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ABSTRACT

A blind approach for estimating the signal to noise ratio (SNR) of a
speech signal corrupted by additive noise is proposed. The method
is based on a pattern recognition paradigm using various linear
predictive based features and a vector quantizer classifier. Blind
SNR estimation is very useful in speaker identification systems in
which a confidence metric is determined along with the speaker
identity. The confidence metric is partially based on the mismatch
between the training and testing conditions of the speaker identifi-
cation system and SNR estimation is very important in evaluating
the degree of this mismatch. The aim is to correctly estimate SNR
values from 0 to 30 dB, a range that is both practical and crucial
for speaker identification systems. Additive white Gaussian noise
is investigated. The best features are the line spectral frequencies,
reflection coefficients and the log area ratios. The linear predictive
cepstrum also shows great promise. The average SNR estimation
error is 1.6 dB.

1. INTRODUCTION
Consider a speech signal corrupted by additive noise that is statis-
tically independent of the signal. This noisy signal is characterized
by a signal to noise ratio (SNR) calculated over the entire duration
of the signal. In this paper, a pattern recognition approach using
various linear predictive (LP) [1] derived features is used to blindly
estimate the SNR of the noisy speech signal. Blind estimation of
the SNR is very useful in closed set speaker identification systems.
The training of a speaker identification system involves the config-
uration of M models each representing a different speaker. Dur-
ing closed set testing, the features of an utterance are compared to
the M models to render a decision of the speaker identity as be-
ing one of the M speakers [2][3]. Recent research has been done
to develop techniques to calculate a confidence metric to accom-
pany the decision of the speaker identity [4][5]. The confidence
metric is calculated based on the mismatch between training and
testing conditions, amount of training and testing data, and number
of speakers (value of M ). As M increases, there is usually more
model overlap. The more the difference between the SNR of the
training and testing speech, the more the mismatch between the
two and the lower the confidence metric. An automatic and blind
method of SNR estimation of the training and testing speech is an
integral part of the technique of finding the confidence metric of a
speaker identification system.

The method proposed for blind SNR estimation is based on
a pattern recognition paradigm just like what is used for speaker

identification. Features based on LP analysis that would not be ro-
bust to noise are highly useful candidates for SNR estimation as
they show differences for varying noise levels. The overall sys-
tem consists of three components, namely, (1) Linear predictive
(LP) analysis, (2) Feature extraction for ensuring SNR discrimina-
tion and (3) Vector quantizer (VQ) classifier and decision logic for
computing the SNR. During training, a VQ codebook is trained for
each distinct SNR value using feature vectors obtained from noisy
speech corresponding to that particular SNR. During testing, the
input to the system will be a noisy speech signal with an unknown
SNR. After LP analysis and feature extraction, the set of feature
vectors will be passed through each VQ codebook to get an overall
distance for each codebook. Based on these distances, the output
will be an estimated SNR value. A comparison of different LP
based features is done with respect to the average absolute error
between the actual and estimated SNR. The features considered
[1][6][7] include the line spectral frequencies (LSFs), reflection
coefficients (REFL), log area ratios (LAR), linear predictive cep-
strum (CEP), adaptive component weighted cepstrum (ACW) and
the postfilter cepstrum (PFL).

2. FEATURE EXTRACTION
Linear predictive analysis results in a stable all-pole model 1/A(z)
of order p where

A(z) = 1 −
p∑

n=1

a(n)z−n (1)

The autocorrelation method of LP analysis gives rise to the predic-
tor coefficients a(n) and the REFL feature refl(n) for n = 1 to
p. The LAR feature is found as

lar(n) = log

[
1 − refl(n)

1 + refl(n)

]
(2)

for n = 1 to p. The LSF feature lsf(n) are the angles (between
0 and π) of the alternating unit circle roots of F (z) and G(z) [1]
where

F (z) = A(z) + z−(p+1)A(z−1)

G(z) = A(z) − z−(p+1)A(z−1) (3)

The predictor coefficients a(n) are converted to the LP cep-
strum clp(n) (n ≥ 1) by an efficient recursive relation [1]

clp(n) = a(n) +
n−1∑
i=1

(
i

n
)clp(i)a(n − i) (4)
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Since clp(n) is of infinite duration, the CEP feature vector of di-
mension p consists of the components clp(1) to clp(p) which are
the most significant due to the decay of the sequence with increas-
ing n.

The first step in developing the ACW cepstrum [6] is to per-
form a partial fraction expansion of the LP function 1/A(z) to get

1

A(z)
=

p∑
n=1

rn

1 − pnz−1
(5)

where pn are the poles of A(z) and rn are the corresponding
residues. The variations in rn were removed by forcing rn = 1
for every n. Hence, the resulting transfer function is a pole-zero
type of the form

N(z)

A(z)
=

p∑
n=1

1

1 − pnz−1

=
1

A(z)

p∑
n=1

p∏
i=1�=n

(1 − pnz−1)

= p

[ 1 −
p−1∑
n=1

b(n)z−n

1 −
p∑

n=1

a(n)z−n

]
(6)

Applying the recursion in Eq. (4) to b(n) and a(n) results in two
cepstrum sequences cb(n) and clp(n) respectively. The ACW cep-
strum is cacw(n) = clp(n) − cb(n) [6].

The postfilter is obtained from A(z) and its transfer function
is given by

Hpfl(z) =
A(z/β)

A(z/α)
(7)

where 0 < β < α ≤ 1. The cepstrum of Hpfl(z) is the PFL
cepstrum which is equivalent to weighting the LP cepstrum as
cpfl(n) = clp(n)[αn − βn] [7]. The ACW feature cacw(n)
and PFL feature cpfl(n) are taken from n = 1 to p.

The CEP, REFL and LAR feature vectors decrease in norm
as the SNR decreases while the LSF vector components become
more equally spaced between 0 and π. Figure 1 shows the 12
dimensional REFL feature vector for SNRs of 30, 15 and 0 dB.
The decrease in norm is mainly due to the amplitude shrinkage
of the first few components. The ACW and PFL features were
originally formulated to be robust to channel and noise effects for
application to speaker recognition [6][7]. However, the plan is to
compare these two features to the other LP features that vary more
with noise to understand their role in SNR estimation.

3. VQ CLASSIFIER AND DECISION LOGIC
A vector quantizer (VQ) classifier is used to generate a score for
each candidate SNR value. During training, speech is corrupted
by additive noise with a particular SNR and a corresponding set
of feature vectors are computed. The feature vectors are used to
design a VQ codebook for the particular SNR based on the Linde-
Buzo-Gray algorithm [8]. The squared Euclidean distance is the
distance measure. There will be N codebooks, one pertaining to
each candidate SNR value.

During testing or score determination, a test noisy speech ut-
terance of a particular SNR is converted to a set of test feature
vectors. Consider a particular test feature vector. This is quantized
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Figure 1: REFL feature vectors for SNRs of 30, 15 and 0 dB

by each of the N codebooks. The quantized vector is that which is
closest with respect to the squared Euclidean distance measure to
the test feature vector. Hence, N different distances are recorded,
one for each codebook. This process is repeated for every test fea-
ture vector. The distances are accumulated over the entire set of
feature vectors. This accumulated distance is the score for each
codebook.

Two methods of implementing the decision logic are investi-
gated. A hard decision approach estimates the SNR to correspond
to the codebook which renders the smallest accumulated distance.
This smallest distance is the best score. In the soft decision ap-
proach, the scores from a subset of the N codebooks are used to
estimate the SNR. Consider the ith codebook trained for the value
SNR(i) and rendering a score (accumulated distance) Score(i).
Let Ind(i) denote the indicator function which equals 1 if code-
book i is used for SNR computation. Otherwise, Ind(i) equals 0.
The number of codebooks used which is also the number of times
that Ind(i) equals 1 is denoted by C. A probability Prob(i) is de-
rived from Score(i) by the equations

Total =
N∑

j=1

Ind(j)Score(j)

Prob(i) = Ind(i)

[
Total − Score(i)

(C − 1)Total

]
(8)

For the considered codebooks, smaller distances are converted to
higher probabilities. If a codebook is not used, the probability as-
sumes a value of 0. The probabilities add up to 1. The experiments
revealed that using the three codebooks (C = 3) with the smallest
accumulated distances (best scores) led to good results. From the
probabilities, the SNR is estimated as

SNR =

N∑
j=1

Prob(j)SNR(j) (9)
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Figure 2: Block diagram for SNR Estimation

For each test utterance, an absolute error between the true SNR
and the estimated SNR is found. The performance measure is a
mean value of this absolute error taken over the total number of
test speech utterances. Figure 2 shows the block diagram for score
and SNR determination.

4. EXPERIMENTAL PROTOCOL

Ten sentences from each of the 38 speakers from the New England
dialect of the TIMIT database are used for the experiments. The
speech in this database is clean and first downsampled from 16
kHz to 8 kHz. For both training and testing, white Gaussian noise
is added to correspond to a particular SNR. The noisy speech is
preemphasized by using a nonrecursive filter 1−0.95z−1. For the
LP analysis, the autocorrelation method [1] is used to get a 12th
order LP polynomial A(z). The LP analysis is done over frames
of 30 ms duration. The overlap between frames is 20 ms. The LP
coefficients are converted into 12 dimensional LSF, REFL, LAR,
CEP, ACW and PFL feature vectors. For the PFL feature, α = 1
and β = 0.9 (see Eq. (7)). The feature vectors are computed only
in voiced frames that are selected based on energy thresholding.
The VQ classifier (as described earlier) is trained using the 12 di-
mensional feature vectors. A separate classifier is used for each
feature. A codebook of size 256 for each SNR is designed using
the Linde-Buzo-Gray algorithm [8].

For each speaker in the database, there are 10 sentences. The
first five are used for training the VQ classifier. The remaining
five sentences are individually used for testing thereby giving 190
test cases. The roles of the training and testing speech are then
reversed to get an additional 190 test cases bringing the total to
380. The goal is to correctly estimate SNR values between 0 and
30 dB (inclusive). This is a significant range for practical speaker
identification systems. For each SNR value tested, there are 380
utterances over which an average absolute error (AAE) is obtained.

Feature Codebook Hard Soft
Increment Decision Decision

LSF 5 dB 2.02 dB 2.35 dB
LSF 3 dB 1.87 dB 1.78 dB
LSF 1 dB 1.76 dB 1.61 dB

CEP 5 dB 2.09 dB 2.33 dB
CEP 3 dB 1.96 dB 1.82 dB
CEP 1 dB 1.85 dB 1.68 dB

REFL 5 dB 2.07 dB 2.21 dB
REFL 3 dB 1.92 dB 1.72 dB
REFL 1 dB 1.84 dB 1.62 dB

LAR 5 dB 2.08 dB 2.23 dB
LAR 3 dB 1.94 dB 1.71 dB
LAR 1 dB 1.83 dB 1.59 dB

ACW 5 dB 2.35 dB 2.33 dB
ACW 3 dB 2.23 dB 1.94 dB
ACW 1 dB 2.09 dB 1.85 dB

PFL 5 dB 2.30 dB 2.32 dB
PFL 3 dB 2.15 dB 1.89 dB
PFL 1 dB 2.01 dB 1.78 dB

Table 1: Hard and soft decision OAAE values

5. RESULTS
An average absolute error (AAE) is computed for test speech hav-
ing SNR values between 0 and 30 dB in 1 dB increments. There
are a total of 31 AAE values and an average of these values result
in an overall average absolute error (OAAE). Table 1 depicts these
OAAE values for each of the six features. Three different VQ clas-
sifier systems are attempted. First, the codebooks are trained for
SNR values in 5 dB increments starting at 0 dB. Second, the code-
books are trained for SNR values in 3 dB increments starting at
0 dB. Third, the codebooks are trained in 1 dB increments. Even
though test speech of various SNRs (like 22 dB) will definitely
show some error when codebooks are designed using 3 and 5 dB
increments, the purpose is to observe how the increments influence
the OAAE.

For the hard decision, there can be a zero error for a particu-
lar test speech utterance especially if its SNR corresponds to that
of a trained codebook. This is more likely when the codebooks
are trained in 5 and 3 dB increments than when the codebooks
are trained in 1 dB increments. For example, when using the LSF
feature for test speech at 15 dB SNR, a zero error is achieved for
about 77, 53 and 21 percent of the 380 test utterances for code-
books trained in 5, 3 and 1 dB increments. respectively. However,
if an error is made, it is relatively higher for codebooks trained in
5 and 3 dB increments. When the SNR of the test speech does not
correspond to a codebook trained in 5 and 3 dB increments, there
is no chance of a zero error. For example, when using the REFL
feature for test speech at 11 dB SNR, a zero error is achieved for
about 19 percent of the 380 test utterances for codebooks trained
in 1 dB increments. When the error is not zero, the SNR esti-
mates are usually 9, 10, 12 and 13 dB with 10 and 12 dB being
more common. Absolute errors of 3 dB or more occur as statisti-
cal outliers. For codebooks trained in 5 dB increments, the error is
usually either 1 or 4 dB that correspond to SNR estimates of 10 or
15 dB, respectively. For codebooks trained in 3 dB increments, the
error is usually either 1 or 2 dB that correspond to SNR estimates
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Figure 3: The AAE for the hard and soft decision methods for the
LAR feature. The codebooks are trained in 1 dB increments.

of 12 or 9 dB, respectively. Again, higher errors occur as outliers.
Using more codebooks trained at 1 dB increments brings down the
OAAE for all the six features.

The score values and resulting probabilities are numerically
close for codebooks trained in the neighborhood of the SNR of the
test speech. For the soft decision, the codebooks with the best 3
scores are used. The use of 3 codebooks can compensate for the
error made by a hard decision. However, the utilization of more
than 3 codebooks for the soft decision will include the influence
of the scores of the codebooks trained on SNR values that are ap-
preciably different from the SNR of the test speech. Although the
corresponding probabilities of these scores are relatively low, the
resulting terms in Eq. (9) leads to a higher absolute error than using
3 codebooks. The soft decision approach diminishes the OAAE for
codebooks trained in 1, 3 and 5 dB increments when compared to
the hard decision method. This is more apparent for codebooks
trained in 5 dB increments. Figure 3 shows the AAE for the hard
and soft decision methods for the LAR feature with the codebooks
trained in 1 dB increments. The AAE is taken for 380 test speech
utterances at each SNR between 0 and 30 dB in steps of 1 dB.

The three best features are the LSF, REFL and LAR features.
The CEP feature shows only a slightly higher OAAE. Figure 4
shows the AAE for the soft decision method for the LSF, REFL
and LAR features with the codebooks trained in 1 dB increments.

6. SUMMARY AND CONCLUSIONS

The VQ based pattern recognition approach to blind SNR estima-
tion has given very good results when the codebooks are trained
in 1 dB increments. Using a soft decision approach improves the
performance with an OAAE value of about 1.6 dB for the LAR,
REFL and LSF features. The CEP feature gives about a 1.7 dB
OAAE.
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Figure 4: The AAE for the soft decision methods for the LSF,
REFL and LAR features. The codebooks are trained in 1 dB in-
crements.
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