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ABSTRACT

Many man made chemical substances are coming under the focus
for environmental abuse and their impact on wild life and humans.
A widely used alkylphenolethoxylates (APEs) surfactant was re-
cently banned in Europe because scientists discovered that APE
breakdown products are estrogenic and highly toxic to aquatic or-
ganisms . Nonylphenol is one such substance that has come under
the focus as an environmental pollutant. However, sufficient in-
formation is not there to study the kinetic behavior of this toxic
surfactant. The biodegradation process of nonylphenol is best de-
scribed by Monod’s model which is based on a coupled system of
nonlinear differential equations. This model is based on set of ki-
netic parameters. It is very difficult to measure the actual biodegra-
dation process of nonylphenol because of the unknown nature of
the parameters involved and expense in measuring the states. The
estimation of kinetic parameters of nonylphenol biodegradation is
done by using a gradient optimization neural network estimator.

1. INTRODUCTION

Surfactants have been shown to be very effective in soil washing,
flushing technologies and bioremediation of contaminated sites
[3]. Addition of surfactants, detergents and emulsifiers has been
successfully applied for cleanup of petroleum-contaminated sites.
A certain group of widely used alkylphenolethoxylates (APEs)
surfactants was recently banned in Europe because scientists dis-
covered that APE breakdown products are estrogenic and highly
toxic to aquatic organisms [2]. Most APEs enter the aquatic envi-
ronment from wastewater treatment plant discharges. Nonylphe-
nol, one of the breakdown products of APEs, is known to be toxic.
Traditionally used in the chemical industry, it is a breakdown prod-
uct of surfactants and detergents widely used in cleaning industry.
Nonylphenol adsorbs to soils and sludge’s, tends to bioaccumu-
lation, and has been shown to be mildly estrogenic [1]. Sewage
sludge thus applied to agricultural land may contain nonylphe-
nol. European studies indicate high concentrations of nonylphe-
nol in treated sewage sludge thereby indicating sludge disposal
as a source of aquatic contamination. Nonylphenol biodegrada-
tion is therefore a significant environmental issue. The process
of nonylphenol biodegradation is important to many scientists be-
cause of its potential effectiveness as a treatment tool for pollu-
tion. However, very little information is available on the biodegra-
dation kinetics of nonylphenol. Kinetic information is important
for predicting the fate of pollutants. The biodegradation process
of nonylphenol is best described by Monod’s model [5]. Due to
the expense in finding biodegradation states it has been demon-

strated that it is possible to determine intrinsic kinetics of single
organic compounds by using oxygen uptake data from electrolytic
respirometry. This is relatively inexpensive and gives fast, accurate
and reliable data. Direct nonylphenol concentration measurements
require an exhaustive steam distillation extraction procedure be-
fore using high pressure liquid chromatography for analysis. This
is more expensive to implement.

The purpose of this paper is to estimate the unknown intrin-
sic kinetic parameters and states through simulation based on the
neural network concept. These estimating parameters are part of
an existing mathematical biodegradation model of coupled nonlin-
ear differential equations known as Monod’s model. The model
has three states, namely, oxygen uptake, substrate (or pollutant)
concentration and bacterial cell mass concentration. Only the oxy-
gen uptake is experimentally measurable by means of electrolytic
respirometry [4]. This paper presents a neural network based ap-
proach for high-level performance estimation, which easily adapts
to the non-linear behavior of the kinetic parameters. Through sim-
ulation the behavior of the three states can be studied using neural
network test data patterns.

2. MONOD’S MODEL FOR NONYLPHENOL
BIODEGRADATION PROCESS

The process of nonylphenol biodegradation kinetic behavior can
be described by a set of nonlinear differential equations known as
Monod’s model of bacterial kinetics and are given by [5]

dX

dt
=

µmSX

Ks + S
− KdX

dS

dt
= − 1

Y

µmSX

Ks + S
dOx

dt
= Yox

µmSX

Ks + S
+ YOXDKdX (1)

It has three states: S is the concentration of substrate, X is the
active cell mass concentration, and Ox is the cumulative oxygen
consumption in the reactor (oxygen uptake which we measure).
The time evolution of the system is also determined by the several
system parameters or biodegradation coefficients involved: µm is
the specific growth rate of substrate; Kd is the endogenous decay
coefficient; Ks is the substrate utilization coefficient; Y is the cell
yield coefficient (mass of cell produced divided by mass of food
consumed); Yox is the oxygen consumption coefficient for sub-
strate (mg oxygen/mg of cell mass); and YOXD is the oxygen con-
sumption coefficient for endogenous respiration (mg oxygen/mg
of cell mass).
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3. GRADIENT OPTIMIZATION NEURAL NETWORK
TECHNIQUE

In this analysis the gradient optimization neural network method
[6] is used. It provides an efficient tool for estimating the unknown
kinetic parameters. Through simulation using this optimization al-
gorithm, training is performed to estimate the kinetic parameters.
With these estimated kinetic parameters the states of the biodegra-
dation process are studied.

The basic principles and concepts in estimating the parame-
ters by using the gradient optimization algorithm using neural net-
works can be given as follows:

Consider F(x, θ) is the approximated output where x is the
input data and θ is the neural network parameters vector. Given an
input-output data pair (xi, yi) where the actual output yi = f(xi),
the difference between the desired output and the approximated
output is reduced by adjusting the vector θ

ei =yi − F(xi, θ)

The cost function J(θ) is minimized for optimization

J(θ) =
M∑

j=1

ei�ei (2)

where M is the number of input output data pairs. The approxi-
mated parameter set θ is adjusted by means of a gradient update
law defined by

θ̇ =η

M∑

j=1

ζiei

where

ζi =
∂F(xi, z)

∂z

∣∣∣
�

z=θ

The approximated function is given as

F(x, θ) = θ�ζ(x)

where, for a radial basis function neural network,

ζi(x) =
e−((x−ci)/σ)2

∑p
i=1 e−((x−ci)/σ)2

where ci is the position of the radial basis function, σ is the inverse
of the width of the radial basis function and p is the number of
radial basis functions.

The process of function approximation not only requires a sta-
ble law be defined for θ, but one must provide sufficient infor-
mation before a function may be accurately approximated over all
regions. The radial basis function vector ζi is another important
factor which influences the approximator. The approximation ac-
curacy depends critically on θ and ζi.

Neural networks are known to be good function approximators
[8]. The proposed algorithm uses a training and testing approach.
Training is performed to estimate the unknown kinetic parame-
ters. During the training phase, a large number of input output
data pairs are required which are obtained through simulation. The
input data is chosen in such a way that they provide sufficient in-
formation before the parameters are accurately approximated. The
three kinetic parameters Ks, Y and Yox are trained and estimated
separately with the proposed algorithm.

4. TESTING AND TRAINING OF NEURAL NETWORK
ESTIMATOR

4.1. Training

In simulating the differential equations of Monod’s model, initial
conditions are required for the three states and three of the six
biodegradation coefficients are to be chosen. The initial conditions
are taken as [5,90,0] for the three states. The endogenous decay
coefficient Kd, oxygen consumption coefficient YOXD and spe-
cific growth rate of substrate µm have fixed values taken as 0.005,
0.008 and 0.5 respectively. The other three kinetic parameters are
constrained to lie within the ranges given as 0.005 ≤ Ks ≤ 1000,
0.1 ≤ Y ≤ 1.5 and 1.5 ≤ Yox ≤ 3.5.

4.1.1. Estimation of Ks

For the first parameter Ks, 100 random samples ranging from
0.005 ≤ Ks ≤ 1000 were considered. The other two parameters
are fixed at Y =1 and Yox=2. Considering the above three param-
eters, the differential equations were simulated to determine the
three states. Assuming that only the oxygen uptake state Ox infor-
mation can be obtained experimentally, the time taken to reach the
98% of the maximum of the Ox state, the time taken to reach 50%
of the maximum of the Ox state and the time taken to reach 20%
of the maximum of the Ox state were considered as the three dif-
ferent inputs for the neural network estimator of the Ks parameter.
The gradient optimization algorithm is used. The accuracy of the
estimated Ks parameter has been evaluated using the normalized
mean square error equation given as

NMSE =
1

M

1

N

N∑

i=1

(θ − θ̂)2 (3)

where N is the number of samples used, M is the range of the pa-
rameter, θ is the actual parameter and θ̂ is the estimated parameter.

4.1.2. Estimation of Y

For the second parameter Y , 100 random samples ranging from
0.1 ≤ Y ≤ 1.5 were considered along with the other two param-
eters that are fixed at Ks=300 and Yox=2. Considering the above
three parameters Monod’s model was simulated to determine the
three states. With the assumption that only Ox is available, the
respective Ox values and time corresponding to reach 98% of the
maximum of the Ox state, 50% of the maximum of the Ox state
and 20% of maximum of the Ox state were considered as the six
different inputs for the neural network estimator of the Y param-
eter, Again, the gradient optimization algorithm is used. The ac-
curacy of the estimated Y parameter has been evaluated using the
same measurement described in equation (3).

4.1.3. Estimation of Yox

The Yox parameter with 100 random samples ranging from 1.5 ≤
YOX ≤ 3.5 is estimated following a similar procedure as in the
estimation of the Y parameter with the other two parameters val-
ues fixed at Ks=300 and Y =1. The accuracy of the estimated Yox

is determined as in equation (3).
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4.1.4. Estimation of States

The estimated parameters, Ks, Y , Yox, (see the above sections
(4.1.1), (4.1.2) and (4.1.3)) have been used in the simulation of
Monod’s model to estimate the behavior of the three states (cell
concentration, substrate and oxygen consumption). Monod’s model
is again simulated to determine the behavior of the states with the
parameter values (some estimated and some fixed). The normal-
ized mean square error is calculated using the equation (4) to quan-
tify the accuracy of the above estimated states. The development
of Equation (4) is as follows:

Xmin = min
0≤t≤tf ,1≤i≤p

(Xi(t))

Xmax = max
0≤t≤tf ,1≤i≤p

(Xi(t))

where tf is the simulation time and p is number of sample points

MX = Xmax − Xmin

MSEXi =
1

N

N∑

j=0

(Xi(j) − X̂i(j))
2

where N is length of Xi(j)

MSEX =
1

M

p∑

i=1

MSEXi

NMSEX =
1

MX
MSEX (4)

4.2. Testing

To test the neural network, test set patterns of 100 random sample
values for the parameters Ks, Y , Yox are used in the testing stage.
The test patterns are chosen within the respective ranges (0.005 ≤
Ks ≤ 1000, 0.1 ≤ Y ≤ 1.5 and 1.5 ≤ YOX ≤ 3.5) but are
obviously different from the patterns used in training. Monod’s
model is simulated with the test set patterns to determine the states.

4.2.1. Estimation of Kinetic Parameters in Testing

Using the estimated Ox state (oxygen consumption) from the pro-
cedure given in Section (4.2), the parameters Ks, Y and Yox are
estimated following the procedures discussed in Sections (4.1.1),
(4.1.2) and (4.1.3) respectively. Now, the sets of parameters (Ks,
Y , Yox) thus obtained are used in Monod’s model to simulate and
determine the behavior of the three states. The performance of the
approximator is evaluated by taking the normalized mean square
error of the states determined using actual testing data samples and
states determined using the estimated testing data set values (see
equation (4)). The results of normalized mean square error in train-
ing and testing for three kinetic parameters are shown in Table 1
and the normalized mean square error for three states are shown in
Table 2.

To determine the validity of the results obtained, it is neces-
sary to determine whether the behavior of the system approaches
a practically meaningful solution. This implies that along with the
estimation of the parameters we would like to know the behavior
of the states too. Theoretically, the graph for the pollutant removal

Ks Y Yox

error in training 1.8225 0.2982 0.508
error in testing 42.997 0.1047 0.2032

Table 1. Normalized mean square error for parameter estimation

cell conc substrate conc oxygen rate
error in training 0.1975 0.0213 3.6726
error in testing 0.0481 00077 0.3184

Table 2. Normalized mean square error for state estimation

should decay from its initial value to zero as the pollutant is uti-
lized by the bacterial cells. On the other hand, cell growth, as time
passes by, should initially increase and then decrease as the pollu-
tant becomes less and less available for bacterial nutrition. When
all the nonylphenol in the solution has been digested, the bacteria
start eating each other and die out.

By considering one of the testing pattern values for the three
parameters as Ks=82.2195, Y =1.2946, Yox=2.6866 the validity of
the optimized set of parameters and three states obtained through
simulation is studied. Figure 1 and Figure 2 show the behavior of
the three states.

In Figure 1 the dashed lines represent the state behavior con-
sidering the estimated kinetic parameters and the solid lines repre-
sents the state behavior with the actual kinetic parameters. We can
observe both estimated cell growth and pollutant removal states
behave close to the actual states. The simulation process shows a
realistic time evolution. Indeed, the graph of the pollutant removal
is decaying from its initial value and goes to zero, while the cell
concentration grows initially and then starts to decrease at a slow
rate.

In Figure 2, one can see that the estimated oxygen uptake tra-
jectory approximates the actual state evolution very well. It grows
along with the cell mass concentration indicating that as cell con-
centration increases, the oxygen consumption also increases.

5. RESULTS

In this section, we present the potential behavior of the states ob-
tained through simulation which can be studied from the figures 1
and 2. Simulation is performed on the testing data patterns and
validity of the results has been studied by estimating the mean
square error for the states estimated. The consistency of the be-
havior of all three states shows that the mean square error obtained
for the estimated kinetic parameters as Ks=42.997, Y =0.1047 and
Yox=0.2032 are considerably acceptable. It is shown that the ob-
tained results from the simulation approximate the true behavior
very well. All the simulations were performed under the basic
assumption that only oxygen uptake information is available ex-
perimentally. The results under this basic assumption shows a well
modeled behavior of the nonylphenol biodegradation kinetics. The
cell growth and pollutant removal states behave in a physically
consistent manner, as shown in Figure 1. The pollutant decreases
over time, while cell growth increases until there is no more pol-
lutant (food) available. At this point cell growth starts to decrease
as cell begin to die out. The oxygen uptake state also behaves in
a realistic way. All the graphs show that the obtained simulated
solution does approximate the actual data quite well.
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Fig. 1. a) Showing cell concentration for test data value. (b) Show-
ing substrate concentration for test data value

6. CONCLUSION

The purpose of this study is to estimate the behavior of nonylphe-
nol biodegradation kinetics. This requires the information about
the intrinsic kinetic parameters, which is generally difficult and
expensive through experimental analysis. This paper shows the
applicability of neural networks in parameter estimation via sim-
ulation. In this analysis, the gradient optimization neural network
algorithm is used which provides an efficient tool for estimating
the unknown kinetic parameters. Based on oxygen consumption,
simulation results show that this method is very precise for esti-
mation of the nonlinear behavior of the parameters. The kinetic
behavior of the states are shown to be physically meaningful and
consistent.
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