
A QUALITATIVE ANALYSIS OF JAVA OBFUSCATION 
 

Matthew Karnick, Jeffrey MacBride, Sean McGinnis, Ying Tang, Ravi Ramachandran 
Electrical & Computer Engineering, Rowan University 

201 Mullica Hill Road, Glassboro, NJ 08028 
 
ABSTRACT 
Code obfuscation is a promising defense technology that 
secures software in a way that makes the cost of reverse 
engineering prohibitively high.  While there are a number 
of commercial obfuscation tools on the market, there is no 
standard measurement to analyze and evaluate their 
strength. This paper addresses this challenge.  An 
analytical metrics is developed to quantify the 
performance of obfuscation in terms of potency, 
resilience, and cost. Four commercial obfuscators are then 
evaluated using the proposed method. 

KEY WORDS 
Java obfuscation, Performance analysis, Evaluation 
metric 
 
1. Introduction 

Java programming, being platform-independent, 
offers important advantages with respect to cost, 
configurability, and portability [1].  However, software 
written in Java, then, becomes susceptible to theft and 
misuse since the original source code is preserved in 
bytecode. Given enough time, effort and determination, 
attackers can always reverse engineer the bytecode and 
extract proprietary algorithms and data structures [2]. To 
this end, commercial obfuscation tools, called Java 
obfuscators, have been released to prevent this type of 
theft in the way that transform a program into a 
functionally identical one that is much harder to 
understand [4]. Each obfuscator uses different techniques 
to transform code, which, in turn, alters the performance 
of the application [5]. With no standard to quantify 
performance of these tools, one cannot fully distinguish 
the quality of such a transformation. 

The evaluation of a transformation has been studied 
in theory but nothing has ever implemented [3, 6]. While 
our previous work conducted a comparative study of two 
commercially available Java obfuscators [1, 6], the lack of 
analysis metrics for assessing the strength of various 
obfuscation tools is still one of the greatest challenges in 
code protection research. This paper focuses on designing 
and implementing a qualitative method to evaluate how 
well obfuscation is performed. The rest of paper is 
organized as follows. Section 2 discusses how the overall 
quality of an obfuscation transformation is measured. The 
three major criteria, potency, resilience and cost of 
obfuscation, are then discussed in detail in sections 3, 4, 
and 5, respectively.  A pilot study is conducted in section 
6, followed by the conclusion in Section 7. 

2. Quality of Obfuscation 
The overall performance for an obfuscator is denoted 

as , the quality of obfuscation.  The factors that 
weigh into the quality include potency, resilience, and 
cost [2].  The potency, , refers to how much obscurity 
is added to the code that prevents human beings from 
understanding it. The resilience, , is a measure of how 
strong the program can resist an attack against a de-
obfuscator.  Such attack can be defined as an attempt to 
transform the code back to its original structure by a 
computer application. The potency and resilience have 
positive impact on the overall quality of obfuscation since 
they illustrate how well the transformation protects the 
code by making the logic and data structure as 
meaningless as possible. Considering that the cognitive 
ability of a computer program is far inferior to that of 
humans, the resilience of a transformation is given a 
higher weight than potency. The cost of obfuscation, , 
refers to how much computational overhead is added to a 
transformed program. Compared to potency and 
resilience, cost presents negative impact on the overall 
quality of obfuscation. It is usually measured by 
comparing the resources (e.g., time, memory etc.) needed 
to execute the transformed program with respect to that 
for the original one. Measuring these factors with 
different weights will yield a normalized score for the 
quality of obfuscation as illustrated in Equation 1. Please 
note that 0.4 and 0.6 are chosen as the weights associated 
with potency and resilience in this project, respectively. 
However, the qualitative trend remains the same 
regardless the weight values as longer as the resilience 
score carries a higher weight than the potency score. 

qualityS

potS

resS

cstS

                (1) cstrespotquality SSSS −⋅+⋅= 6.04.0
 

3. Measurement of Potency 
Trying to qualitatively measure potency becomes 

difficult since the analysis is based on human cognitive 
ability. Breaking up the potency into smaller 
measurements allows for an easier analysis.  This project 
uses this approach and breaks potency into the following 
four complexity areas: nesting complexity, control flow 
complexity, variable complexity, and program length. 

3.1. Nesting Complexity 
Nesting complexity measures the number of iterative 

loops at different hierarchical levels in an application.  In 
this project, we define the hierarchical levels of loops as 

514-160 166

bryson




follows. A level-2 loop would be the inner loop within the 
body of an outer one, where the outer one is called a 
level-1 loop. In the same fashion, a level-n loop is the 
loop within the body of a level-n-1 loop. Eventually, the 
nesting complexity is calculated using Equation 2, where 
counti is the number of iterative loops in the nesting level 
i, and N is the deepest level of nesting in the application. 
For example, the code snippet of Figure 1 illustrates one 
level-1, two level-2 and two level-3 loops, which results 
in cnesting = 1 · 1 + 2 · 2 + 3 · 2 = 11.  

∑
=

⋅−=
N

i
inesting countilevelc

1

                     (2) 

Loop1{ 
  Loop2{ 
    Loop3{ 
      Loop4{} 
    } 
  } 
}  

Figure 1 Looping Construct 
A ratio is then taken to represent a change in the 

transformation which yields snesting, the nesting score in 
Equation 3, where  and denote the nesting 
complexity of the transformed code and the original one, 
respectively. This score illustrates how well a 
transformation change the nesting complexity.  A score of 
.25 would be interpreted as there being a 25% increase of 
nesting complexity in the transformation.  Any negative 
score (a decrease) is considered zero. 

'
nestingc nestingc

nesting

nestingnesting

c
cc

nestings −=
'

                     (3) 

 
3.2. Control Flow Complexity 

Control flow obfuscation restructures algorithm that 
changes the flow of the original program. Two types of 
flow changes are consider in this project: sequential (top-
down) and non-sequential (spaghetti code).  When code 
executes from the top of the application towards the 
bottom, it is considered to be top-down, or sequential.  
Non-sequential, as shown in Fig. 2, is when an application 
contains labels and goto statements where the code can 
jump around; also known as spaghetti code. The top-
down approach is measured in the nesting complexity 
while non-sequential in the control flow complexity. 
Eventually, the control flow complexity score is further 
broken into label score, goto score, and unreadable score. 
Although each score is calculated in a similar fashion, it 
measures different perspectives of the flow structure. 

The label score is the percentage of duplicate labels 
in a transformed application.  A duplicate label would be 
the labels appearing in two different methods with the 
same name.  The score increases with the number of 
duplicate labels, making it harder to comprehend the 
code.  The calculation is illustrated in Equation 4 below, 
where  is a number of duplicate labels and  

is the total number of labels in the transformed 
application. 

'
duplicatel '

totall

'

'

total

duplicate
label l

l
s =                               (4) 

Label1: 
   statement 
   goto Label3 
Label2: 
   statement 
   goto Label1 
Label3: 
   Goto Label2  

Figure 2 Non-Sequential Structure 
The goto score is the percentage of non-sequential 

goto labels in a transformed application. A non-sequential 
goto is when a goto statement references a line of code 
that comes before the statement, thus, making the flow 
non-sequential. The goto score is computed as follows, 
where and are the number of non-
sequential goto statements and total goto statements, 
respectively 

'
seqnong − totalg

'

'

total

seqnon
goto g

g
s −=                              (5) 

The third factor involves the lines of code that a 
decompiler could not translate back to the source code.  In 
this case, the decompiler leaves a line of java instructions 
that is readable by the virtual machine but not for human 
interpretation.  Though the ability of a decompiler will be 
discussed later, a decompiler’s inability to read code 
hinders a human’s ability as well.  The unreadable score 
is the percentage of unreadable lines of code in a 
transformed application.  This score is proportional to the 
number of uncompiled lines in the code.  Equation 6 
illustrates this score where  is the number of 

unreadable lines of code and  is the total lines of 
code in the transformed application. 

'
edundecompil

c
'
LOCc

'

'

LOC
unreadable c

c
s edundecompil=                             (6) 

 
3.3. Variable Complexity 

Variable complexity has four factors that yield its 
measurement. These factors, including a duplicate 
variable score, extra variable score, description variable 
score, and string encryption, affect the cost of the 
transformation as well as the readability of the code.  
Extra and duplicate variables may cause confusion, while 
non-descriptive variables and string encryption affect the 
initial review of code.   

The duplicate variable score, , defined in 
Equation 7, measures the percentage of variables with the 
same name but different meanings in transformed code, 
where  and  are the number of duplicate 
variables and total variables in the transformed 
application, respectively.  An example would include the 
variable a having two separate meanings depending on 
what method the variable is declared in.   

duplicates

'
duplicatev '

totalv

167



'

'

total

duplicate
duplicate v

v
s =                        (7) 

The extra variable score, sextra, measures variables 
with different names but the same meaning in transformed 
code.  If two variables b and c, are both used in a method 
and have the same values and meaning in the method, 
then there is an extra variable.  This score is calculated 
similar to the duplicate variable score as seen in Equation 
8, where  is the number of extra variables. '

extrav

'

'

total

extra
extra v

vs =                            (8) 

The next factor, the descriptive variable score, svariable, 
is defined as a Boolean expression describing if the 
transformation renames descriptive variables in original 
code to non-descriptive ones or not. There are three 
possible scenarios that could take place. The first two are 
that the obfuscation does not conduct variable renaming 
regardless original code with or without descriptive 
variables. Both of these scenarios yield a score of zero.  
The last scenario is that the original code does have 
descriptive variables while the obfuscation transformation 
changes them into non-descriptive ones. This scenario 
yields a score of one.  

The final factor in the measurement of variable 
complexity is the string encryption score, sstring. This score 
has an integer range from zero to three with four possible 
scenarios. The first is no string encryption taking place, 
with a score of zero. The second is the occurrence of 
string encryption with a decryption method detected in the 
same class file, yielding a score of one. The third is the 
occurrence of string encryption with a decryption method 
detected in the application. This yields a score of two.  
The last scenario yields a score of three, which is the 
occurrence of string encryption with no decryption 
method detected. The score is directly related to the level 
of string encryption performed during obfuscation. 

 
3.4. Program Length 

The final sub-metric in the measurement of potency is 
a ratio of how many lines of code (LOC) are added or 
removed in comparison to the original program length.  A 
positive number exhibits an increase in count and a 
negative number exhibits a decrease. Equation 9 
demonstrates the score calculation, where  and 

are the count of the transformed code and of the 
original one, respectively. 

'
LOCc

LOCc

LOC

LOCLOC
LOC c

ccs −
=

'
                             (9) 

 
3.5. Overall Measurement of Potency 

The potency score, Spot, is measured on a 100-point 
scale, where 100 means extremely potent and zero 
extremely weak. There are nine total variables, as 

discussed above, that factor into how potent a 
transformation is. Each of the nine factors is weighted, 
according to how much they influence the potency. A low 
weight is assigned to the factors that add minor overhead 
into the original code, resulting in slightly increased time 
for deciphering the code.  A medium weight implies that 
it has not changed the top-down structure of the code, but 
adds more time to decipher the code. A high weight 
means that the transformation removes the sequential 
methodology of structure, along with adding much 
overhead and deciphering time. In this project, we assign 
a low weight to the unreadable, duplicate variable, extra 
variable and descriptive variable scores. The nesting, 
string encryption, and LOC score obtains a median 
weight. The high weight is given to the label and goto 
scores. Taking the three weight classes and how many 
scores are in each, it is determined that the low, medium, 
and high weights are 6.25, 12.50, and 18.75, respectively.  
Using this information, Equation 10 exhibits the final 
equation to quantify the potency measurement of an 
obfuscation transformation, where x=12.50, y = 18.75, 
and z = 6.25. 

unreadablegotolabelnestingpot szsysysxS ⋅+⋅+⋅+⋅=

LOCstringedescriptivextraduplicate sxsxszszsz ⋅+⋅+⋅+⋅+⋅+  
(10) 

 
4. Measurement of Resilience 

Resilience is how a transformation holds up an attack 
against an automated de-obfuscator or de-compiler. De-
obfuscation is only making an obfuscated code more 
readable but for deobfuscation to happen the code must be 
decompiled first. 

Due to the lack of commercial de-obfuscators in the 
market, this analysis is solely based on decompilation of 
code.  Three de-compilers utilized in this study include 
JAD, DJ Java, and Cavaj. JAD is a console-based 
freeware application. DJ Java is a stand-alone Window-
based application independent of the presence of a virtual 
machine. This means that the application can decompile 
code without a JVM being installed on a system.  DJ Java 
displays the decompiled code along with a parse tree. 
Cavaj is another program that works similar to DJ Java 
displaying the de-complied code and parse tree as well. 

The grading scale designed for resilience is based on 
the results of these de-compilations. The scale has three 
possible scenarios, with scores from zero to two. A score 
of zero means that no errors result from the 
decompilation. A score of one represents that errors occur 
during tree parsing. A score of two signifies a failure of 
decompilation. The resilience score for an obfuscation 
transformation on a Java program comprised of multiple 
class files is calculated by averaging the individual scores 
of the transformation on classes. 

 
5. Measurement of Cost 

Calculating cost is a straight-forward process in 
comparison to potency and resilience. It typically 

168



measures extra resources that an obfuscated application 
consumes during runtime. Three types of resources, 
memory, storage space, and runtime, are considered in 
this study. 

 
5.1. Memory 

The memory score is a ratio of additional memory 
consumption of an obfuscated program against that of the 
original one. The memory score partitions into two types: 
heap memory, which is the memory consumed by the 
application during runtime, and object memory, which is 
the memory allocated by various objects used in the 
program, such as integers and strings, etc. 

 In several cases, heap memory is an important factor, 
and the effect of memory consumption on an application 
depends on how the code is structured. For example, 
recursive functions tend to allocate large amounts of 
memory in the execution stack due to the continuous 
process of calling themselves. Programs structured 
recursively run the risk of being heavily affected by 
obfuscation transformation. This is due to all the added 
overhead being placed on the execution stack as the 
recursive statement repeatedly calls itself.  

Memory allocated for creating objects is a potential 
hazard for a given application because obfuscators tend to 
create duplicate and extra variables. Therefore, 
applications encompassing numerous variables in the 
original code are subject to allocating a large amount of 
object memory subsequent to obfuscation. The more 
objects that exist in the original program pose better 
chance to have more duplicate variables in the 
transformed one. Thus, more memory is consumed after 
obfuscation.  

Equations 11 and 12 describe how these two factors 
are calculated, where  and  are the 
amount of heap memory and object memory consumed by 
the obfuscated code during the runtime; and and 

 are the amount of heap memory and object 
memory consumed by the original code during the 
runtime 

'
heapmemp '

var iablememp

heapmemp

iablemempvar

heapmem

heapmemheapmem
heapm p

pp
s

−
=−

'                   (11) 

iablemem

iablememiablemem
m p

pps
var

varvar
var

' −
=−

               (12) 

How these factors contribute to the total memory 
score is then illustrated in Equation 13 where the constant 
a =   0.375 and b =   0.625. These constants are chosen 
based on our pilot studies to properly weight the heap 
memory as being more crucial than the object creation 
memory.  

heapmmmemory sbsas −− ⋅+⋅= var            (13) 

5.2. Storage 
Although the economical cost of file storage 

decreases as technology progresses, there are situations 

where the increase of file size is inconvenient or critical.  
For example, a user may write a software package with a 
total file size of smaller than the capacity of the media 
where the software is stored. After being obfuscated, the 
software package’s file size can increase to a value 
greater than the capacity of the media, which is a problem 
for developers. Having considered this, the storage rating 
of an obfuscator is then calculated in Equation 14, where 

 and  denote the file size of the 
obfuscated program and the original one, respectively. 

'
filesizep filesizep

storage

storagestorage
storage p

pp
s

−
=

'                         (14) 

 
5.3. Runtime 

The last contribution to the cost score is an 
application’s runtime. Runtime can be extremely 
important if an application’s purpose is to perform a set of 
operations quickly and efficiently. For example, if an 
extensive algorithm is more efficient than others, adding 
overhead to this algorithm counteracts its efficiency. 

Although much application’s success is not 
stringently related to the runtime, efficiency is still proper 
etiquette for the final version of an application. In this 
project, the runtime score, , is computed in 

Equation 15 where  is the obfuscated program’s 

runtime and  is that of the original one. 

runtimes
'
runtimep

runtimep

runtime

runtimeruntime
runtime p

pps −
=

'                     (15) 

The overall cost calculation is presented in Equation 
16 where the variables x2, y2, and z2 are 0.40, 0.15, and 
0.45, respectively. These constants are chosen based on 
our pilot runs with the justification that the memory and 
runtime are far more “expensive” resources than the size 
of the obfuscated application. As technology progresses, 
data storage space is less and less of an issue. However, it 
is still a factor to consider because in some situations, 
storage space is strictly limited. Therefore, the file size is 
a factor towards the cost but weighted less than the other 
factors. 

runtimestoragememorycst szsysxS ⋅+⋅+⋅= 222   (16) 
Negative values represent positive impact on the 

overall quality of a transformation. This can occur if there 
is a significant amount increase in performance, such as 
the obfuscated application consuming less memory, 
requiring less runtime, and/or consuming less disk space. 
 
6. Pilot Study 

The metrics developed above are tested on four 
commercial obfuscators: DashO-Pro, KlassMaster, 
SmokeScreen, and Allatori, through five different Java 
applications with an increasing complexity: pi calculator, 
bubblesort, quicksort, radixsort, and Mandelbrot 
algorithms. All tests are running on the same computer 
with the Windows XP Professional operating system and 

169



a Java runtime environment present. The five Java 
applications are installed along with four obfuscator tools 
and three de-compilers. This set-up guarantees accurate 
results because everything uses the same resources.  The 
potency and resilience are manually measured and 
calculations are performed in a spreadsheet format.  The 
cost analysis is performed using NetBeans performance 
profiler. The NetBeans profiler runs on a separate 
machine and all profiling results are obtained over the 
network. This prevents the actual NetBeans profiler from 
interfering with the performance of the application being 
analyzed.  

 
6.1. Potency Score 

Figure 3 display the potency results of each 
obfuscator’s transformation on five Java applications. As 
stated earlier, the score is on a 100-point scale, where a 
zero indicates no obscurity added during the 
transformation and a 100 a high level of obscurity. It is 
clear to see in our results that SmokeScreen and 
KlassMaster add a high level of obscurity to the code 
after transformation. Compared to them, the performance 
of Allatori in terms of potency is mediocre. DashO-Pro 
has the lowest score for each application, indicating that a 
minimum level of obscurity is added. The variance in the 
scores between applications is minimal indicating that 
there is no direct relation between the level of added 
obscurity and code complexity.  More analysis needs to 
be performed to verify the relationship between the 
potency and complexity.  
 
6.2. Resilience Score 

Based on the grading scaled designed earlier, the 
resilience scores are calculated that reflect how the 
obfuscated sorting algorithms, Mandelbrot, and pi 
calculator through different obfuscators resist the attack 
against three chosen de-compilers. These scores for the 
same obfuscator against different de-compilations are 
then averaged in response to a particular obfuscator’s 
resilience performance as shown in Fig 4. Please note that 
the scores are eventually normalized to the 0-100 scale, 
although not shown in the paper, in order to be worked 
into the overall obfuscation metric. 

Each Java program obfuscated via DashO-Pro is 
completely attainable without any decompilation and 
parsing errors, granting it a zero resilience score. Allatori 
and KlassMaster have very close results, each of which 
illustrates good resilient transformations. Smokescreen is 
the most resilient obfuscator tested. Both JAD and DJ 
Java crash while decompiling most of the files obfuscated 
through Smokescreen. Cavaj can decompile the code 
obfuscated via Smokescreen but not parse a tree.  

 
6.3. Cost Score 

After compiling all the data obtained from test runs, 
the following chart, shown in Figure 5, is generated to 
illustrate the overall cost analysis. The first observation is 
the inconsistent behavior of DashO-Pro. The BubbleSort 

and QuickSort algorithms result in a noticeable cost 
decrease. While there is a cost increase in the RadixSort 
obfuscated via DashO (unlike the other two sorting 
algorithms), it is smaller than the scores of the other three 
obfuscators. The cost results concerning the pi calculator 
and Mandelbrot application also draw our attention. 
Although low runtimes, low memory consumption, and 
smaller file sizes are relatively positive aspects of an 
application, the performance increase is strictly related to 
a lack of aggression during the obfuscation process. 

Potency Analysis

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Pi BubbleSort QuickSort RadixSort Mandelbrot

Java Application

W
ei

gh
te

d 
Po

te
nc

y 
Sc

or
e

DashO-Pro

Smokescreen

KlassMaster

Allatori

 
Figure 3 Potency Analysis 

 
Figure 4 Resilience Test Array 

KlassMaster has consistent scores, where cost 
increases among each program are very similar regardless 
of the nature of the applications (sorting algorithms or 
computation algorithms applications). Therefore, we 
conclude that KlassMaster will yield predictable results 
when used on one’s application.  

Allatori follows the trend similar to KlassMaster 
which consequently increases the cost per application. 
Allatori shows slightly larger cost increases for the more 
complex sorting algorithms and fewer increases for the 
basic sorting algorithms. While KlassMaster’s trend is 
consistent like Allatori’s, it is indirectly related to the 
code complexity. Cost increases remain similar with 
calculation-based applications such as the Pi calculator 
and Mandelbrot. 

SmokeScreen’s cost trend is similar to that of Allatori 
where cost increases are noted with the two most 
complicated sorting algorithms. Virtually identical results 
occur when performing analysis on the pi calculator. The 
major factor that sets SmokeScreen apart from the other 
obfuscators is the cost rating for the Mandelbrot program. 
There is a drastic increase in the average runtime of 
Mandelbrot obfuscated by SmokeScreen, resulting that 
the score is three to four times larger than the original 
one. 

170



Each obfuscator has its own cost score calculated 
with the consideration of data from all five applications. 
Some results are expected because during analysis, some 
obfuscators seem to have similar trends. KlassMaster and 
Allatori have similar responses to certain types of 
applications while SmokeScreen suffers due to its 
negative performance pertaining to the Mandlebrot 
program. The main concern during our analysis is the 
results generated from DashO-Pro transformations. As 
stated previously, the low cost score corresponds to a low 
potency and resilience score. One may draw the 
conclusion that DashO Pro is more of an optimizer than 
an obfuscator. 

Cost Analysis

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Pi BubbleSort QuickSort RadixSort Mandelbrot

Java Application

Co
st

 S
co

re Original
DashO 
Smoke Screen
Klassmaster
Allatori

 
Figure 5 Cost Analysis 

6.4. Overall Quality of Obfuscation 
With the data obtained above, the final scores of the 

quality of obfuscation are then calculated for each 
obfuscator using Equation 1. 

Careful inspection of Figure 6 indicates that 
SmokeScreen obfuscates Java code with the highest level 
of obscurity (potency and resilience) and the least amount 
of memory increase in comparison to other obfuscators. 
The exception is the Mandelbrot transformation. This 
score is low since the increase of overall cost is very high, 
drastically decreasing the overall quality score. 
KlassMaster transforms code better than Allatori, whose 
scores are at the average level on the pi and sorting 
applications. DashO-Pro has the lowest score for each 
application indicating that its overall quality of 
obfuscation is very low. 

 
7. Conclusion 

Obfuscation uses clever techniques to deter reverse 
engineering of Java code by making the cost of reverse 
engineering prohibitively high.  While there are a number 
of obfuscators on the market, to develop a qualitative 
method in evaluating the performance of such tools 
becomes critical. This project studies the evaluation 
methods in theory and develops an analytical metric in 
quantifying the strength of various obfuscation 
transformations in terms of potency, resilience and cost. 
The increasing complexity of code is indirectly related to 
the decreasing level of obfuscation performed on a given 
application which in turn is related to the increase in cost 
[1].  Therefore, there is a tradeoff between such properties 

that a developer must consider while choosing a proper 
obfuscation tool. Though some obfuscators are scored 
lower than others, developers might utilize such tools if a 
low level of obfuscation and performance loss is needed. 
Our metric will assist developers to make such decisions. 
According to our analysis of four commercially available 
obfuscators using the developed metric, we conclude that 
obfuscation is still juvenile in the field of software 
protection, especially for Java programming. One of the 
contributions of this analysis is to help developers design 
an obfuscator that utilizes the most prominent features of 
each application.  

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Pi BubbleSort QuickSort RadixSort Mandelbrot

DashO-Pro
SmokeScreen
KlassMaster
Allatori

 
Figure 6 Overall Quality Analysis 

This research can be continued in several directions. 
For instance, it is worthwhile to benchmark our findings 
in this project and to consolidate our analytical metrics.  
Based on our observations in this project, one 
complementary technique for software protection could 
be to obfuscate the program interpretation (e.g., JVM) 
instead of obfuscating the program itself [6].  

References 
[1] MacBride, J., Mascioli, C., Marks, S., Tang, Y., 

Head, M. L., Ramachandran, R. P., “A Comparative 
Study of Java Obfuscators,” in Proceedings of the 
IASTED International Conference on Software 
Engineering and Applications (SEA 2005), Phoenix, 
AZ, Nov. 14-16, 2005, pp.82-86. 

[2] C. Collberg, C. Thomborson, and D. Low, “A 
Taxonomy of Obfuscating Transformations,” The 
University of Auckland, Auckland, New Zealand, 
Tech. Rep. 148, 1997. 

[3] D. Low, “Protecting Java Code via Java 
Obfuscation,” ACM Crossroads, Spring 1998 issue. 

[4] S. Drape, “Obfuscation of Abstract Data Types,” 
Ph.D. dissertation, University of Oxford, Oxford, 
England, 2004. 

[5] H. Lai, “A Comparative Survey of Java Obfuscators 
Available on the Internet,” The University of 
Auckland, Auckland, New Zealand, Proj. Rep. 
415.780, 2001. 

[6] Mascioli, C., Marks, S., MacBride, J., Tang, Y., 
Head, M. L., Ramachandran, R. P., “Analysis of Java 
Obfuscators,” Rowan University, technical report, 
2005. 

 

171


	1. Introduction
	2. Quality of Obfuscation
	3. Measurement of Potency
	3.1. Nesting Complexity
	3.2. Control Flow Complexity
	3.3. Variable Complexity
	3.4. Program Length
	3.5. Overall Measurement of Potency

	4. Measurement of Resilience
	5. Measurement of Cost
	5.1. Memory
	5.2. Storage
	5.3. Runtime

	6. Pilot Study
	6.1. Potency Score
	6.2. Resilience Score
	6.3. Cost Score
	6.4. Overall Quality of Obfuscation

	7. Conclusion
	REFERENCES

