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ABSTRACT

Mismatched training and testing conditions for speaker identifica-
tion exist when speech is subjected to a different channel for the
two cases. This results in diminished speaker identification perfor-
mance. Finding features that show little variability to the filtering
effect of different channels will make speaker identification sys-
tems more robust thereby achieving a better performance. It has
been shown that subtracting the mean of the pole filtered linear pre-
dictive (LP) cepstrum from the actual LP cepstrum results in a ro-
bust feature. This feature is known as the pole filtered mean re-
moved LP cepstrum. Another robust feature is the adaptive com-
ponentweighted (ACW) cepstrumparticularly with mean removal.
In this paper, we combine the ACW cepstrum with the pole filter-
ing concept to configure a more robust new feature, namely, the
pole filtered mean removed ACW cepstrum. This new method is
fast and shows a higher performance then the pole filtered mean
removed LP cepstrum and the mean removed ACW cepstrum. Ex-
perimental results are given for the TIMIT database involving a va-
riety of mismatched conditions.

1. INTRODUCTION

Speaker recognition refers to the concept of recognizing a speaker
by his/her voice or speech samples [1][2][3]. Some of the impor-
tant applications of speaker recognition include customer verifica-
tion for bank transactions, access to bank accounts through tele-
phones, control on the use of credit cards, and for security purposes
in the army, navyand airforce. The two taskswithin speaker recog-
nition are speaker identification and speaker verification. Speaker
identification (ID) deals with a situation where the person has to
be identified as being one among a set of persons by using his/her
voice samples. The objective of speakerverification is to verify the
claimed identity of that speaker based on the voice samples of that
speaker alone. A claimant speaker is either acceptedor rejected by
the system.

The speaker ID problem may further be subdivided into closed
set and open set. The closed set speaker ID problem refers to a case
where the speaker is known a priori to belong to a set ofM speak-
ers. In the open set case, the speaker may be out of the set and
hence, a ”none of the above” category is necessary. Another dis-
tinguishing aspect of speaker recognition systems is that they can
either be text-independent or text-dependent depending on the ap-
plication. In the text-independent case, there is no restriction on
the sentence or phrase to be spoken, whereas in the text-dependent
case, the input sentence or phrase is fixed for each speaker. The
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Figure 1: A general diagram of a recognition system

focus of this paper is on text-independent, closed set speaker iden-
tification.

Speaker recognition consists of two stages, namely, Feature
ExtractionandClassification as shown in Fig. 1. Feature extraction
is associatedwith obtaining the characteristic patterns of the signal
that are representative of the speaker in question. The parameters
or features used in speaker recognition are a transformation of the
speech signal into a compact acoustic representation that contains
information useful for the identification of the speaker. This is of-
ten done using short-time linear predictive (LP) [4] analysis which
leads to an all-pole LP vocal tract model. The LP coefficients are
converted to the LP cepstrum [4] which in turn, is the feature vec-
tor. The classifier uses the features to render a decision as to the
speaker identity or verifies the claimed identity of the speaker.

The recognition task is highly successful if the environmental
conditions for training and testing are the same (known asmatched
conditions). Studies have shown that recognition performance de-
grades when the training and testing conditions are not the same
(known asmismatched conditions) [5][6][7]. This occurswhen the
speaker is trained on one type of telephone (handset, cordless or
speakerphone) and during the testing phase, a different type of tele-
phone is used. In this particular case, channel mismatch is encoun-
tered and this contributes to the degradation in the performance.
Channels have a filtering effect on the speech and alter the overall
spectral envelope of the speech signal. Assuming that the speech
andchannelspectra arewell approximatedby the all-pole LPmodel,
it is observed that a channel influence on the speech leads to an ad-
ditive component on the LP cepstrum. Estimating and removing
this additive channel component will mitigate the channel effect
and make speaker recognition systems more robust. One method
of estimating the additive channel component is to take the mean
of the LP cepstrumvectors over an utterance [8]. It has been shown
that a better estimate is obtained by taking the mean of the pole fil-
tered LP cepstrum [9][10][11]. Removal of the mean of the pole
filtered LP cepstrum from the LP cepstrumvectors results in amore



robust feature and is known as the pole filtered mean removed cep-
strum (PFMRC). Another channel estimate is based on the mean of
the adaptive component weighted (ACW) cepstrum [12][13][14].
Removal of the mean of the ACW cepstrum from the ACW cep-
strum vectors results in another robust feature and is known as the
mean removed ACW cepstrum (MRACW).

In this paper, we combine the concept of pole filtering to the
ACW cepstrum to configure a new channel estimate and a new fea-
ture. The channel estimate is the pole filtered mean of the ACW
cepstrum. Removal of the pole filtered mean of the ACW cepstrum
from the ACW cepstrum vectors results in the new robust feature
and is known as the pole filtered mean removed ACW cepstrum
(PFMRACW). Thismethod is computationally efficient just like its
PFMRC and MRACW counterparts. It also gives a better perfor-
mance than the PFMRC and MRACW approaches.

2. LINEAR PREDICTIVE CEPSTRUM

The autoregressive LP model for speech is given by the difference
equation [4]

s�n� �

pX

i��

ais�n� i� � e�n� (1)

where s�n� is the speech signal, e�n� is the prediction error and ai
are the predictor coefficients. It can be noted that s�n� is predicted
as a linear combination of the previous p samples. The all-pole LP
transfer function is given by
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where S�z� and E�z� are the z-transforms of s�n� and e�n� re-
spectively. In practice, the predictor coefficients ai are computed
over short intervals (typically �� ms to �� ms) called frames dur-
ing which the vocal tract configuration is assumed to be stationary.
This is done using the autocorrelation method [4][15] which guar-
antees that H�z� is a stable function.

The predictor coefficients ai are converted to the LP cepstrum
clp�n� �n � �� by an efficient recursive relation given as [4][15]
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Since clp�n� is of infinite duration, the feature vector of dimension
p consists of the components clp��� to clp�p� which are the most
significant due to the decay of the sequencewith increasing n.

2.1. Pole Filtered Mean Removed Cepstrum (PFMRC)

As mentioned earlier, when speech is subjected to channel interfer-
ence, an additive component due to the channel manifests itself on
the LP cepstrum. To compensate for the channel effect, this com-
ponent is estimated as the mean or the pole filtered mean of the LP
cepstrum and removed by subtraction. For simple mean subtrac-
tion, the feature vector is

cmrc�n� � clp�n�� E�clp�n�� (4)

where the expectation is takenover anutteranceconsistingof anum-
ber of frames.

The LP poles with narrow bandwidths that lie close to the unit
circle usually represent the formants and are less sensitive to chan-
nel and noise effects. Hence, these poles do not contribute to the
channel estimate as they contain much speech information. In con-
trast, the broad bandwidth poles model the spectral tilt, sub-glottal
variation and the channel effects. These poles offer a better esti-
mate of the channel. Pole filtering modifies the LP poles so as to
broaden the bandwidth of the formant poles [9][10][11]. Broaden-
ing the bandwidth of the formant poles is performed by transform-
ing the LP polynomial so as to weight the predictor coefficients as
given by
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where � � � � �. Given the original LP poles pi , the new set
of poles are �pi. The cepstrum formed from these modified poles
(denoted as cpflp�n�) is related to the LP cepstrum as [9][10][11].

cpflp�n� � �nclp�n� (6)

The feature vector cpfmrc�n� is known as the pole filtered mean
removed cepstrum (PFMRC) and is computed as given below.

� Select the parameter �.

� For each frame of speech, calculate clp�n� and cpflp�n�.

� Find the channel estimate E�cpflp�n�� where the expecta-
tion is taken over all speech frames in an utterance.

� Find the feature vector cpfmrc�n� � clp�n��E�cpflp�n��.

3. ADAPTIVE COMPONENT WEIGHTED CEPSTRUM

The first step in developing the ACW cepstrum [12] is to perform
a partial fraction expansion of the LP function H�z� � ��A�z� to
get
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The experiments in [12] reveal that the residues rk show consider-
able variations especially for nonformant poles when the speech is
degraded. Therefore, the variations in rk were removed by forcing
rk to be constant � � for every k. Hence, the resulting transfer
function is a pole-zero type of the form
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It has been shown in [14] that N�z� is the derivative of A�z� with
respect to z and hence, the coefficients bk are easily found from
ak . Applying the recursion in Eq. (3) to bk and ak results in two
cepstrum sequencescb�n� and clp�n� respectively. TheACW cep-
strum is cacw�n� � clp�n�� cb�n�. For simple mean subtraction
(MRACW method), the feature vector is

cmracw�n� � cacw�n��E�cacw�n�� (9)

where the expectation is takenover anutteranceconsistingof anum-
ber of frames.

3.1. Pole FilteredMeanRemovedAdaptiveComponentWeighted
Cepstrum (PFMRACW)

The contribution of this paper is to combine the pole filtering con-
cept to the ACW cepstrum to get a better channel estimate and a
more robust feature vector. The first step is to choose a value of
� between 0 and 1 and perform a partial fraction expansion of the
pole filtered LP function ��A�z��� to get
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Setting sk � � for every k gives a transfer function
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Again,M�z� is the derivative ofA�z���with respect to z andhence,
the coefficientsmk are easily found from �kak . Applying the re-
cursion in Eq. (3) to mk results in the cepstrum sequence cm�n�.
The cepstrum corresponding to the denominator of Hpfacw�z� is
cpflp�n� (see Eq. (6). Thepole filteredACWcepstrum is expressed
as cpfacw�n� � cpflp�n��cm�n�. The feature vector (denoted
ascpfmracw�n�) is knownas the polefilteredmean removedACW
cepstrum (PFMRACW) and is computed as given below.

� Select the parameter �.

� For each frame of speech, calculatecacw�n� andcpfacw�n�.

� Find the channel estimateE�cpfacw�n�� where the expec-
tation is taken over all speech frames in an utterance.

� Find the feature vector
cpfmracw�n� � cacw�n��E�cpfacw�n��.

4. EXPERIMENTAL RESULTS

Closed set, text-independentspeaker identification experiments are
carried out using the TIMIT database. Thirty eight speakers from
the New England dialect are considered. The speech is downsam-
pled from 16 kHz to 8 kHz. For each speaker, there are 10 sen-
tences. The first five are used for training a vector quantizer (VQ)
classifier using the Linde-Buzo-Gray (LBG) method [16] and the
squared Euclidean distance as the distortion measure. A VQ code-
book is designed for each of the 38 speakers. The training condi-
tions include clean speech and speech subjected to representative

Training Testing PFMRC MRACW PFMRACW
Condition Condition �, ISR ISR �, ISR

Clean CMV ����, 58.4 60.0 0.95, 65.8
Clean CPV ����, 59.5 56.3 0.90, 67.4
CMV CPV ���	, 66.3 70.0 0.80, 74.2
CPV CMV ����, 66.8 65.8 0.90, 73.7
Clean EMV ��
�, 67.9 65.3 0.80, 79.5
Clean EPV ��
	, 70.5 68.4 0.70, 78.4
EMV EPV ����, 74.2 70.0 0.85, 81.6
EPV EMV ��
�, 71.6 70.5 0.90, 78.4
CMV EMV ����, 64.2 62.6 0.95, 68.4
CMV EPV ���	, 62.6 62.6 0.95, 66.3
CPV EMV ���	, 58.9 55.8 0.75, 62.1
CPV EPV ���	, 61.6 57.4 0.95, 58.9

Table 1: Speaker identification successrate (ISR) as a percent. The
best value of � is shown. The acronym PFMRC is for pole filtered
cepstral mean subtraction. The acronym MRACW is for adap-
tive component weighted cepstral mean subtraction. The acronym
PFMRACW is for pole filtered adaptive componentweighted cep-
stral mean subtraction.

bandpass telephone channels [17]: (1) the Continental Mid Voice
(CMV) channel, (2) the Continental Poor Voice (CPV) channel, (3)
the EuropeanMid Voice (EMV) channel and (4) the EuropeanPoor
Voice (EPV) channel. The remaining five sentences are individu-
ally used for testing thereby giving 190 test utterances.

The testing conditions correspondto channelcorrupted speech.
Consider a particular test feature vector. This is quantized by each
of the 38 codebooks. The quantized vector is that which is clos-
est (according to the squared Euclidean distance) to the test feature
vector. Hence, 38 different distances are recorded, one for each
codebook. This process is repeated for every test feature vector.
The distances are accumulated over the entire set of feature vec-
tors. The codebook which renders the smallest accumulated dis-
tance identifies the speaker. The identification success rate (ISR)
is the number of utterances for which the speaker is identified cor-
rectly divided by the total number of utterances tested. The VQ
codebook size is 64. For both training and testing, silent or low-
energy frames are discarded by energy thresholding. Also, a 12th
order LP analysis is used with 30 ms frames having an overlap of
20 ms. All the feature vectors have dimension 12.

Table 1 shows the results for speaker identification. Different
values of � were tried. The best values of � are from 0.70 to 0.95.
In Table 1, the result for the best value of � is given for each train-
ing/testing combination. The performance of our newPFMRACW
method is better than the both the PFMRCandMRACWapproaches
(except for only onecasewhen theCPVchannel is used for training
and the EPV channel is used for testing).

For both the PFMRC and PFMRACW methods, the best value
of � depends on the training and testing conditions. However, re-
sults show that the ISR varies very little for values of � between
0.70 and 0.95. Decreasing � below 0.70 does result in significant
performance loss and hence, these values should not be used. Fig-
ure 2 showsthe ISRversus� for the PFMRCandPFMRACWmeth-
ods for the casewhen training is doneon theCMV channeland test-
ing is done on the CPV channel. The question of what � to use can
more easily be answered since the variation in the ISR is relatively
low for values of ��
� � � � ���	. By examining the results for
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Figure 2: The ISR versus� for the PFMRC andPFMRACW meth-
ods for the case when training is done on the CMV channel and
testing is done on the CPV channel.

all the training and testing conditions attempted, it is beneficial to
fix � at 0.85. Table 2 shows the results for � � ����. It is clear that
the ISR for both the PFMRCandPFMRACW are generally slightly
below the best possible and that the PFMRACW method is almost
always the best (the exceptionbeing two cases). Table 2 also shows
the results for the MRACW method for the sake of completeness.
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