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ABSTRACT 
The use of Java is growing due to its platform 
independence and ability to be transferred easily across 
the internet. Although these features are advantageous, 
software becomes more susceptible to theft and misuse 
since the original source code is preserved in bytecode 
format. One viable protection technique that has gained 
increasing attention is code obfuscation, which 
unintelligibly transforms the source code making it more 
difficult to reverse engineer, while preserving 
functionality. With a plethora of commercial obfuscation 
tools available, to analyze and evaluate the strength of 
these programs is paramount.  Although the methods 
employed for obfuscation are not as plentiful as the 
number of programs available, the importance of 
evaluating these methods is commensurate. This paper 
focuses on the performance of two commercial 
obfuscators, DashO-Pro and KlassMaster, solely 
employing the method of control flow obfuscation.  
Qualitative analysis is conducted by obfuscating three 
different sorting algorithms with increasing complexity. 
The relationship between the performance of each 
program and the complexity of the source code is then 
established.  

KEY WORDS 
Measurement, Performance, Security, Java obfuscation, 
Performance analysis, Complexity 

 

1 Introduction 
With the advent of computer networks and mobile 
technologies, it has become a trend to distribute software 
in platform-independent formats over the Internet. Such 
an example would be the Java bytecode. While this trend 
offers important advantages with respect to cost, 
configurability, and portability, software becomes more 
susceptible to theft and misuse since the original source 
code is preserved in bytecode. More nefarious is the fact 
that attackers can easily decompile bytecode and extract 
proprietary algorithms and data structures from it.  

   
Software obfuscation is an attractive and practical 
approach being explored to rectify this problem. The 
basic premise of obfuscation is to transform a program 
into a functionally identical one that is much more 
difficult to understand [1, 2, 3]. It not only hides the 
program information from prying eyes, but also tries to 
make the logic and data structure of the code as 
meaningless as possible even after the attackers reverse 
engineer it. Reverse engineering becomes futile when the 
cost of understanding and/or stealing intellectual property 
of a code becomes prohibitively high, especially if the 
task is more arduous than that of rewriting the program. 
Although there is tremendous scientific and commercial 
interest in developing obfuscation tools, the lack of 
analysis techniques and metrics for evaluating the 
strength of various obfuscation tools is still one of the 
greatest challenges in code protection research [4].  

The intention of this paper is to analyze two commercially 
available obfuscation tools: DashO-Pro from Pre-Emptive 
Solutions [5] and KlassMaster from Zelix [6], and provide 
qualitative measurement of their performance due to 
control flow obfuscation. A relationship between their 
performance and the complexity of the code structure is 
established. The rest of the paper is organized as follows. 
Section 2 provides a definition of obfuscation and gives 
an overview of its different forms.  The methodology is 
outlined in the third section along with an explanation of 
the different algorithms used for testing.  Section 4 
presents the results of the tests, followed by the 
conclusion and future research in section 5.   

2 Obfuscation 
Code obfuscation is essentially a transformation of source 
code from legible to unreadable, so that the transformed 
code cannot be easily reverse engineered [7]. Obfuscation 
can be performed in a variety of ways to render source 
code undecipherable to users. A few of the methods 
include renaming classes and functions, restructuring 
control flow, string encryption, class splitting, and class 
coalescing [8, 9]. The general 

obfuscation procedure is presented in Subsection 2.1. 
Subsection 2.2 focuses on control flow obfuscation. 

2.1 General Obfuscation Process 
The process of compilation and reverse engineering are 
illustrated in Fig. 1A. Compilation refers to the translation 

of source code into machine code. For a Java application 
or applet, source code is compiled into class files. As 
stated earlier, malicious reverse engineering can 
decompile files in bytecode format back to original source 
code, which is detrimental to intellectual property. 
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Obfuscation, on the other hand, transforms the class files 
to make their logic and data structure difficult to 
understand and the cost of reverse engineering 
prohibitively high (see Fig. 1B for the generic 
framework). 

Figure 1A. The process of compilation and reverse engineering 
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Figure 1B. Framework of obfuscation 

Original 
Source Code 

(java file)

Original 
Source Code 

(java file)

Decompiled
Source Code 

(java file)

Decompiled
Source Code 

(java file)

Compiled 
Class File
Compiled 
Class File

Obfuscated 
Class File

Obfuscated 
Class File

Compilation

Decompilation

Ob
fus
cat
ion

 
2.2 Control Flow Obfuscation 
Currently, commercial obfuscators allow the user to 
specify which obfuscation technique to use on the 
applications.  The majority of commercial obfuscators 
have included control flow as a primary form of 
obfuscation available in their programs.  Control flow 
obfuscation restructures algorithms which changes the 
flow of the original program. For example, a looping 
algorithm, using keywords such as for and do-while, may 
be obfuscated into a branching algorithm, utilizing the 
keywords if, goto, break, continue, and label.  A typical 
example of a control flow transformation is given in 
Figures 2 and 3. 

Figure 2. Example of original source code 

 

3 Evaluation 
The purpose of control flow obfuscation is to restructure 
the branching and looping statements in an application.  
However,  altering the control flow can be a hindrance to 
users of the application.  Specifically, runtime may 
increase to such a drastic level that it in effect nullifies the 
efficacy of obfuscation as a form of security. 

Figure 3. Example of obfuscated code 

 
Currently, three criteria are considered in evaluating the 
quality of obfuscation methods; including potency, 
resilience, and cost [8]. The potency refers to how much 
obscurity is added to the program, which can be measured 
by analyzing certain parameters of the obfuscated code. 
These parameters include the number of classes added, 
variable dependencies, and the level of inheritance. The 
resilience of the program is a measure of how effectively 
the obfuscated program withstands attacks from either the 
programmer or a de-obfuscator. The measure of resilience 
can be based on the amount of time it takes to convert the 
obfuscated code back into readable source code. The cost 
of the obfuscation refers to how much computational 
overhead is added to the obfuscated application.  

This paper focuses only on measures of execution cost. 
Three sorting algorithms, bubblesort, quicksort, and 
radixsort [10], are used to test the performance of DashO-
Pro and KlassMaster due to control flow obfuscation. 
DashO-Pro costs $1,500 per seat [5] and KlassMaster 
costs $400 per seat [6]. The sorting algorithms are 
selected because of their different complexity with regard 
to O-notation [11].  Detailed information pertaining to 
these sorting algorithms is presented in the following 
subsections.  

3.1 Bubblesort Algorithm 
Bubblesort takes an array of values and divides it into two 
partitions: one of sorted values and one of unsorted 
values.  In each step, the largest element found so far in 
the unsorted partition is moved down and appended to the 
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end of the sorted partition. The sorting proceeds until the 
elements in the unsorted partition are exhausted. The O-
notation for bubblesort is where n refers to the 
number of elements in the array [12]. The implementation 
of the sorting routine is rather simple.  It only takes four 
lines of code containing two loops and a single 
conditional statement.   

)( 2nO

3.2 Quicksort Algorithm 
Quicksort first selects an element that is used as a split-
point from the list of given elements. All the numbers 
smaller than the split-point are moved to one side of the 
list and the rest are brought to the other side. Then each 
list is subdivided into two smaller lists; one containing the 
elements less than the split-point element and the other 
containing the elements greater than the split-point 
element. These two lists are again individually sorted 
using the recursive function quicksort. The 
implementation used for the testing is stack-based instead 
of recursive due to limitations within Java. The O-
notation for quicksort is O [13]. )log( nn ⋅

3.3 Radixsort Algorithm 
Radixsort first sorts the elements by the least-significant 
digit.  It then sorts within each radix and resorts each of 
the radices. A comparable example would be arranging a 
deck of cards first by suit. Then within each suit, the cards 
would be sorted in order. The O-notation for radixsort 
is  [14]. )(nO

4 Performance Testing 
4.1 Metrics 
 A dynamic array is created for the testing procedure 
where the size of the array, denoted by N, can be changed 
at runtime from 500 to 2,000,000. These tests are 
conducted one-hundred times for each size of the array. 
The mean of the one-hundred tests is then computed and 
represented as a data point. The amalgamation of the 
means of the array sizes constitutes the performance curve 
for the sorting algorithm. This procedure runs for the 
original sorting algorithms as well as the obfuscated 
versions using DashO-Pro and KlassMaster. The 
performance curves for the original as well as the 
obfuscated ones from DashO-Pro and KlassMaster are 
placed on the same set of axis in order to show their 
relationship. A least-squares-fit is also introduced to 
approximate an equation to each one of the curves in 
order to achieve a concrete differentiation between the 
three curves.  The equations used in the experiments are 

for bubblesort,  for quicksort, and 
 for radixsort, where k is a constant. Any difference 

between the curves will be represented in the constant k.  

2nk ⋅
nk ⋅

nnk log⋅⋅

4.2 Experimentation Results 

4.2.1 Bubblesort 
As shown in Figure 4A, the three performance curves of 
bubblesort are shaped like a second order polynomial 
which corresponds directly to the O-notation of the 

algorithm. Note that, the first 1000 data points are re-
plotted with a smaller scale in Fig. 4B for clarity. The top 
curve represents the performance of the algorithm being 
obfuscated through KlassMaster. It is evident that there is 
a significant performance decrease from the original 
source code approximately 41.18%.  While a performance 
loss exists between the original algorithm and 
KlassMaster’s version, there exists a slight performance 
increase of 2.29% from the original to the transformed 
version using DashO-Pro.  Such an increase is small in 
magnitude compared to the performance decrease of the 
original to KlassMaster’s version.  While this may seem 
counter-intuitive, the performance increase in DashO-
Pro’s version is a result of the complex structure of the 
bytecode which is automatically optimized through the 
program. 
 

Figure 4A. Performance curves for bubblesort algorithm 
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Figure 4B. Close-up of the first 1000 data points of bubblesort 
algorithm 
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Table 1 shows the three versions of the Bubblesort 
algorithm and their structures. As shown in the second 
column, the original sorting possesses only two for loops 
and a single if statement. This simple coding structure is 
converted to eleven goto and label statements after being 
obfuscated with KlassMaster. Because the original code is 
simplistic, essentially the obfuscator has to work harder to 
rearrange the algorithm to make its structures appear more 
convoluted.  Because the code is altered to such a high 
degree, the performance loss occurred using KlassMaster 
is significant. The same is true for the version obfuscated 
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using DashO-Pro, except the code is not altered to the 
extent that KlassMaster altered the code.  

Table 1. Bubblesort Structure Type Comparison 

Bubblesort Original 
Sort 

DashO-
Pro KlassMaster

If 1 1 4 
Goto / Labels 0 0 11 

While 0 1 0 
For 2 1 0 

Invalid 
Decompilation 0 0  

4.2.2 Quicksort 
As stated earlier, the equation to approximate the 
performance curves of quicksort is . The k 
values computed for the original code, and the obfuscated 
versions from DashO-Pro and KlassMaster are 
4.0241·102, 4.1095·102, 4.9588·102, respectively. From 
these values, there can be determined a 2.12% 
performance loss from DashO-Pro and a 23.23% 
performance loss from KlassMaster as shown in Figure 
5A. The first 10,000 data points are re-plotted with a 
smaller scale in Fig. 5B. 

nnk log⋅⋅

 
Figure 5A. Performance curves for quicksort algorithm 
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Figure 5B. Close-up of the first 10,000 data points of quicksort
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Table 2 shows the structure of the code for the three 
versions of the quicksort algorithm. Compared to the 
bubblesort algorithm the implementation of the code is 
augmented which is apparent from Tables 1 and 2.  Again 
each of the obfuscators adds a degree of complexity to the 
code.  However, the number of lines of obfuscated code 
inserted to the original one is slightly reduced. 

 
Table 2. Quicksort Structure Type Comparison 

Quicksort Original 
Sort 

DashO-
Pro KlassMaster

If 3 5 11 
Goto / Labels 0 8 24 

While 4 11 1 
For 0 1 0 

Invalid 
Decompilation 0 0 5 

4.2.3 Radixsort 
Figure 6A displays the performance curves of the 
radixsort algorithm that are best fit to a first-order 
polynomial. The variance between the three performance 
curves is small enough that any performance increase or 
decrease can be regarded as a statistical error in the 
testing procedure. At some points in Figure 6A, the 
curves intersect each other which is another consequence 
of the variances being so small. Figure 6B displays a 
close-up of the first 10,000 data points of Figure 6A. This 
shows the dependence of the array size. 
 

Figure 6A. Performance curves for radixsort algorithm 
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Radixsort  Sort Test Times 
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 Table 3 illustrates how the structure of the original 

algorithm is transformed after using the two obfuscator 
programs. It is apparent, from the second and third rows, 
that there is a significant increase in the number of if 
statements and goto labels added to the original structure 
after obfuscation.  Specifically, KlassMaster does the 
most to alter the original algorithm.  However, not evident 
from Table 3 is the complexity of the original algorithm. 
Out of the three sorting algorithms, Radixsort contains the 
most code complexity. This gives a rationale as to why 
the three performance curves are closely related.  

Table 3. Radixsort Structure Type Comparison 

 

Radixsort Original 
Sort 

DashO-
Pro KlassMaster 

If 1 3 8 
Goto / Labels 0 9 17 

While 0 1 1 
For 4 1 0 

Invalid 
Decompilation 0 0 4 

5 Conclusion 
This paper presents a qualitative measurement of the 
capability of two commercially available obfuscators, 
DashO-Pro and KlassMaster. Specifically, this work 
addresses control flow obfuscation in terms of the 
computational overhead added to the obfuscated 
applications.  

Overall, the two obfuscators used for the analysis both 
cause variations in the performance of the algorithms used 
for testing. The greatest performance losses occur when 
obfuscating the bubblesort algorithm using KlassMaster. 
The progression from the bubblesort algorithm to the 
radixsort shows an increase in the complexity of the 
coding routines. Also by going in the same direction it 
can be seen that the performance loss decreases 
significantly. Therefore, it can be concluded that the 
performance loss and the complexity of the code for 
KlassMaster possess an inverse relationship. The 
obfuscator has to do more work to make simplistic code 
appear code indecipherable. Therefore, it must add more 
code to make the algorithm harder to read, in effect 
causing a much greater performance loss. With regard to 
DashO-Pro, even as the complexity of the code increased, 
the performance loss occurred does not vary drastically. 

To develop more analytical metrics in evaluating the 
scalability and overheads of current obfuscators is our 
future research. 
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