studying parameter observability, since 
our main objective in this study is to perform parameter estimation 

from output data. To be concise, let us concentrate on the parameter 
pm (the same analysis, with similar results, can be performed for 
the other parameters of interest; for brevity and clarity we concen- 
trate only on one ofthe four parameters in the following). Define 
the augmented system 

where Xoug = [ X ,  p,]? The augmented system is linearized 
about the point Xaur = [ X ,  ,%,IT, The linearized augmented sys- 
tem's matrix is 

Notethatai,l andai,z for1 5 i 5 3arethesameasforthesystem 
withoutaugmentingp,. Onecanshowthatel,r = a, w , ~  = ... , "  
-- ,,K.+s 1 x s -  - - 7 a l . r  1 andas., = Yoxi& = Yoxo~ ,n .  Now, 
consider the output 

Y.,"g = C.",X,", = [O,O, 1,OlXo,, (8) 

Then, the augmented systems' observability matrix is 

Witha6 = a1,1a3,1 + a z ~ a 3 , z .  a7 = al,za3,i  + az.za3,z. an = 
a1.4a3.3 +a?,na3,2,as = a1,14s+a2,1ar,a10 = a, ,zae+a?, la i  
andal l  = a ~ , ~ a ~  +az,,a,. OnecanconcludethatObs& exists 
by noting that, for most combinations of values, it holds that 

GaugA?.,, # ciCeugA.ug 

C,u,A~, ,  # czCa,,A,u, 

# c~C.=~~AZ,,, (10) 

for any constants el, cz and c 3 .  

The fact that state observability and parameter observability 
can be guaranteed at least locally for most operating conditions of 
interest means thatthe prohlemof parameter estimationcan hesolved, 
at least in principle, by using observations of the output. O,, the 
oxygen uptake in the reactor. The experiments and results that fol- 
low are then supported and shown to be feasible by this analysis. 

4. NONLINEAR LEAST-SQUARES ALGORITHM 

The nonlinear estimation technique seeks to identify the system pa- 
rameters to minimize the mean-square error between the numerical 
solution for the state 0, and the experimental data obtained for 0, 
Note that state 0, is the only measurable state. Since the param- 
eters enter the model in a nonlinear fashion, the use of nonlinear 
search methods is appropriate. The algorithm stam with a guess 
of the initial parameter values, solves the differential equation in 
Monod's model numerically, and then adjusts the system parame- 
ters in an attempt to minimize the mean-square error between the 
numerical solution for 0, and the experimental data points. 



Fig. 1. Oxygen uptake 

The nonlinear minimization algorithm involves a tNS1 region 
approach and accommodates parameter bounds [6][7][8]. Gener- 
ally, the trust region approach iteratively updates a parameter solu- 
tion set by an increment that is an approximate solutionto a quadratic 
subproblem, Forthemethod weuse[6], aquadraticmodelisformed 
and solved using the trust region method. The requirements on the 
parameter bounds are achieved by restrictingthe increments at each 
iteration. Second order convergence is guaranteed. 

Nonylphenol (99% pure) was obtained from Fluka Chemical 
Corporation, Milwaukee, WI. An acclimated culture capable ofde- 
grading nonylphenol was developed from a local wastewater treat- 
ment plant. Enrichment cultures were developed in batch reactors 
incubated at room temperature with nonylphenol as the sole car- 
bon source. All solutions were prepared in deionized water. Oxy- 
gen uptake measurements were recorded with time through elec- 
trolytic respirometry. All experiments were conducted in duplicate 
at 20°C. 

Given that the optimization is performed for a nonlinear func- 
tion, the initial values play a significant role in determining the pa- 
rameter set to which the optimization converges. Initial conditions 
are required for the three states and four of the six system parame- 
ters or biodegradation coefficients. The initial values for the states 
are taken from the experimental conditions. The endogenous decay 
coefficient l i d  and oxygen consumption coefficient Yoxo) have 
fixed values since they are determined by known characteristics of 
theexperimentalsetup. The other fourof the biodegradationcoeffi- 
cients of the system are experimentally constrained to lie within al- 
lowableranges(U.1 5 U,,, 5 50.005 5 K ,  5 1000,0.1 5 Y 5 
1.5 and 1.5 5 Yox 5 3.5). Different initial values within these 
bounds are attempted. After some trial and error, we determined 
that initial conditions roughly in the middle of the allowable ranges 
(as given above) yielded the best results. The initial conditions we 
use are U, = 0.5, K ,  = SOU, Y = 0.85 and YOX = 2.5. Af- 
ter applying the algorithm, the final estimated values of Y (0.8698) 
andYox (2.6353)continue tobeinthemiddlerange. Thefinal val- 
ues of um (0.9441) and h', (223.5991) deviate considerably from 
the middle range. 

Fig. 2. Cell growth and pollutant removal 

To determine the validity of the results obtained, it is neces- 
sary to determine whether the behavior of the system makes phys- 
ical sense. This implies that although finding the best-fitting curve 
is one of our main interests, it is not the only one. We are not only 
interested in the oxygen uptake behavior, but also in how the cell 
growth and pollutant removal states evolve. It may the case that 
even though the numerical method yields a good approximation for 
oxygen uptake, the other two states behave in a physically mean- 
ingless manner. Realistically, the graph for the pollutant removal 
should decay from its initial value to zero as the pollutant is uti- 
lized by the bacterial cells. On the other hand, cell growth, as time 
passes by, should initially increase and then decrease as the pollu- 
tant becomes less and less available for bacterial nutrition. When 
all the nonylphenol in the solution has been digested, the bacteria 
starteatingeachotheranddieout. Sinceonlyoneofthe threestates 
in Monad's model can be measured. the validity of the optimized 
set of parameters given by the algorithm needs to be checked using 
these relatively subjective criteria. 

In Figure I one can observe the approximated oxygen uptake 
trajectory and compare it with the experimental data. The circled 
data points are obtained from the experiment, while the other data 
points are obtained form the numerical solution. A better approxi- 
mation is indeed obtained in the middle portion of the curve, rather 
than at the extremes. The discrepancy is due to errors caused by 
the experimental data. The bacterial process involved in this ex- 
periment for times less than five days may have been initially idle, 
thus causing the observed behavior. 

Figure 2 shows that both cell growth and pollutant removal be- 
havior meet our expectations as describedbefore. Pollutant removal 
decreasesover time as bacteriaconsume the available nonylphenol, 
while cell growth initially increases and then starts to decrease at a 
slow rate. 

5. VERIFICATION OF THE RESULTS 

In order to verify the usefulness of the parameters obtained, we ap- 
plied the parameter values to a set of data points that is not used 
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Fig. 3. Oxygen uptake using the test data set 

for training. The data set was obtained using the same initial ex- 
perimental conditions as the data set used to obtain the preliminary 
results. For this new data set, the resulting oxygen uptake trajec- 
tory does indeed resemble the evolution of the experimental mea- 
surements, as shown in Figure 3. Moreover, in Figure 4, one can 
observe the evolution of the other two states. It is important to note 
that, to obtain these results, we did not use the least squares opti- 
mization algorithm. Rather, we simply used the obtained biodegra- 
dation coefficients to solve the differential equations in Monod‘s 
model numerically, using the experimental initial conditions for the 
states. 

The oxygen uptake graph for the new data set shows that the 
obtained analytical solution does approximate the experimental data 
points quite well. The cell growth and pollutant removal states be- 
have in a physically consistent manner. as shown in Figure 4. The 
pollutant decreases over time, while cell growth increases until there 
is no more pollutant (food) available. At this point cell growth starts 
to decrease as cell begin to die out. Robustness to a varying data 
set is established. 

6. CONCLUSIONS 

The purpose of this study was to model the influence of nonionic 
surfactants on biodegradation of nonylphenol. To model this non- 
linear biodegradation process requires knowledge of the intrinsic 
parameters of the system, which is generally difficult to obtain through 
only experimental measurements. We first prove that the states of 
the system and the parameters of Monod’s model are locally ob- 
servable. By using nonlinear least squares optimization. we have 
shown that it is possible to obtain the biodegradation kinetic infor- 
mation. Overall, the proposed algorithm provides a good approx- 
imation of the experimental data and is based on Monod’s model. 
The results obtained are also shown to be physically meaningful in 
that the behavior ofthe unobservable states. cell growth and pollu- 
tant removal, was well modeled. Robustness to data sets not used 
for training was also verified. 

Fig. 4. Cell growth and pollutant removal using the test data set 

7. REFERENCES 

I .  P. H. Pritchard, I. E. Lin, J.  G. Mueller, and S. Lantz, “Metabolic 
and ecological factors affecting the bioremediation of pah- 
and creosote-contaminated soil and water”, EPA-600, US 
EPA, Washington, DC, 1994. 

2. R. Renner,”European banson surfactants trigger tranatlantic 
debate”, Env. Sci. and Tech., vol. 31, pp. 316A-320A, 
1997. 

3. E Banat, P. Stephan, and F. Biscof, “Aerobic thermophilic 
treatment of sewage sludgecontaminated with4-nonylphenol”. 
Chemosphere.voi. 41, pp. 297-302,2000. 

4. C. P. L. J.  Grady, I. S. Dang, D. M. Harvey, A. Jobbagy, 
and X. L. Wang, “Determination of biodegradation kinet- 
ics through use of electrolytic respirometry”, Water Ssiense 
Technology, vol. 21, pp. 957-968, 1989. 

5.  J.  Monod,‘Thegrowthofbacterialcultures”,Ann. Rev. Mi- 
crobiol, vol. 3, 1949. 

6. T. E Coleman and Y. Li, “An interior trust region approach 
for nonlinear minimization subject to bounds”, SIAM Jour 
of0plimization. vol. 6, pp. 418445,  May 1996. 

7. T. F. Coleman and Y. Li, “On the convergence of interior- 
reflective Newton methods for nonlinear minimization sub- 
ject to bounds”, Mathematical Programming, vol. 67, pp. 
189-224, 1994. 

8. D. P. Bertsekas, NonlinearProgramming, Athena Scientific, 
Belmont, Massachusetts. 1995. 

9. Chi-Tsong Chen, Linear System Theory and Design, Saun- 
ders College Publishing, Orlando, Florida, 1984. 

III-27 


