
A COMPARATIVE STUDY OF JAVA OBFUSCATORS
 Jeffrey MacBride, Christopher Mascioli, Scott Marks, Ying Tang, Linda M. Head, and Ravi, P. Ramachandran

Electrical & Computer Engineering
Rowan University

201 Mullica Hill Road
Glassboro, NJ 08028

USA
{macbri78, mascio88, markss02}@students.rowan.edu; {tang, head, ravi}@rowan.edu

ABSTRACT
The use of Java is growing due to its platform
independence and ability to be transferred easily across
the internet. Although these features are advantageous,
software becomes more susceptible to theft and misuse
since the original source code is preserved in bytecode
format. One viable protection technique that has gained
increasing attention is code obfuscation, which
unintelligibly transforms the source code making it more
difficult to reverse engineer, while preserving
functionality. With a plethora of commercial obfuscation
tools available, to analyze and evaluate the strength of
these programs is paramount. Although the methods
employed for obfuscation are not as plentiful as the
number of programs available, the importance of
evaluating these methods is commensurate. This paper
focuses on the performance of two commercial
obfuscators, DashO-Pro and KlassMaster, solely
employing the method of control flow obfuscation.
Qualitative analysis is conducted by obfuscating three
different sorting algorithms with increasing complexity.
The relationship between the performance of each
program and the complexity of the source code is then
established.

KEY WORDS
Measurement, Performance, Security, Java obfuscation,
Performance analysis, Complexity

1 Introduction
With the advent of computer networks and mobile
technologies, it has become a trend to distribute software
in platform-independent formats over the Internet. Such
an example would be the Java bytecode. While this trend
offers important advantages with respect to cost,
configurability, and portability, software becomes more
susceptible to theft and misuse since the original source
code is preserved in bytecode. More nefarious is the fact
that attackers can easily decompile bytecode and extract
proprietary algorithms and data structures from it.

Software obfuscation is an attractive and practical
approach being explored to rectify this problem. The
basic premise of obfuscation is to transform a program
into a functionally identical one that is much more
difficult to understand [1, 2, 3]. It not only hides the
program information from prying eyes, but also tries to
make the logic and data structure of the code as
meaningless as possible even after the attackers reverse
engineer it. Reverse engineering becomes futile when the
cost of understanding and/or stealing intellectual property
of a code becomes prohibitively high, especially if the
task is more arduous than that of rewriting the program.
Although there is tremendous scientific and commercial
interest in developing obfuscation tools, the lack of
analysis techniques and metrics for evaluating the
strength of various obfuscation tools is still one of the
greatest challenges in code protection research [4].

The intention of this paper is to analyze two commercially
available obfuscation tools: DashO-Pro from Pre-Emptive
Solutions [5] and KlassMaster from Zelix [6], and provide
qualitative measurement of their performance due to
control flow obfuscation. A relationship between their
performance and the complexity of the code structure is
established. The rest of the paper is organized as follows.
Section 2 provides a definition of obfuscation and gives
an overview of its different forms. The methodology is
outlined in the third section along with an explanation of
the different algorithms used for testing. Section 4
presents the results of the tests, followed by the
conclusion and future research in section 5.

2 Obfuscation
Code obfuscation is essentially a transformation of source
code from legible to unreadable, so that the transformed
code cannot be easily reverse engineered [7]. Obfuscation
can be performed in a variety of ways to render source
code undecipherable to users. A few of the methods
include renaming classes and functions, restructuring
control flow, string encryption, class splitting, and class
coalescing [8, 9]. The general

obfuscation procedure is presented in Subsection 2.1.
Subsection 2.2 focuses on control flow obfuscation.

2.1 General Obfuscation Process
The process of compilation and reverse engineering are
illustrated in Fig. 1A. Compilation refers to the translation

of source code into machine code. For a Java application
or applet, source code is compiled into class files. As
stated earlier, malicious reverse engineering can
decompile files in bytecode format back to original source
code, which is detrimental to intellectual property.

467-022 82

kirk

Obfuscation, on the other hand, transforms the class files
to make their logic and data structure difficult to
understand and the cost of reverse engineering
prohibitively high (see Fig. 1B for the generic
framework).

Figure 1A. The process of compilation and reverse engineering

Original
Source Code

(java file)

Original
Source Code

(java file)

Decompiled
Source Code

(java file)

Decompiled
Source Code

(java file)

Compiled
Class File
Compiled
Class File

Compilation

Decompilation

Figure 1B. Framework of obfuscation

Original
Source Code

(java file)

Original
Source Code

(java file)

Decompiled
Source Code

(java file)

Decompiled
Source Code

(java file)

Compiled
Class File
Compiled
Class File

Obfuscated
Class File

Obfuscated
Class File

Compilation

Decompilation

Ob
fus
cat
ion

2.2 Control Flow Obfuscation
Currently, commercial obfuscators allow the user to
specify which obfuscation technique to use on the
applications. The majority of commercial obfuscators
have included control flow as a primary form of
obfuscation available in their programs. Control flow
obfuscation restructures algorithms which changes the
flow of the original program. For example, a looping
algorithm, using keywords such as for and do-while, may
be obfuscated into a branching algorithm, utilizing the
keywords if, goto, break, continue, and label. A typical
example of a control flow transformation is given in
Figures 2 and 3.

Figure 2. Example of original source code

3 Evaluation
The purpose of control flow obfuscation is to restructure
the branching and looping statements in an application.
However, altering the control flow can be a hindrance to
users of the application. Specifically, runtime may
increase to such a drastic level that it in effect nullifies the
efficacy of obfuscation as a form of security.

Figure 3. Example of obfuscated code

Currently, three criteria are considered in evaluating the
quality of obfuscation methods; including potency,
resilience, and cost [8]. The potency refers to how much
obscurity is added to the program, which can be measured
by analyzing certain parameters of the obfuscated code.
These parameters include the number of classes added,
variable dependencies, and the level of inheritance. The
resilience of the program is a measure of how effectively
the obfuscated program withstands attacks from either the
programmer or a de-obfuscator. The measure of resilience
can be based on the amount of time it takes to convert the
obfuscated code back into readable source code. The cost
of the obfuscation refers to how much computational
overhead is added to the obfuscated application.

This paper focuses only on measures of execution cost.
Three sorting algorithms, bubblesort, quicksort, and
radixsort [10], are used to test the performance of DashO-
Pro and KlassMaster due to control flow obfuscation.
DashO-Pro costs $1,500 per seat [5] and KlassMaster
costs $400 per seat [6]. The sorting algorithms are
selected because of their different complexity with regard
to O-notation [11]. Detailed information pertaining to
these sorting algorithms is presented in the following
subsections.

3.1 Bubblesort Algorithm
Bubblesort takes an array of values and divides it into two
partitions: one of sorted values and one of unsorted
values. In each step, the largest element found so far in
the unsorted partition is moved down and appended to the

83

end of the sorted partition. The sorting proceeds until the
elements in the unsorted partition are exhausted. The O-
notation for bubblesort is where n refers to the
number of elements in the array [12]. The implementation
of the sorting routine is rather simple. It only takes four
lines of code containing two loops and a single
conditional statement.

)(2nO

3.2 Quicksort Algorithm
Quicksort first selects an element that is used as a split-
point from the list of given elements. All the numbers
smaller than the split-point are moved to one side of the
list and the rest are brought to the other side. Then each
list is subdivided into two smaller lists; one containing the
elements less than the split-point element and the other
containing the elements greater than the split-point
element. These two lists are again individually sorted
using the recursive function quicksort. The
implementation used for the testing is stack-based instead
of recursive due to limitations within Java. The O-
notation for quicksort is O [13].)log(nn ⋅

3.3 Radixsort Algorithm
Radixsort first sorts the elements by the least-significant
digit. It then sorts within each radix and resorts each of
the radices. A comparable example would be arranging a
deck of cards first by suit. Then within each suit, the cards
would be sorted in order. The O-notation for radixsort
is [14].)(nO

4 Performance Testing
4.1 Metrics
 A dynamic array is created for the testing procedure
where the size of the array, denoted by N, can be changed
at runtime from 500 to 2,000,000. These tests are
conducted one-hundred times for each size of the array.
The mean of the one-hundred tests is then computed and
represented as a data point. The amalgamation of the
means of the array sizes constitutes the performance curve
for the sorting algorithm. This procedure runs for the
original sorting algorithms as well as the obfuscated
versions using DashO-Pro and KlassMaster. The
performance curves for the original as well as the
obfuscated ones from DashO-Pro and KlassMaster are
placed on the same set of axis in order to show their
relationship. A least-squares-fit is also introduced to
approximate an equation to each one of the curves in
order to achieve a concrete differentiation between the
three curves. The equations used in the experiments are

for bubblesort, for quicksort, and
 for radixsort, where k is a constant. Any difference

between the curves will be represented in the constant k.

2nk ⋅
nk ⋅

nnk log⋅⋅

4.2 Experimentation Results

4.2.1 Bubblesort
As shown in Figure 4A, the three performance curves of
bubblesort are shaped like a second order polynomial
which corresponds directly to the O-notation of the

algorithm. Note that, the first 1000 data points are re-
plotted with a smaller scale in Fig. 4B for clarity. The top
curve represents the performance of the algorithm being
obfuscated through KlassMaster. It is evident that there is
a significant performance decrease from the original
source code approximately 41.18%. While a performance
loss exists between the original algorithm and
KlassMaster’s version, there exists a slight performance
increase of 2.29% from the original to the transformed
version using DashO-Pro. Such an increase is small in
magnitude compared to the performance decrease of the
original to KlassMaster’s version. While this may seem
counter-intuitive, the performance increase in DashO-
Pro’s version is a result of the complex structure of the
bytecode which is automatically optimized through the
program.

Figure 4A. Performance curves for bubblesort algorithm
Bubble Sort Test Times

0

1

2

3

4

5

6

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

N (Size of array)

Ti
m

e
in

 S
ec

on
ds

Original Sort
DashO Pro
Klass Master

Figure 4B. Close-up of the first 1000 data points of bubblesort
algorithm

Bubble Sort Test Times

0

5

10

15

20

25

30

35

40

0 500 1,000 1,500 2,000 2,500 3,000

N (Size of array)

Ti
m

e
in

 M
ill

is
ec

on
ds

Original Sort
DashO Pro
Klass Master

Table 1 shows the three versions of the Bubblesort
algorithm and their structures. As shown in the second
column, the original sorting possesses only two for loops
and a single if statement. This simple coding structure is
converted to eleven goto and label statements after being
obfuscated with KlassMaster. Because the original code is
simplistic, essentially the obfuscator has to work harder to
rearrange the algorithm to make its structures appear more
convoluted. Because the code is altered to such a high
degree, the performance loss occurred using KlassMaster
is significant. The same is true for the version obfuscated

84

using DashO-Pro, except the code is not altered to the
extent that KlassMaster altered the code.

Table 1. Bubblesort Structure Type Comparison

Bubblesort Original
Sort

DashO-
Pro KlassMaster

If 1 1 4
Goto / Labels 0 0 11

While 0 1 0
For 2 1 0

Invalid
Decompilation 0 0

4.2.2 Quicksort
As stated earlier, the equation to approximate the
performance curves of quicksort is . The k
values computed for the original code, and the obfuscated
versions from DashO-Pro and KlassMaster are
4.0241·102, 4.1095·102, 4.9588·102, respectively. From
these values, there can be determined a 2.12%
performance loss from DashO-Pro and a 23.23%
performance loss from KlassMaster as shown in Figure
5A. The first 10,000 data points are re-plotted with a
smaller scale in Fig. 5B.

nnk log⋅⋅

Figure 5A. Performance curves for quicksort algorithm

Quick Sort Test Times

0

50

100

150

200

250

300

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

N (Size of array)

Ti
m

e
in

 M
ill

is
ec

on
ds

Original Sort
DashO Pro
Klass Master

Figure 5B. Close-up of the first 10,000 data points of quicksort

algorithm
Quick Sort Test Times

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2,000 4,000 6,000 8,000 10,000 12,000

N (Size of array)

Ti
m

e
in

 M
ill

is
ec

on
ds

Original Sort
DashO Pro
Klass Master

Table 2 shows the structure of the code for the three
versions of the quicksort algorithm. Compared to the
bubblesort algorithm the implementation of the code is
augmented which is apparent from Tables 1 and 2. Again
each of the obfuscators adds a degree of complexity to the
code. However, the number of lines of obfuscated code
inserted to the original one is slightly reduced.

Table 2. Quicksort Structure Type Comparison

Quicksort Original
Sort

DashO-
Pro KlassMaster

If 3 5 11
Goto / Labels 0 8 24

While 4 11 1
For 0 1 0

Invalid
Decompilation 0 0 5

4.2.3 Radixsort
Figure 6A displays the performance curves of the
radixsort algorithm that are best fit to a first-order
polynomial. The variance between the three performance
curves is small enough that any performance increase or
decrease can be regarded as a statistical error in the
testing procedure. At some points in Figure 6A, the
curves intersect each other which is another consequence
of the variances being so small. Figure 6B displays a
close-up of the first 10,000 data points of Figure 6A. This
shows the dependence of the array size.

Figure 6A. Performance curves for radixsort algorithm
Radixsort Sort Test Times

0

100

200

300

400

500

600

700

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

N (Size of array)

Ti
m

e
in

 M
ill

is
ec

on
ds

Original Sort
DashO Pro
Klass Master

85

Radixsort Sort Test Times

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2,000 4,000 6,000 8,000 10,000 12,000

N (Size of array)

Ti
m

e
in

 M
ill

is
ec

on
ds

Original Sort
DashO Pro
Klass Master

 Table 3 illustrates how the structure of the original

algorithm is transformed after using the two obfuscator
programs. It is apparent, from the second and third rows,
that there is a significant increase in the number of if
statements and goto labels added to the original structure
after obfuscation. Specifically, KlassMaster does the
most to alter the original algorithm. However, not evident
from Table 3 is the complexity of the original algorithm.
Out of the three sorting algorithms, Radixsort contains the
most code complexity. This gives a rationale as to why
the three performance curves are closely related.

Table 3. Radixsort Structure Type Comparison

Radixsort Original
Sort

DashO-
Pro KlassMaster

If 1 3 8
Goto / Labels 0 9 17

While 0 1 1
For 4 1 0

Invalid
Decompilation 0 0 4

5 Conclusion
This paper presents a qualitative measurement of the
capability of two commercially available obfuscators,
DashO-Pro and KlassMaster. Specifically, this work
addresses control flow obfuscation in terms of the
computational overhead added to the obfuscated
applications.

Overall, the two obfuscators used for the analysis both
cause variations in the performance of the algorithms used
for testing. The greatest performance losses occur when
obfuscating the bubblesort algorithm using KlassMaster.
The progression from the bubblesort algorithm to the
radixsort shows an increase in the complexity of the
coding routines. Also by going in the same direction it
can be seen that the performance loss decreases
significantly. Therefore, it can be concluded that the
performance loss and the complexity of the code for
KlassMaster possess an inverse relationship. The
obfuscator has to do more work to make simplistic code
appear code indecipherable. Therefore, it must add more
code to make the algorithm harder to read, in effect
causing a much greater performance loss. With regard to
DashO-Pro, even as the complexity of the code increased,
the performance loss occurred does not vary drastically.

To develop more analytical metrics in evaluating the
scalability and overheads of current obfuscators is our
future research.

References
[1] Chan, J. T. and Yang, W., “Advanced obfuscation

techniques for java bytecode,” Journal of systems
and software, Vol. 71, 2001, pp. 1-10.

[2] Collberg, C. S. and Thomborson, C., “Watermarking,
tamper-proofing, and obfuscation – tools for software
protection,” IEEE Transactions on software
engineering, Vol. 28, No. 8, 2002, pp. 735-746.

[3] Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.,
“Software obfuscation on a theoretical basis and its
implementation,” IEICE Transactions on
Fundamentals, Vol. E86-A, NO. 1, 2003, pp. 1-11.

[4] Van Oorschot, P. C., “Revisiting software
protection,” Proceedings of the 6th International
Information Security Conference, Bristo200l, UK,
Oct. 2003, pp. 1-13.

[5] “DashO – the Premier Java Obfuscator and
Efficiency Enhancing Tool” from Preemptive
Solutions, [Online document], [cited 2 Mar 2005],
Available HTTP:
http://www.preemptive.com/products/dasho/index.ht
ml

[6] “The Second Generation Java Obfuscator” from
Zelix, [Online document], [cited 2 Mar 2005],
Available HTTP:
http://www.zelix.com/klassmaster/index.html

[7] “obfuscation: a whatis.com definition” from
SearchVBTechTarget, 19 Jul 2004, [cited 2 Mar
2005],
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci
967845,00.html

[8] Collberg, C. S., Thomborson, C., and Low, D., “A
taxonomy of obfuscating transformation,” Technical
Reprot #148, 1997.

[9] Sosonkin, M., Naumovich, G., and Memon, N.,
“Obfuscation of design intent in object-oriented
applications,” 2003 ACM Workshop on Digital Right
Management, pp. 142-153.

[10] “Java Technology”, from Sun Microsystems, [Online
document], [cited 2 Mar 2005], http://java.sun.com/

[11] Black, P.E. “big-O-notation” from National Institute
of Science and Technology, [Online document], 3 Jan
2005, [cited 2 Mar 2005],
http://www.nist.gov/dads/HTML/bigOnotation.html

[12] Minoura, T. “Bubble Sort Program,” from CS261
Data Structures, [Online document], [cited 2 Mar
2005],
http://web.engr.oregonstate.edu/~minoura/cs261/java
Progs/sort/Bubblesort.html

[13] Singh, H. “Quicksort”, [Online document], 2000,
[cited 2 Mar 2005],
http://www.seeingwithc.org/topic2html.html.

[14] Standish, T.A., Data Structures, Algorithms, and
Software Principles, New York: Addison Wesley,
1994, pp 563-565.

86

Figure 6B. Close-up of the first 10,000 data points of radixsort
algorithm

http://www.preemptive.com/products/dasho/index.html
http://www.preemptive.com/products/dasho/index.html
http://www.zelix.com/klassmaster/index.html
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci967845,00.html
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci967845,00.html
http://java.sun.com/
http://www.nist.gov/dads/HTML/bigOnotation.html
http://web.engr.oregonstate.edu/~minoura/cs261/javaProgs/sort/Bubblesort.html
http://web.engr.oregonstate.edu/~minoura/cs261/javaProgs/sort/Bubblesort.html
http://www.seeingwithc.org/topic2html.html

	Introduction
	Obfuscation
	General Obfuscation Process
	Control Flow Obfuscation

	Evaluation
	Bubblesort Algorithm
	Quicksort Algorithm
	Radixsort Algorithm

	Performance Testing
	Metrics
	Experimentation Results
	Bubblesort
	Quicksort
	Radixsort

	Conclusion

