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Abstract

A new method for the generation of
transfer functions of filters resulting in
monotonic magnitude responses is proposed.
Not only filters having the existing monotonic
responses can be obtained wusing this
approach, but additional filters having such
responses can be generated, thereby
originating a large family of such filters both
in the analog and the digital domains.

I. Introduction

Recently, low-pass filters having a
monotonic magnitude response in the pass-
band have been proposed [1]. The
characteristics of these filters are
intermediate  between Butterworth and
Papoulis filters [2.3,4]. However, they
generate only certain distinct types of
monotonic response. It is also shown [5] by
proper perturbation of the pole locations of a
Butterworth filter, monotonic magnitude
response can still be maintained.

In this paper, it is shown how analog
and digital filters having several monotonic
magnitude responses can be generated in a
general fashion.

2. Generation of Transfer functions
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Our approach starts by first obtaining
an analog low-pass filter having a monotonic
magnitude response as follows: One can start
with

flo*)=0>f @)  .(1)
where n is a positive integer or zero and
f, (wz) is any polynomial that is always
positive in ®. It is always possible to find
this type of polynomial, because its roots can
be either complex conjugate or lie on the
negative real axis and they can be multiple.
The value of n determines the extent of the
maximally flat behavior of the response at ©
= (0. We present here two methods of
generating the required magnitude response
which is monotonic.

Method I :
We formulate

g.(x)= Ifl (x)dx (2)
where x = w’.and the constant of integration
is zero. It is readily seen that g|(x) is always
positive when ® > 0 and could be zero when

® = 0. The squared magnitude response of
the resulting low-pass filter is

2 1
|H1 (a)] = m—w—zj (33)



As an alternative, one can put n=0in (1) and
then modify (3a) as

1
H, (o) = .(3b
I 2((01 1+a)2n gliw?.i ( )

which also gives monotonic magnitude
responses having zero slopes at the origin,
having an order equal to n.

Method 11 :
In this method, we formulate

g,(y)= [[f(y)dy 4
where y = @ and the constant of integration is

zero. The squared magnitude response of the
resulting low-pass filter is

2 1
|I‘I3 (Ct)} = W) (Sa)

which, in turn, is also monotonic. Just as in
the previous method, we can initially put n =
0 in (1), carry out the required integrations
and then modify (5a) as

1
H,(w ’ 2 ..{(5b
I 1 1 1+ @™ gliwzi (55)

which also exhibits the property of zero slope
at the origin.

The basic difference between the two
methods is that, in the first case, integration
is carried out with respect to ©” once and in
the second case, the integration is carried out
twice with respect to . The two methods
give rise to different filters. This could be
considered as the starting point for the next
stage of integration and the process can be
repeated. Also, at any stage, one can choose
either Method I or Method II. Thus, one can
immediately see the large number of
possibilities.

The next step is to obtain the
corresponding low-pass analog transfer
function H(s). This is accomplished by using
the relationship that the squared magnitude
response is equal to H(s).H(-s) evaluated at s
= jo. Well known procedures permit us to
realize  singly-terminated or  doubly-
terminated network realization of the low-
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pass filter H(s). Appropriate transformations
of the s-variable [2] result in high-pass,
band-pass and band-elimination analog
filters.

A family of digital low-pass filters
H(z) having monotonic responses is obtained
by the application of the general bilinear
transformation [6]

g=—— (6)
z+1

with 0 < a £ 1 for assuring stability.
Appropriate transformations of the z-variable
will result in high-pass, band-pass and band-
ehimination digital filters.

Numerical Example
The above techniques are illustrated
by a numerical example. Consider the
second-order Bessel filter given by

i
fl(wz):W (7)
—+—+1
9 3
a)4 0)2
Let n = 0 so that flo?) =. 7+T+1'

Method I : The magnitude response obtained
by the first method is given by
2 |
|H1(a)1 =— - (8)
o’ @ 2
—t——tw +1
27 6
for which the -3-dB point is obtained at ® =
0.9247. The corresponding transfer function
is given by
5.19961
Hl( )=

s’ +4.681s% +8.7016s + 5.19961
(9
At this stage, two other modifications are
possible and they are:
(a) The value of n could be different from
zero. For purposes of illustration, we let
n = 2. The corresponding magnitude
function is given by




2 1
H, (o) = S (10)
—+—4+—+1
45 12 3

for which the -3-dB response is obtained at ®
=1.1315.
(b) Instead, the factor o* could be
appropriately added after the integration is
carried out. In such a case, the corresponding
magnitude function as

1

|th(a)]2 T 8 -

@ 6

—+—+0° +1

27 6
for which the -3-dB response is obtained at @
= 0.9714. Fig.l gives the magnitude
responses of (8), (10) and (11).
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Fig.1: Magnitude responses of (8) {shown as
}, of (10) {shown as --—---- ) and that of
(11) {shown as --.--.}.

Method 11 The magnitude response
obtained by this method is given by

2 1
IH2((0] ~ o o 2 -(12)
—t—+—+1
270 36 2

Its -3-dB response is obtained at © = 1.3348.
The corresponding transfer function is given
by

H2(S)=

11.6186
53 1 6.419952+18.8577s +11.6186 ~(15)
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Just as in the case of Method I, one
can incorporate the two modifications. They
are:

(a) The value of n could be other than zero.
For purposes of illustration, we let n = 2

and the corresponding magnitude
function is given by
1
H,{o) = (14
’ al(wl o0 o »° ( )
——t—t—+1
810 168 30

for which the -3-dB response is obtained at
=1.6114
(b) Instead, the factor o* could be
appropriately added after the integration is
carried out. In such a case, we get the
corresponding magnitude function as
2 1
|Hb2 (w] = o o of -(15)

——+—+—+1

2706 36 2
for which the -3-dB response is obtained at @
= 1.1083. Fig.2 gives the magnitude

responses of (12), (14) and (15).
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Fig.2: Magnitude responses of (12) {shown
as }, of (14) {shown as ~----- ) and that
of (15) {shown as --.--.}.

3. Conclusions
A new method of generating transfer
functions which result in strictly monotonic
responses has been proposed. It is required
that one has to start from a polynomial which
is strictly positive for all finite frequencies,
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the order being immaterial. Two methods of
integration are proposed, one with respect to
o° and another with respect to ®. The
constant of integration is always adjusted to
be unity at ® = 0. Also, the slope at the origin
can always be made zero and the degree of
maximal flatness at the origin can be
controlled independently of the order of the
starting polynomial. A very large number of
such responses (almost infinite) can be
generated starting from a low order like two.
The only requirement is that when once a
particular response is generated, the
bandwidth (or -3-dB point) has to be
computed. It is also shown that both analog
and digital filters are possible. A numerical
example is given to illustrate the method.
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