
ASIC IMPLEMENTATION OF EFFICIENT LINE SPECTRAL FREQUENCY
COMPUTATION FOR SPEECH CODING APPLICATIONS

David L. Reynolds, Linda M. Head and Ravi P. Ramachandran

Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028
dreynolds@ieee.org, head@rowan.edu, ravi@rowan.edu

ABSTRACT

One of the more computationally intensive portions of speech cod-
ing algorithms using linear predictive (LP) methods is the calcula-
tion of line spectral frequencies (LSFs) from the predictorcoeffi-
cients. Methods for the efficient computation of LSFs have been
developed. A very large scale integration (VLSI) design imple-
menting one such method is presented. The architecture is de-
signed to be optimized for speed and area and is suitable for inte-
gration into larger speech coding systems.

1. INTRODUCTION

Vocoders are algorithmic constructs which encode speech for digi-
tal transmission over band-limited communication channels. Vocoders
based on linear-predictive (LP) analysis are a popular implemen-
tation for modern communications systems, many of which are
embedded systems such as cellular telephones, digital radios and
cryptographic devices. LP vocoders are model based and encode
the vocal tract information representing the spectral envelope of
the encoded speech frame by means of the LP coefficients, which
provide a compact representation of the digitized speech. The LP
residual, which contains the pitch information, is also encoded.
Because LP coefficients are not conducive to low quantization dis-
tortion, they are generally converted to an equivalent parameter
set known as line spectral frequencies (LSFs)[1]. Althoughideal
for quantization and transmission, computation of LSFs from LP
coefficients requires the isolation of high order (typically 10th or
12th for practical systems) polynomial roots for each frameof digi-
tized speech. Although generalized algorithms for performing this
function are inefficient, an efficient algorithm for LSF computa-
tion based on Chebyshev polynomials was previously devised[3]
and we recently proposed a VLSI architecture for the implementa-
tion of this algorithm[2]. In this paper we present a VLSI design
implementing this algorithm suitable for incorporation into larger
speech coding systems.

2. CHEBYSHEV POLYNOMAL TECHNIQUE

The LSFs of a given speech frame are determined by the roots of
the symmetric and antisymmetric polynomials which can be com-
puted from the LP coefficients. The algorithm described in [3]
recognizes inherent properties of the symmetric and antisymmet-
ric polynomials and leverages these properties to convert them into
Chebyshev polynomials. Since the roots of the symetric and an-
tisymmetric polynomials lie on the unit circle, when converted to
Chebyshev representations, the roots are mapped onto the linear
interval [-1,1] as the zero crossings of the polynomial functions.

This mapping preserves the interlacing property of the polynomial
functions, an important aspect of our computational approach. The
core aspects of the algorithm are the evaluation of the Chebyshev
polynomials and determining the location of each zero crossing.
Chebyshev polynomials may be efficiently computed using Clen-
shaw’s recurrence formula [4]. The specific steps of the algorithm
may be summarized as follows[3]:

1. Given the LP coefficients, compute the symmetric and an-
tisymmetric polynomials.

2. Deflate these polynomials by the trivial roots at -1 and +1.

3. Rearrange the deflated polynomial coefficients into the cor-
responding Chebyshev form.

4. Evaluate the Chebyshev polynomials over the interval -1 to
+1 looking for zero crossings.

5. When a root is found, rescan the local region with finer res-
olution to isolate the location with more precision. Linear
interpolation is performed to further pinpoint the root loca-
tion.

6. Switch to the other polynomial (taking advantage of the in-
terlacing property of the roots) and continue locating roots.

7. When all root locations are found, convert them to LSFs by
computing the arccosine of each zero crossing.

These algorithmic steps lend themselves to decomposition and in-
dividual implementation. The approach taken for this design was
the functional decomposition of the algorithm into specificalgo-
rithmic blocks. Design was performed exclusively in VHDL.

3. FUNCTIONAL DECOMPOSITION

The first step in the design of the VLSI architecture is functional
decomposition of the algorithm into individual entities for hard-
ware implementation. This approach also allows easy isolation of
individual portions of the design for testing and validation. The
design is decomposed into six major algorithmic blocks.

3.1. Symmetric and Antisymmetric Polynomial Computation

The input to the system which results in the computation of LSFs
is the vector of LP coefficients in 32-bit IEEE 754 floating point
format with an 8-bit exponent, 23-bit mantissa and sign bit.Com-
putation of the symmetric and antisymmetric polynomial coeffi-
cients given the LP coefficients is fairly straightforward.If A(z)
represents the all-pole LP filter, the symmetric and antisymmetric
polynomialsP (z) andQ(z) may be computed as follows:

P (z) = A(z) + z
−(P+1)

A(z−1) (1)



Q(z) = A(z) − z
−(P+1)

A(z−1) (2)

Algorithmically, this is a simple matter of addition and multi-
plication of the coefficients. To achieve this, a state machine is im-
plemented in the VHDL entityatopq. Because virtually all of the
algorithmic constructs iterate through coefficients, theyshare sim-
ilar state machine structures. The coefficients are iterated through
and are presented to ports which are connected to external floating
point arithmetic entities shared by all algorithmic blocks. Because
this design is intended as a core that will be embedded into larger
systems, simple floating point constructs have been employed. It is
assumed that a complete vocoder implementation would have sub-
stantial resources available for floating-point arithmetic that could
be shared among the cores. The floating point elements used are
combinatorial and may limit overall throughput of the design. In
addition to the input vectors,atopq is provided with a clock, as
well as signals for start and to flag completion. The start andcom-
pletion signals are used to integrate theatopqentity into the over-
all design. An additional selector signal is provided to indicate
whether theP (z) or Q(z) polynomial has been presented to the
entity.

3.2. Polynomial Deflation

The entitypolydefis used to remove the trivial roots atz = +1
andz = −1 from the symmetric and antisymmetric polynomials.
This can be accomplished by the simple addition and subtraction
of coefficients. Again, because we are iterating through theco-
efficients in question and performing floating point operations on
them, a state machine transitions through each step of the process.
Floating point operands and results are presented on input and out-
put ports of the entity. Likeatopq, a clock, start and completion
flag are used. A selector signal is used here as well to select which
trivial root is to be removed.

3.3. Conversion to Chebyshev Polynomials

Given the symmetric and antisymmetric polynomials, it is neces-
sary to compute the Chebyshev polynomial coefficients. There is
an inherent symmetry in the coefficients of the original polyno-
mials, therefore only half of them are necessary to compute the
resulting Chebyshev polynomials. Thechebformentity performs
this computation. The inputs are the deflatedP (z) andQ(z) poly-
nomial coefficients in their 32-bit IEEE 754 format. Again, astate
machine iterates through the coefficients. The Chebyshev poly-
nomial coefficients are computed by multiplying the input poly-
nomial coefficients by two and arranging them in the appropriate
order. Other interface signals include clock, start and completion
flags.

3.4. Evaluation of Chebyshev Polynomials and Root Isolation

The most important operation in the algorithm is the evaluation of
the Chebshev polynomials over the linear region [-1,1] and isolat-
ing the zero crossings. Two entities fulfill this function,rootfinder
and clenshaw. The clenshawentity is used to efficiently evalu-
ate the Chebyshev polynomials at a given location on the linear
region. The input to theclenshawentity are the Chebyshev poly-
nomial coefficients and thex location on the linear region. A small
state machine iterates through the evaluation steps of the Clenshaw
recurrence formula. The result,y, is returned.

The algorithm dictates that the two Chebyshev polynomials be
evaluated over the linear region [-1,1]. A coarse incrementof x is

used to obtain an approximate location of each root, followed by
a more precise scan of the local region using a finer increment.
Linear interpolation further isolates the precise root location. The
interlacing property of the roots is preserved in the Chebyshev do-
main, so once a root of one Chebyshev polynomial is found, it is
known that the next root will be a root of the other. This increases
the efficency of evaluation.

Therootfinderentity contains the most complex state machine
of all entities. Each value ofx is determined. The Chebyshev
polynomial is evaluated by presentingx and the polynomial coef-
ficients to theclenshawentity.

State transitions are made based on each result. A zero cross-
ing is located by examination of the sign bit in the IEEE 754 float-
ing point representations of the result obtained from theclenshaw
entity. This avoids a full 32-bit floating point magnitude compar-
ison, which is the practice generally employed in software imple-
mentations of the algorithm. Once an approximate root location is
found, the increment and location are set to perform a fine reso-
lution rescan of the area. A different portion of the state machine
evaluates the linear interpolation.

As with the other major algorithmic blocks, therootfinderen-
tity is provided with a clock and start signal, and asserts a comple-
tion signal when it completes the scan of the [-1,1] region. Outputs
are thex location of each zero crossing.

3.5. Computation of Arccosine

A Taylor series expansion of four terms is used to compute the
LSFs fromx locations. Again, a state machine is used. Thex loca-
tions are presented in IEEE 754 floating point format to the entity.
The steps of the Taylor series expansion are decomposed intothe
various states. Multiplications and additions are presented to the
external floating point adder and multiplier as required. While the
design described limits evaluation to four terms, the Taylor series
expansion may be easily expanded should additional precision be
required.

4. TOP LEVEL DESIGN

The entities described are assembled into a top level architecture
by cascading them in the appropriate order. The floating point
adder, multiplier and divider are treated as global resources and
connected to the individual algorithmic blocks on a simple bus.
Figure [1] shows the top level architecture of the design. The se-
quential nature of the design can clearly be seen. The input vectors
of LP coefficients is presented to the input of the system. Each en-
tity performs the required operations on the data and asserts the
DONEflag to begin processing of the next stage. Each stage cor-
responds to a step in the algorithm.

5. SIMULATION RESULTS

Simulation of the source VHDL for each entity has been performed.
Test benches have been designed to exercise the function of each
entity using LP coefficient data derived from the TIMIT database.
The LSFs resulting from given input LP coefficients have been
validated by a software implementation of the algorithm. Figure
[2] shows the computation of Chebyshev coefficients from an in-
put vector of symmetric polynomial coefficients. This operation is
accomplished in 11 clock cycles, or approximately 32ps fromthe
assertion of theSTARTsignal until completion.



Of particular interest is the performance of the circuit includ-
ing post-synthesis performance and parasitics. Synthesisof indi-
vidual entities have been performed using Leonardo Spectrum and
the MOSIS AMI05 synthesis library. VHDL models of the re-
sulting circuits have been obtained and simulation performed at
the gate level. These results reflect the timing performanceof the
primitives extracted from the AMI05 library during synthesis.

IC layout is currently in progress. Following layout, para-
sitic capacitances may be extracted and additional simulation per-
formed. Based on results to date, it is expected that throughput of
the design will far exceed the maximum input data rate for typical
speech coding applications. Recall, however, that this design com-
putes LSFs only and does not encompass LP analysis which must
also be performed on each frame of input speech data.

6. SUITABILITY FOR TARGET APPLICATIONS

As mentioned previously, the design is intended for use in larger
speech coding systems for integration in embedded systems.In
such environments, power, space and memory are at a premium.
The implementation of the algorithm addresses these concerns in
several ways.

6.1. Resource Conservation

The algorithm of Kabal and Ramachandran is unique in that it
does not require prior computation or storage of trigonometric
functions[3]. Therefore, significant amounts of chip spaceare
spared. The implementation of LP speech coding systems may
be based on larger, general purpose processor cores or systems. In
contrast to systems such as these, only small amounts of register
storage are required by the VLSI implementation described.One
disadvantage of the approach described is that it is necessary to
determine the system order during the design phase. A software-
centric approach would allow easy adaptation to lower or higher
order systems as required.

6.2. Power Conservation

Efficient use of power is of increasing importance in modern em-
bedded systems. Common items such as cellular telephone have
made significant advances in terms of battery life. Continual pres-
sure to increase battery life on such platforms while striving for
decreased size makes design for power conservation critical. Ther-
mal considerations are a related, and equally important factor in
embedded systems such as these[7].

There are various techniques used for reducing the power re-
quirements of digital circuitry. One common example is supply
voltage scaling, which recognizes power dissipation due toswitch-
ing effects decreases strongly with supply voltage[7][8].Because
simply decreasing the supply voltage will increase switching times[7],
care must be taken that the maximum operational speed of the cir-
cuit is not reduced in excess of what is appropriate for the appli-
cation. There are, however, other approaches to the reduction of
switching losses which may be investigated. A simple technique is
to ensure that no portions of the circuit are unnecessarily clocked.
In our design, the sequential nature of the algorithm allowsus to
ensure that entities not involved in the current algorithmic step are
not clocked. Also, examination of the sign bit in the IEEE 754
floating point representation for detecting a zero crossingcauses
significantly less switching activity than a full 32-bit floating-point

magnitude comparison. This is important considering the large
number of comparisons required for each frame of speech.

Independent of other design decisions, reduced switching losses
are achieved simply through the increased efficiency of the al-
gorithm. Should a generalized root-finding algorithm be imple-
mented, the number of operations, and thus the amount of circuit
switching, is significantly higher. Likewise, the complexity of gen-
eral purpose processor or DSP systems would carry more overhead
in terms of power requirements.

7. SUMMARY AND FUTURE WORK

Currently, design of an 8-bit bus interface wrapper is underway
to allow packaging of the design as a stand alone chip. Follow-
ing completion, layout of the design will be completed and the
design submitted to MOSIS for fabrication. Post synthesis results
indicate that the design is viable and well suited for integration in
larger LP speech coding systems. Numerical performance of the
design is driven primarily by the precision of the floating point
entities used, the length of the Taylor series expansion forarcco-
sine computation, and the choice of fine resolution increments in
the isolation of zero crossings in the Chebyshev domain. Follow-
ing fabrication, it is planned to develop a test platform to allow
the design to be exercised with large amounts of LP coefficients
from the TIMIT database. The results will be compared with the
corresponding LSFs and the outputs correlated with pre- andpost-
synthesis results.

8. REFERENCES

1. R.P. Ramachandran, M.M. Sondhi, N. Senshadri and B.S.
Atal, ”A Two Codebook Format for Robust Quantization of
Line Spectral Frequencies”,IEEE Transactions on Speech
and Audio Processing, Vol. 3, No. 3, pp. 157-168, May
1995.

2. D.L. Reynolds, L.M. Head and R.P. Ramachandran, ”VLSI
Architecture for the Efficient computation of Line Spectral
Frequencies”,IEEE International Conference on Circuits
and Systems, Vol. 3, pp. 718-721, May 2003.

3. P. Kabal and R. P. Ramachandran, “The Computation of
Line Spectral Frequencies Using Chebyshev Polynomials”,
IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, Vol. ASSP-34, No. 6, pp. 1419–1425, December
1986.

4. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery,Numerical Recipes in C, Cambridge University
Press, 1992.

5. K. J. Byun, M. Hahn and K. S. Kim, “Implementation of
13kbps QCELP Vocoder ASIC”,The First IEEE Asia Pa-
cific Conference On ASICs, pp. 258–261, 1999.

6. K. C. Chang,Digital Systems Design with VHDL and Syn-
thesis, IEEE Computer Society Press, 1999.

7. W. Athas,Low-Power VLSI Techniques for Applications in
Embedded Computing, �IEEE Allesandro Volta Memorial
Workshop on Low-Power Design, pp. 14-22, 1999.

8. T. Kuroda, “Low-Power, High-Speed CMOS VLSI Design”’,
IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pp. 310-315, 2002.



Figure 1: Top Level Block Architecture

Figure 2: Simulation ofchebform


