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Abstract 

 Starting from two lower order 
Butterworth polynomials, 1-D transfer functions 
are obtained by suitably integrating them and 
associating the same to the denominator of a 
transfer function.  These functions guarantee 
monotonic response in the frequency domain.  
By suitable association of the polynomials 
obtained by integration, higher order functions 
yielding monotonic responses are obtained.  
These can be readily used to obtain 1-D and 2-D 
discrete filters yielding such responses. 
 

1. Introduction 
Recently, considerable attention has been paid 

towards the generation of monotonic magnitude - 
frequency responses of transfer functions. [1-5].  
In these investigations, the starting point will be 
filters originating from Butterworth, Papoulis, 
Filanovsky, Bessel-Thomson filters or their 
suitable combinations.  However, an alternative 
method [6] has been proposed where one can start 
from a known polynomial which remains positive 
throughout the frequency range, integrate it and 
associate to the denominator polynomial of a 
transfer function.  This also results in monotonic 
responses and the numerator coefficient has to be 
adjusted so that the response is unity at zero 
frequency.  
 In this paper, we start with a Butterworth 
polynomial and employ the techniques of [6] and 
generate transfer functions which give monotonic 
magnitude-frequency responses. 

 
2. Generation of the required transfer 

functions. 
 In this method, we start with the 
denominator of the square of the magnitude of the 
Butterworth filter of order ‘q’,  given by 

1q x (x)qg +=                 (1a) 

with                                    x = ω2                     (1b) 
This polynomial can be integrated a number of 
times (say k) with respect to x and is associated to 
the denominator of the derived transfer function.  
Accordingly, we have  
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This permits to obtain the magnitude response of 
the corresponding monotonic transfer function as : 
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with (1b) substituted appropriately.  The quantity 
added in (2) is the constant of integration and 
ensures that the response is unity at zero 
frequency.  It is also noted that ‘q’ and ‘k’ are 
quite independent of each other and the total order 
of the resulting transfer function in s (= jω) will be 
(q + k).  Table I gives the various transfer 
functions  ( ) ( ) ( )sD/sNsT qkqkqk =  up to k =5 
for q = 1. They are obtained by the factorization of 

( )22
qk sT −  and the rejection of its right hand 

side poles.  It also gives the numerator coefficient 
for unit response at zero frequency, and ωc, the 
cutoff frequency (that is, the response is -3 dB at 
this point)..  

 

 
Table I: The transfer functions generated when 

q = 1 and k up to 5. 
 

k,q Dqk(s) Nqk(s) ωc 
1,0 (s+1) 1 1 
1,1 (s2+2.1974s+1.4142) 1.4142 0.8556
1,2 (s+1.2634) 

(s2+2.2982s+1.9388) 
2.4495 0.8360

1,3
 

(s2+2.3622s+2.5194) 
(s2+2.7108s+1.9446) 

4.89338 0.8330

1,4
 

(s + 1.4767)(s2+2.4074s 
+ 3.1376)(s2+2.8334s + 

2.3645) 

10.9554 0.8326

1,5 (s2+2.4414s + 3.7838) 
(s2+2.9228s + 2.8296) 
(s2+3.1202s + 2.5061) 

26.8319 0.8306
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Fig.1 gives the various magnitude responses for 
the transfer functions given in Table I.  

 
Fig.1: The various magnitude responses of the 

transfer functions listed in Table I.  
 

It is readily seen that the cut-off 
frequency point does not vary much as the order 
increases for the same value of q and that all the 

dB3−  frequency points are clustered around the 
same value {Fig. 1}.  
 We can start with the same transfer 
function as in (1) with a value of q = 2 and carry 
out the integrations. Following the same 
procedure, the various transfer functions are 
obtained and given in Table II up to k=5.  
 

 
The magnitude responses of the transfer 

functions listed in Table II are illustrated by Fig. 2 

 
Fig.2: The magnitude responses for the transfer 

functions listed in Table II.  
 
 We can now combine selected factors 
from Tables I and II such that, when they are 
associated with the denominator of a transfer 
function, monotonic responses result. 

 
F1 (s+0.9043) 
F2 (s+1) 
F3 (s+1.1982) 
F4 (s+1.2634) 
F5 (s+1.4249) 
F6 (s+1.4767) 

Table III: First order transfer functions 
extracted from  Tables I and II 

S11 (s2+2.1974s+1.4142) 
S12 (s2+2.2982s+1.9388) 
S13 (s2+2.3622s+2.5194) 
S14 (s2+2.7018s+1.9446) 
S15 (s2+2.8334s+2.3645) 
S16 (s2+2.9228s+2.8296) 
S17 (s2+3.1202s+2.5061) 

Table IV: Second-order transfer functions 
extracted from Table I and guaranteed to 

result in monotonic response 
S21 (s2+1.414s+1) 
S22 (s2+2.0778s+1.5542) 
S23 (s2+2.2496s+1.74) 
S24 (s2+2.3748s+2.3113) 
S25 (s2+2.6058s+1.7854) 
S26 (s2+2.4672s+2.9182) 
S27 (s2+2.7574s+2.2017) 

Table V: Second-order transfer functions 
extracted from those in Table III and 

guaranteed to result in monotonic response 
 

Tables III, IV and V give those factors, 
which when associated with the denominator of 
the transfer function, definitely yield monotonic 
frequency responses.  Any type of combination 
is possible, giving the order of the transfer 

Table II The transfer functions generated when
q = 2 and k up to 5 

K,q Dqk(s) Nqk(s) ωc 
2,0 (s2+1.414s+1) 1 1 
2,1 (s+0.9043) 

(s2+1.7358s+1.9153) 
1.732 0.9043

2,2 (s2+1.9442s+2.8205) 
(s2+2.0778s+1.5542) 

4.3836 0.8480

2,3 (s+1.1982) 
(s2+2.1008s+3.7151) 

(s2+2.2496s+1.74) 

7.7455 0.8351

2,4 (s2+2.227s+4.5979) 
(s2+2.3748s+2.3113) 
(s2+2.6058s+1.7854) 

18.9737 0.8329

2,5 (s2+2.333s+5.4452) 
(s2+2.4672s+2.9182) 
(s2+2.7574s+2.2017) 

(s+1.4249) 

49.8507 0.8326
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function up to 34, starting from the first order.  If 
we increase the value of k in Tables I and II, 
more of such factors will be available.  In Tables 
IV and V, it is readily observed that the roots of 
s-functions are such that the magnitude of the 
real part is greater than or equal to that of the 
imaginary part.  For a second-order system, it is 
readily shown that this is both necessary and 
sufficient.  However, for higher order systems, 
this is only sufficient and suitable second order 
functions can be added as factors to the 
denominator so that monotonic response is 
maintained. 
 Fig. 3 shows a magnitude response 
generated by the above technique. The transfer 
function chosen is given by 

2.2017)2.7574s2(s

1.9446)2.7018s20.9043)(s(s

3.8717
)(

ck
T

++

+++
=s  (4) 
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Fig.3: Magnitude response of the transfer 

function given by (4) 
 

3. Generation of 2-D filters 
 The 2-D filters can now be generated 
starting from the above 1-D filters.  Several 
approaches are possible. However, for the 
purposes of illustration, the structure shown in 
Fig.4 is considered. 
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Fig.4: The structure considered for the 2-D filter  

 
Analysis yields the overall transfer function as 

)
2
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2
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kN)2(s2).D1(s1D

)2(s2).N1(s1N
)2s,1T(s

+
=

       ..(5) 
It is required that the denominator should 
necessarily be a VSHP in order that the designed 
filter is stable. Any order of s1 and s2 can be 
chosen, however we will use equal order to 
maintain symmetry. As a numerical example, the 
following transfer functions have been chosen: 

1,2i,
1.4249is

1
)i(siH =

+
=       ..(6) 

The overall transfer function becomes 

k2.030341.4249s1.4249sss
1)s,T(s

2121
21 ++++

=  ..(7) 

In order that the denominator shall be a VSHP, it 
can be shown that is required that k > -2.03034.  
Now, the Generalized Bilinear Transformation 
(GBT) given by [7] 

1a0  1,2,i ,
1z
az

ks i
i

ii
ii ≤≤=

+
−

=              ..(8) 

giving a low-pass filter. Other filters can be 
obtained by using appropriate transformations.  
Fig.4(a) and 4(b) give the magnitude and contour 
characteristics for the case k1=k2= 1, a1 =a2= 0.75 
and k = -1.5.  By changing these variables, 
variable magnitude characteristics can be readily 
obtained as can be seen in Figs.5(a) and (b), 
when the generalized bilinear transformation is 
used  with different parameters. 

 
(a) 
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(b) 

Fig.4(a): Contour plot for the case when k1=k2 1, 
a1 = a2 =0.75, k=-1.5. 

Fig.4(b): The corresponding 3-D plot.  

 
(a) 

 
(b) 

Fig.5(a) and (b): The contour and 3-D plots 
when the familiar bilinear transformations are 

used with k = -1. 
 

4. Conclusion 
Starting from two lower order 

Butterworth polynomials in the frequency 
domain, a method  to generate transfer functions 
yielding monotonic responses is presented.  
Specifically, these polynomials are successively 
integrated with respect to ω2 and then associated 

with the denominator of the magnitude response 
of an all-pole transfer function, taking care to see 
that the response at zero frequency is made unity.  
Results up to five successive integrations have 
been given, it is readily seen that more 
integrations can be carried out.  By the 
combination of appropriately chosen s-domain 
factors of lower denominator polynomials, 
higher order polynomials can be obtained,  
which when associated with the denominator of a 
transfer function, yield monotonic magnitude 
frequency responses. Even with five integrations, 
it is shown that the order of the transfer function 
could be as high as thirty-four or more and these 
definite yield monotonic responses. The 
corresponding discrete-time filters can be 
obtained.  using generalized bilinear 
transformations with different parameters. By 
proper cascading or other combinations of 1D  
filters obtained by the proposed method  two-
dimensional digital filters can be obtained.  It has 
to be ensured that they are always stable.  Their 
2-D responses can, but need not be monotonic. 
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