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Abstract— A blind approach for estimating the signal to noise ratio
(SNR) of a speech signal corrupted by additive noise is proposed. The
method is based on a pattern recognition paradigm using various linear
predictive based features, a neural network classifier and estimation
combination. Blind SNR estimation is very useful in speaker identification
systems in which a confidence metric is determined along with the
speaker identity. The confidence metric is partially based on the mismatch
between the training and testing conditions of the speaker identification
system and SNR estimation is very important in evaluating the degree of
this mismatch. The aim is to correctly estimate SNR values from 0 to 30
dB, a range that is both practical and crucial for speaker identification
systems. Speech corrupted by additive white Gaussian noise, pink noise
and two types of bandpass channel noise are investigated. The best
individual feature is the vector of line spectral frequencies. Combination
of the estimates of 3 features lowers the estimation error to an average
of 3.69 dB for the four types of noise.

I. INTRODUCTION

Consider a speech signal corrupted by additive noise that is statis-
tically independent of the signal. This noisy signal is characterized
by a signal to noise ratio (SNR) calculated over the entire duration
of the signal. In this paper, a pattern recognition approach using six
linear predictive (LP) [1] derived features is used to blindly estimate
the SNR of the noisy speech signal. Principal component analysis
(PCA) [2][3] of the feature vectors is shown to improve the SNR
estimate and reduce the dimension of the feature vector. In addition,
a further performance improvement is achieved by combining the
SNR estimates generated by the six features. A multilayer perceptron
(MLP) neural network [4] classifier is used.

Blind estimation of the SNR is very useful in closed set speaker
identification systems. The training of a speaker identification system
involves the configuration of M models each representing a different
speaker. During closed set testing, the features of an utterance are
compared to the M models to render a decision of the speaker
identity as being one of the M speakers [5]. Recent research has
been done to develop techniques to calculate a confidence metric to
accompany the decision of the speaker identity [6][7]. The confidence
metric is calculated based on the mismatch between training and
testing conditions, amount of training and testing data, and number
of speakers (value of M ). As M increases, there is usually more
model overlap. The more the difference between the SNR of the
training and testing speech, the more the mismatch between the two
and the lower the confidence metric. An automatic and blind method
of SNR estimation of the training and testing speech is an integral
part of the technique of finding the confidence metric of a speaker
identification system. Estimating the SNR has also been found to
be very useful in noise spectrum estimation for speech enhancement
and in robust speech recognition. The novel method proposed in this
paper for blind SNR estimation is based on a pattern recognition
paradigm.

II. OVERVIEW OF PATTERN RECOGNITION SYSTEM

A pattern recognition system consists of a front-end feature ex-
tractor and a classifier. The feature extractor transforms the speech
signal to a collection of low dimension feature vectors such that
vectors from the same class are similar and a clear distinction among
vectors from different classes exists. Examples of classes depend on
the application. For vowel recognition, each class is a different vowel.
For speaker recognition, each class is a different speaker. In this
paper, each class is a different SNR value.

For an M class problem, the classifier is trained such that a model
is configured for each class. In unsupervised training, the model for
class k is trained using feature vectors from class k only. An example
is vector quantization in which the feature vectors for each class are
grouped into clusters. In supervised training, the model for class k
generally uses feature vectors for all M classes. An example is the
neural network which uses a discriminator based method that divides
the feature space into distinct regions by a series of hyperplanes. Each
region corresponds to a particular class. After training is complete, the
classifier uses test feature vectors to render a decision on the class the
features belong to. In vector quantization, the cluster whose distance
is closest to the test data identifies the class. In neural networks, test
feature vectors falling into a specific region are deemed to have been
generated by the corresponding class.

Features based on LP analysis are highly useful candidates for SNR
estimation as they show differences for varying noise levels. The goal
is to configure a system to estimate the SNR over an entire utterance
which would be part of a larger speaker identification system.
The overall SNR estimation system consists of five components,
namely, (1) Linear predictive (LP) analysis, (2) Feature extraction
for ensuring SNR discrimination, (3) Principal Component Analysis
(PCA) to get a transformed set of feature vectors that achieve better
SNR discrimination, (4) Multilayer Perceptron (MLP) classifier and
decision logic for computing the SNR estimate and (5) Combination
of the SNR estimates of the different features to get a final estimate.
During training, an MLP network is trained for each distinct SNR
value using feature vectors obtained from noisy speech corresponding
to that particular SNR (class label of 1) and other SNRs (class label
of 0). During testing or SNR estimation, the input to the system will
be a noisy speech signal with an unknown SNR. After LP analysis,
feature extraction and PCA, the set of feature vectors will be passed
through each MLP to get an overall score for each MLP. Based on
these scores, the output will be an estimated SNR value. A MLP
classifier is trained separately for each feature and leads to an SNR
estimate for each feature. A comparison of different LP based features
is done with respect to the average absolute error between the actual
and estimated SNR. The features considered [1][8][9] include the line
spectral frequencies (LSFs), reflection coefficients (REFL), log area
ratios (LAR), linear predictive cepstrum (CEP), adaptive component
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Fig. 1. Block diagram for SNR estimation using a single feature

weighted cepstrum (ACW) and the postfilter cepstrum (PFL). The
SNR estimates of the individual features are combined to get an even
better estimate in that the average absolute error is further reduced.

III. SNR ESTIMATION SYSTEM

Figure 1 shows the block diagram for score and SNR determination
for a single feature.

A. Linear Prediction and Feature Extraction

Linear predictive (LP) analysis results in a stable all-pole model
1/A(z) of order p where

A(z) = 1−
pX

n=1

a(n)z−n (1)

The autocorrelation method of LP analysis gives rise to the predictor
coefficients a(n) and the REFL feature refl(n) for n = 1 to p. The
LAR feature is found as

lar(n) = log

»
1− refl(n)

1 + refl(n)

–
(2)

for n = 1 to p. The LSF feature lsf(n) are the angles (between
0 and π) of the alternating unit circle roots of F (z) and G(z) [1]
where

F (z) = A(z) + z−(p+1)A(z−1)

G(z) = A(z)− z−(p+1)A(z−1) (3)

The predictor coefficients a(n) are converted to the LP cepstrum
clp(n) (n ≥ 1) by an efficient recursive relation [1]

clp(n) = a(n) +

n−1X
i=1

(
i

n
)clp(i)a(n− i) (4)

Since clp(n) is of infinite duration, the CEP feature vector of
dimension p consists of the components clp(1) to clp(p) which are
the most significant due to the decay of the sequence with increasing
n.

The first step in developing the ACW cepstrum [8] is to perform
a partial fraction expansion of the LP function 1/A(z) to get

1

A(z)
=

pX
n=1

rn

1− pnz−1
(5)

where pn are the poles of A(z) and rn are the corresponding residues.
The variations in rn were removed by forcing rn = 1 for every n.
Hence, the resulting transfer function is a pole-zero type of the form

N(z)

A(z)
=

pX
n=1

1

1− pnz−1

= p

" 1−
p−1X
n=1

b(n)z−n

1−
pX

n=1

a(n)z−n

#
(6)

Applying the recursion in Eq. (4) to b(n) and a(n) results in
two cepstrum sequences cb(n) and clp(n) respectively. The ACW
cepstrum is [8]

cacw(n) = clp(n)− cb(n) (7)

The postfilter is obtained from A(z) and its transfer function is
given by

Hpfl(z) =
A(z/β)

A(z/α)
(8)

where 0 < β < α ≤ 1. The cepstrum of Hpfl(z) is the PFL cepstrum
which is equivalent to weighting the LP cepstrum as [9]

cpfl(n) = clp(n)[αn − βn] (9)

The ACW feature cacw(n) and PFL feature cpfl(n) are taken from
n = 1 to p.

B. Principal Component Analysis (PCA)

Principal component analysis (PCA) [2][3] has been shown to
improve vowel recognition and speaker identification performance.
For each of the six features, PCA is performed by first finding the
covariance matrix T of the feature vectors. The feature vectors for all
SNR levels of the training speech data are used to calculate T. No data
compression is performed. The concept of using data from all SNR
levels to form a global covariance matrix is similar to incorporating
data from all classes when using PCA for vowel recognition [2]. The
matrix T is found purely from the training data and is different for
each of the six features.

A linear transformation matrix U has the eigenvectors of T as
its rows such that the rows are arranged in decreasing order of the
eigenvalues of T. The submatrix Uq contains the first q rows of U.
Given that p is the order of LP analysis and the dimension of a feature
vector x (note that x is a column vector), the transformed feature
vector y = Uqx. Every feature vector is transformed such that a subset
of q < p components corresponding to the largest q eigenvalues of U
are retained. The six features are individually compared with respect
to performance improvement and dimensionality reduction as a result
of PCA. The reduced dimension q that leads to the best individual
performance is used for the last step of combining the SNR estimates
of the features as described later.

C. MLP Classifier and Decision Logic

A MLP classifier consists of a parallel arrangement of N MLP
networks that are individually trained for each candidate SNR value.
Referring to Fig. 1, the ith MLP that is dedicated to a value SNR(i)
is trained with feature vectors representing SNR(i) (class label of 1)
and feature vectors representing SNR(j) for all j 6= i (class label of
0). The training is accomplished by the back-propagation algorithm
[4]. The feature vectors for a particular SNR are computed from
speech corrupted by additive noise with that particular SNR.
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During testing or score determination, a test noisy speech utterance
of a particular SNR is converted to a set of test feature vectors.
Consider a particular test feature vector. This is processed by each of
the N MLP networks to get N different scores that are either 0 or
1. This process is repeated for every test feature vector. The scores
are accumulated over the entire set of test feature vectors. Referring
to Fig. 1, Score(i) is the accumulated score for the ith MLP.

Two methods of implementing the decision logic are investigated.
A hard decision approach estimates the SNR to correspond to
the MLP which renders the maximum score. In the soft decision
approach, the scores from a subset of the N MLP networks are used
to estimate the SNR. Consider the ith MLP trained with a class label
of 1 for the value SNR(i) and rendering Score(i). Let Ind(i) denote
the indicator function which equals 1 if the ith MLP is used for final
SNR computation. Otherwise, Ind(i) equals 0. A probability Prob(i)
is derived from Score(i) by the equations

Total =

NX
j=1

Ind(j) Score(j)

Prob(i) =
Ind(i) Score(i)

Total
(10)

If an MLP is not used, the probability assumes a value of 0. The
probabilities add up to 1. The experiments revealed that using the
three MLPs with the largest scores led to good results. From the
probabilities, the SNR is estimated as

SNR =

NX
j=1

Prob(j) SNR(j) (11)

For each test utterance, an absolute error between the true SNR and
the estimated SNR is found. The performance measure is a mean
value of this absolute error taken over the total number of test speech
utterances.

D. Estimation Combination

Using hard or soft decision, six SNR estimates are found for each
test speech utterance, one for each feature. A combination estimate is
obtained by taking the mean, median and trimmed mean of all six or
any subset of the individual feature SNR estimates. The trimmed
mean is the mean of the estimates with the highest and lowest
estimates not counted. It is only valid when three or more features
are considered. The aim is to see if all or a subset of the features
contribute to a better final SNR estimate. This approach of combining
the outputs of different classifiers comes under the realm of ensemble
based systems [10].

IV. EXPERIMENTAL PROTOCOL

Ten sentences from each of the 38 speakers from the New England
dialect of the TIMIT database are used for the experiments. The
speech in this database is clean and first downsampled from 16
kHz to 8 kHz. Four types of additive noise are considered, namely,
white Gaussian noise, pink noise and two types of bandpass noise.
The bandpass noise has a spectrum corresponding to the frequency
response of a typical telephone channel. The two types of bandpass
noise used correspond to the Continental Poor Voice (CPV) channel
and the Continental Mid Voice (CMV) channel [11].

For each speaker in the database, there are 10 sentences. The first
five are used for training the MLP classifier system. The remaining
five sentences are individually used for testing. For each type of
noise, 190 sentences are used for training at each distinct SNR value.
Similarly, for each type of noise, a different set of 190 sentences are

used for testing at each distinct SNR value. The goal is to correctly
estimate SNR values between 0 and 30 dB (inclusive). This is a
significant range for practical speaker identification systems. For each
utterance, the absolute error is the absolute difference between the
true SNR and the estimated SNR. For each SNR value tested, there
are 190 utterances over which an average absolute error (AAE) is
obtained. The AAE is found for each individual feature (with and
without PCA) and each type of noise using both the hard and soft
decision approaches. The AAE is also found for various combination
estimates.

The feature extraction step for a speech utterance for both training
and testing is as follows. One of the four types of noise at a particular
SNR is added to the clean speech. The noisy speech is preemphasized
by using a nonrecursive filter 1− 0.95z−1. For the LP analysis, the
autocorrelation method [1] is used to get a 12th order LP polynomial
A(z). The LP analysis is done over frames of 30 ms duration. The
overlap between frames is 20 ms. The LP coefficients are converted
into 12 dimensional LSF, REFL, LAR, CEP, ACW and PFL feature
vectors. For the PFL feature, α = 1 and β = 0.9 (see Eq. (8)). The
feature vectors are computed only in voiced frames that are selected
based on energy thresholding.

The MLP classifier is trained with the 12 dimensional feature
vectors using the back-propagation algorithm [4]. A separate classifier
is used for each feature. As mentioned earlier, this leads to an
ensemble of classifiers. With PCA, the feature vectors are transformed
by the matrix Uq and a dimension q ≤ 12 is selected. Consider the
training of one classifier dedicated to a particular feature. There are
N = 33 MLP networks trained such that the ith MLP is trained
using a class label of 1 with feature vectors computed from speech
with SNR(i) = i − 2 dB for 1 ≤ i ≤ 33. Training feature vectors
with a class label of 0 correspond to SNR(i) 6= i − 2 dB. The 33
MLP networks are trained in 1 dB increments. Although the aim is
to correctly estimate SNR values from 0 to 30 dB, training from -
1 to 31 dB is performed to avoid artificially high errors for speech
with SNR values of 0 and 30 dB. For every noise condition used in
training, there are 128 feature vectors for each class label that are
used to train the ith MLP. For a class label of 1, the total number
of computed feature vectors is compressed to a size of 128 using
the Linde-Buzo-Gray (LBG) algorithm. For a class label of 0, 128
feature vectors are used with 4 vectors corresponding to each SNR
level not represented by the class label of 1. The 4 vectors are again
obtained by compression using LBG. Experiments with 10, 40, 70 and
100 hidden layer nodes are performed with the goal of maximizing
performance.

During testing or score determination, a test noisy speech utterance
of a particular SNR is converted to a set of test feature vectors.
Transformation by the matrix Uq and appropriate dimensionality
reduction are performed when PCA is involved. As described earlier,
the score for the ith MLP is Score(i). These scores are used for the
hard and soft decisions.

V. RESULTS

For each experiment, an average absolute error (AAE) is computed
for test speech having SNR values between 0 and 30 dB in 1 dB
increments. There are a total of 31 AAE values and an average
of these values result in an overall average absolute error (OAAE).
Due to the training algorithm of the neural network and the random
initialization of the interconnected weights, the neural network will
never draw exactly the same decision boundaries between classes
twice. To gain a generalization of the performance, 5 trials are
performed for each experiment. The results shown in this section
represent the mean OAAE over the 5 trials.
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Feature Type of Noise
AWGN Pink CPV CMV

LSF 7.30 7.10 7.20 5.87
REFL 6.62 4.45 5.47 6.14
LAR 8.19 5.58 6.94 6.33
CEP 6.29 5.58 6.83 7.22
ACW 5.67 4.75 4.92 8.09
PFL 5.55 4.51 4.95 6.25

TABLE I
SOFT DECISION OAAE VALUES (IN DB) FOR TESTED NOISE CONDITIONS

WITHOUT PCA

Feature Dimension Type of Noise
AWGN Pink CPV CMV

LSF 4 3.86 4.21 4.10 4.40
REFL 6 4.46 3.18 4.38 6.10
LAR 6 5.09 4.92 4.96 5.20
CEP 5 4.13 4.02 3.94 4.86
ACW 6 5.23 5.52 5.61 9.09
PFL 3 4.50 5.14 4.53 5.54

TABLE II
SOFT DECISION OAAE VALUES (IN DB) FOR TESTED NOISE CONDITIONS

WITH PCA

The MLPs are trained using feature vectors from speech corrupted
by additive white Gaussian noise (AWGN), pink noise and bandpass
CPV noise. Table I gives the OAAE for each feature and each tested
noise condition when no PCA is done. Analogous results are given
in Table II with PCA done for each feature. The dimension of the
feature vector leading to the best performance for AWGN, pink
and CPV noise is also given. Since soft decision outperforms hard
decision, Tables I and II only give the soft decision results. When
PCA is not done, the number of hidden layer nodes that maximized
performance over AWGN, pink noise and CPV noise is 40 for LAR
and 10 for all other features. When PCA is done, 10 hidden layer
nodes are required for the REFL, LAR and CEP features, 40 for LSF
and 70 for ACW and PFL. The bandpass CMV noise condition is
not reflected in training, in determining the number of hidden layer
nodes or in determining the best dimension for PCA and hence, gives
an indication of which features are more robust. The LSF is the
best individual feature with and without PCA. Also, PCA generally
improves performance.

Combination estimates using all six features and all possible
subsets of the features were attempted. In generating the individual
SNR estimates, PCA and soft decision were used. The median
combination estimate gave the best results. The best four subsets
are presented in Table III.

The OAAE values were recalculated for different test SNR ranges
as given in Table IV for the LSF/CEP combination estimate. The

Features Type of Noise
AWGN Pink CPV CMV

LSF CEP 3.09 3.46 3.82 4.38
LSF CEP PFL 3.66 3.54 3.37 4.20
LSF CEP LAR 3.95 3.43 3.42 4.11
LSF CEP ACW 3.73 3.45 3.51 4.21

TABLE III
OAAE VALUES (IN DB) FOR THE BEST COMBINATION ESTIMATES.

SNR Test Type of Noise
Range (dB) AWGN Pink CPV CMV

0 to 5 1.33 3.69 3.06 5.11
0 to 10 1.73 3.55 4.08 4.59
0 to 15 1.99 3.31 4.05 4.05
0 to 20 2.10 3.00 3.69 3.61
0 to 25 2.44 2.95 3.45 3.72
5 to 25 2.72 2.76 3.62 3.36

TABLE IV
OAAE VALUES (IN DB) FOR DIFFERENT SNR TEST RANGES FOR THE

LSF/CEP COMBINATION ESTIMATE.

larger errors in SNR estimation consistently occur when the SNR of
the speech is high (26-30 dB). Very noisy speech with an SNR of
less than 5 dB can also lead to a relatively larger estimation error.

VI. SUMMARY AND CONCLUSIONS

The MLP based pattern recognition approach to blind SNR esti-
mation has given very good results. It is important to use PCA and
combine the soft decision estimates to substantially bring down the
OAAE.
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