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Abstract—This paper considers z-domain transfer functions 
whose denominator polynomial possesses the property that the 
coefficient of zi is greater than the coefficient of zi-1.  Such 
transfer functions can be shown to be always stable and their 
denominator polynomials can be formed as a finite length time 
reversed Fibonacci sequence of numbers.  Appropriate 
numerator polynomials can be configured to design lowpass, 
highpass, bandpass, band-elimination and allpass IIR filters. It is 
observed that the phase response closely approximates a linear 
behavior. This study is on  the design of IIR  filters using 
Fibonacci numbers. The advantages are that frequency selective 
filters with an approximately linear phase characteristic can be 
obtained with neither a stability test nor an analog prototype, 
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I.  INTRODUCTION 
 

 The different types of discrete time filters and 
methods of generating stable transfer functions have been 
widely discussed in [1]. In this paper, we consider IIR stable 
transfer functions whose denominator polynomial is generated 
using a finite length sequence of Fibonacci numbers in reverse 
order.  In Section 2, this method is shown to guarantee a stable 
transfer function. By appropriately configuring the numerator 
polynomial, various frequency selective filters are designed.  

The advantages of this approach are that (1) it does 
not require an analog prototype, (2) the phase response is 
approximately linear, (3) stability is guaranteed and (4) a 
sophisticated optimization algorithm is not required, The main 
drawback is that the order of the filter cannot be directly 
calcualated from a prescribed passband ripple and stopband 
attenuation.   

It is noted that Fibonacci based impulse response 
filters have been reported in [2]. Other methods of IIR filter 
design include least-squares design for optimizing magnitude 
and phase with a pole radius constraint [3], a linear 
programming approach [4], with a prescribed stability margin 
[5] and multiple criterion optimization [6]. 

 

II.  STABILITY ANALYSIS AND DESIGN EXAMPLES 
 

Suppose the transfer function has a denominator polynomial 
D(z) with increasing coefficients. The proof of Theorem 1 
demonstrates that D(z) is minimum phase.. 
 
Theorem 1 : The polynomial 
D(z)  =  aNzN + aN-1zN-1 + aN-2zN-2 + …+  aN-k+1zN-k+1+ aN-kzN-k +   
              .. + a2z2 + a1z + a0                                                   (1) 
                                                               
possesses all its roots located within the unit circle, when the 
coefficients satisfy the condition 
           aN > aN-1 >  … > aN-k+1 > aN-k > … > a0 >0                 (2a) 
     or  aN-k+1 > aN-k ,  k = 1, 2, …., N-1, N                            (2b)                  

 
Proof : The proof is based on Jury’s stability  conditions [7]. 
(a) It is required that   D(1) > 0                                             (3)                    
     This is readily verified. 
(b) It is required that  (-1)N D(-1) > 0                                   (4)                    
      We have to consider two different cases: 
(i)  N even : This means that D(z) contains an odd number of 
terms and D(-1) can be regrouped as follows: 
(aN – aN-1)+ (aN-2 – aN-3) + …+(a2 – a1) + a0    
which is always positive. 
(ii) N odd : This means that D(z) contains even number of 
terms and D(-1) can be regrouped as follows: 
(-aN + aN-1) + (-aN-2 + aN-3) + . . .+ (-a1 + a0)   
Obviously, this quantity is negative and (4) is readily satisfied 
in this case.  
(c) Now, Jury’s table is constructed as follows:  

aN   aN-1   aN-2  . . . aN-k  aN-k-1 . . . a2     a1    a0 
a0    a1     a2     . . . ak     ak+1   . . . aN-2  aN-1 aN 

              - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
        bN-1 bN-2  bN-3 . . . bN-k   bN-k_1  . .  b2    b1    b0 

 
Where bN-1 = aN

2 – a0
2

 , 
      bN-2 = aNaN-1 – a1a0,      
  . 
  . 
 bN-k   = aNak+1 – aN-k-1a0, 
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 bN-k-1 = aNak – aN-ka0,                              
 .. 
 b1 = aNa2 – aN-2a0, 
 b0 = aNa1 – aN-1a0.  

Consider the quantity 
bN-k – bN-k-1 = aN(aK+1 – ak) + a0(aN-k – aN-k-1) 

which is always positive. Therefore, one can conclude 
bN-1 > bN-2 > bN-3 > . . > bN-k > bN-k-1 > . .> b2 > b1 > b0 > 0                                                                                                                            
Continuing this process of constructing Jury’s table, it is seen 
that, at every step, the inequalities of the type in (2a) are 
always satisfied.  Therefore, D(z) contains all its roots within 
the unit circle. 

It is known that if D(z) has its roots within the unit 
circle, D(-z) also has its roots within the unit circle. 

 
Table 1: Polynomial coefficients and their roots 

Order Coefficients values 
(high order to low 

order) 

Roots 

2 2 1 1 -0.2500 ± j0.6614 
3 3 2 1 1 -0.7639 

-0.0586 ± j0.6495 
4 5 3 2 1 1 -0.7188 

-0.5337 ± j0.4583 
0.2337 ± j0.5912 

5 8 5 3 2 1 1 -0.7188 
-0.2908 ± j0.5967 
0.3377 ± j0.5298 

6 13 8 5 3 2 1 1 -0.6054 ± j0.3255 
0.4053 ± j017524 
-0.1076 ± j0.6371 

7 21 13 8 5 3 2 1 1 -0.6898 
-0.4451 ± j0.4916 
0.4512 ± j0.4287 
0.0293 ± j0.6359 

8 34 21 13 8 5 3 2 1 1 0.4838 ± j0.3895 
-0.6271 ± j0.2478 
-0.2985 ± j0.5763 
0.1329 ± j0.6168 

9 55 34  21 13 8 5 3 2 1 1 -0.6737 
-0.5193 ± j0.4062 
-0.1731 ± 0.6164 
0.5078 ± j0.3562 
0.2124 ± j0.5904 

10 89 55 34 21 13 8 5 3 2 
1 1 

-0.6343 ± j0.1988 -
0.4069± j0.5052 

-0.0682 ± j0.6309 
0.5259 ± j0.3278 
0.2745 ± j05.616 

 
One can use the result of Theorem 1 to construct IIR stable 
transfer functions.  Table 1 gives such functions when 
Fibonacci numbers are used as the polynomial coefficients of 
D(z).  The table also contains the poles of such transfer 
functions. Orders up to 10 are considered.  

Figure 1(a) shows the magnitude response and Figure 1(b) 
gives the phase response of a typical lowpass IIR filter of 
order 8, whose transfer function is given by 
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Figure 1(a): Magnitude (b) phase responses of a lowpass  filter 

Figure 2(a) Magnitude responses of different lowpass filters  

 
Figure 2(b) Phase responses of different lowpass filters  
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Frequency response : HP, n = 8
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Figure 3(a) and (b): Magnitude and phase responses of the 

highpass filter 
 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

                                                        (a)                                           w rad./s.

M
ag

ne
tu

de
 r

es
po

ns
e

Frequency response : BP, n = 8
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Figuress.4(a) and (b) Magnitude and phase responses of the 
bandpass filter 

 
 

Figure 2(a) gives the magnitude responses of different orders 
of such lowpass filters and Fig. 2(b) gives the corresponding 
phase responses. 

Figures.3, 4, 5 and 6 show the magnitude and phase 
responses for  8th order highpass, bandpass, band-elimination 
and allpass filters obtained by starting from the 8th order 
lowpass.  In all cases,.  the denominator is the same as that of 
(5). The numerator for the highpass filter is (z – 1)8, that for 
the bandpass filter is (z2 – 1)4; and that for the band-
elimination filter is (z2 + 0.34z + 1)4.  For the allpass filter, the 
numerator is : 

 
(34 + 21z + 13z2 + 8z3 + 5z4 + 3z5 + 2z6 + z7 + z8) 
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Frequency response : BS, n = 8
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Figures.5(a) and (b) Magnitude and phase responses of the 

band-elimination filter 
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Frequency response : AP, n = 8
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Figures.6(a) and (b) Magnitude and phase responses of the 

allpass filter 
 

III. SUMMARY AND DISCUSSION 

In this paper, it has been established that when a one-
dimensional (1-D) z-domain polynomial satisfies the condition 
that the coefficient of zi is greater than the coefficient of zi-1, its 
roots are always contained within the unit circle. Consequently 
if this type of polynomial is the denominator of a 1-D causal 
transfer function, the resulting filter is guaranteed to be stable.  
As a particular example, we have associated Fibonacci 
numbers with the various coefficients and different types of 
filters have been obtained.  It is noted in particular that the 
phase response of these filters closely approximates linear 
phase characteristics particularly for higher orders.  This avoids 
the need to optimize the phase response to achieve linearity. A 
simple design approach does result for achieving s good 
magnitude and phase response. However, it remains to be 
investigated how an approximately linear phase characteristic 
is naturally achieved. Also, the generation, design and study of 
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stable IIR filters using other types of number sequences is 
possible with this approach. 
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