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Stability  and  Performance  Analysis of Pitch  Filters in 
Speech  Coders 

RAVI P. RAMACHANDRAN AND PETER KABAL 

Abstract-This  paper analyzes  the  stability  and  performance  of  pitch 
filters in speech  coding  when  pitch  prediction is combined  with  formant 
prediction. A computationally  simple  stability  test  based on a sufficient 
condition  is  formulated for pitch  synthesis filters. For  typical  orders of 
pitch filters, this  sufficient  test  is very tight.  Based on the  test,  a  simple 
stabilization  technique  that  minimizes  the  loss in prediction  gain  of  the 
pitch  predictor  is  employed  to  generate  stable  synthesis filters. Finally, 
it is  observed  that  the  quality of decoded  speech  improves  significantly 
when stable  synthesis  filters  are  employed. 

I.  INTRODUCTION 

I N the speech coderi considered in this paper,  two non- 
recursive prediction error filters are used to process the 

incoming speech signal. The first which removes near- 
sample redundancies is referred to  here as the formant 
predictor. It is followed by the pitch predictor which re- 
moves distant-sample based redundancies. The resulting 
residual signal after both formant and pitch prediction is 
then coded for  transmission. An adaptive predictive  coder 
(APC) places these  predictors  in  a  feedback  loop around 
the residual quantizer. An additional quantization noise 
shaping filter can also be employed to reduce the percep- 
tual distortion in  the  decoded speech [ 11, [2]. An alternate 
description of an APC  coder  uses an open-loop predictor 
configuration and a noise feedback filter [ 3 ] .  A block dia- 
gram of such a configuration is shown in Fig. l .  This type 
of open-loop arrangement is also used in code-excited lin- 
ear prediction (CELP) [4]. In  CELP,  the coding is accom- 
plished by selecting the candidate waveform (from a dic- 
tionary) that best represents the residual. Also, noise 
shaping is accomplished implicitly in  the process of 
choosing a representational residual signal. 

In both APC and CELP, the residual signal  or  the se- 
lected codeword (after scaling by the gain factor) is passed 
through a pitch synthesis and a  formant synthesis filter to 
reproduce the  decoded  speech.  The filtering in the syn- 
thesis phase can be viewed in the  frequency domain as 
first inserting the fine pitch structure  and then inserting 
the spectral envelope (formant structure).  The synthesis 
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Fig. 1 .  Block diagram of an APC coder with noise feedback. (a) Analysis 
phase. (b) Synthesis  phase. 

filters are recursive and potentially may be unstable.  For 
the formant filter, the autocorrelation [ 5 ] ,  modified co- 
variance [ 11, [6], or Burg [7] methods can be used to de- 
termine filter coefficients which ensure stability of the  for- 
mant synthesis filter. 

The  procedure  to  determine  a  set of pitch predictor  coef- 
ficients can result in an unstable pitch synthesis filter. This 
paper addresses the stability and performance  issues of 
the pitch filter by formulating a computationally simple 
stability test based on a tight sufficient condition, intro- 
ducing a stabilization technique, and evaluating the per- 
formance of the resulting suboptimum predictor. The ef- 
fect of unstable pitch synthesis filters on  decoded speech 
is also examined for  a  CELP  system. 

It should be noted that  the filters in the speech coder 
are updated frame by frame  and  hence  form  a  time vary- 
ing system. Conventional notions of stability are in es- 
sence asymptotic properties of systems. In speech coding, 
an  “unstable” filter may persist  for  a few frames (often 
corresponding to  an interval with increasing energy-see 
the experimental results cited later),  but eventually pe- 
riods of stable filters are  encountered.  This means that, in 
practice,  the  output does not continue to increase in am-. 
plitude with time. 

Consider the  canonical  case of an  all-zero  prediction 
error filter in cascade with a  quantizer, followed by an  all- 
pole synthesis filter. The quantizer can be modeled as 
adding noise (possibly correlated with the signal) to  the 
residual signal. As long  as  the  synthesis filter is the in- 
verse  to  the prediction error filter and the filter coefficients 
are updated in  step,  the  signal component emerges unal- 
tered. For  the signal component, stability is not a problem 
because of polelzero  cancellation.  However,  the  quanti- 
zation noise passes through only the synthesis filter. An 
“unstable” synthesis filter can  cause the output  noise  to 
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build up during the period of instability and can lead to 
degraded speech quality. 

The effect of the quantization noise may  be measured 
in a number of different ways. If the quantization noise is 
modeled as white noise,  the output noise power can be 
expressed as  the input noise power multiplied by the 
power gain of the filter. The power gain is the sum of the 
squares of the filter coefficients. The sufficient stability 
test introduced later results in a power gain for the pitch 
synthesis filter that is less than unity. 

11. FORMANT AND PITCH PREDICTORS 
The formant predictor  has  a  transfer function 

Nf 
F ( z )  = akz-k. (1) 

k =  1 

The  order Nf is typically between 8 and 16.  The system 
function of the noise feedback filter is related to that of 
the formant predictor and is expressed as N ( z )  = F (  z /y ), 
where 0 < y < 1. 

The pitch predictor has a small number of taps (typi- 
cally 1-3 ) centered around a  large delay M corresponding 
to the estimated pitch period in samples. The system func- 
tion for  the  predictor is 

P l Z  -M 1 tap 

P ( z )  = + P*z - ( M + l )  

{ o l z - ( M - l )  + 02z-* + ~ ~ z - ( ~ + ' )  2 3 tap tap. 

(2) 

At the receiver, the formant and pitch synthesis filters have 
transfer functions & ( z )  = 1 /( 1 - F ( z ) )  and H p ( z )  = 
1 / ( 1  - P ( z ) ) ) ,  respectively. 

In  the  case  of  a pitch predictor, both the  value of M 
(pitch lag)  and  the  predictor coefficients have  to  be  deter- 
mined. The conventional strategy to determine the pitch 
lag is to  search  for  the  lag corresponding to the peak value 
of the correlation of the input signal [referred to as d ( n ) ]  
to the pitch predictor [ 13. The search range is often lim- 
ited to  those pitch values encountered in speech.  After  the 
value of M is determined,  the coefficients of P (  z )  are 
found by minimizing the mean-square value of the resid- 
ual over  a  frame  size of N samples [ 11, [6]. This covari- 
ance-type formulation results in a  linear system of equa- 
tions +fl = a, where + is  a matrix of correlation terms, 
p is the vector of predictor coefficients, and a is  a vector 
of correlation terms. Specifically for  a 3 tap predictor,  the 
system of equations is 

where 
N -  1 

+ ( i , j )  = c d ( n  - i ) d ( n  - j ) .  (4) 
n = O  

Given any vector of predictor coefficients p, the energy 
of the prediction residual is 

E 2  = 4(0, 0 )  - 20% + p%p. ( 5  1 
The residual energy for the optimum predictor is 

&in = +(O, 0 )  - p*a. (6) 

A normalized quantity related to e2 will be used  in the 
sequel as the performance measure. The prediction gain 
is defined to be the ratio (in decibels) of the energy of the 
signal at  the input to the predictor to the energy of the 
prediction residual. 

111. STABILITY TEST FOR PITCH SYNTHESIS  FILTERS 
The covariance formulation does not guarantee that 

H p  ( z  ) is a  stable  function. To ensure  stability,  the de- 
nominator polynomial D ( z )  of H p ( z )  must have all its 
zeros within the unit circle in the z-plane.  The polynomial 
D ( z )  is  sparse in that it is of high order but has few non- 
zero coefficients. The Schur-Cohn procedure is a neces- 
sary and sufficient stability test [SI. Furthermore, an im- 
plementation can take  into account the sparse nature of 
the characteristic polynomial of a pitch synthesis filter. 
Appendix A gives the general form of this test and shows 
how  it can be applied to pitch synthesis filters. The Schur- 
Cohn test will be used later to evaluate the tightness of 
the test developed in this paper. 

The Schur-Cohn test specialized for the case of pitch 
synthesis filters has  a computational complexity which is 
proportional to  the  order (approximately equal to the pitch 
lag).  The complexity of such a test is still large  for pitch 
lags encountered in practice. In the following sections,  a 
simple alternative test based on an asymptotically tight 
sufficient condition is derived. In addition,  the new test 
will allow for the simple stabilization of unstable pitch 
synthesis filters. 

A .  Simple Su$cient Test 
Two different sufficient tests will be developed. The first 

is a simple sufficient test, which will also  serve to intro- 
duce the notation. The second is  the final asymptotically 
tight sufficient test. 

Consider a general denominator polynomial D ( z )  of the 
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form 

D ( z )  = Z" - B ( z ) ,  (7 )  
where 

n - 1  

B ( z )  = bizi. (8)  

Then, D ( z )  = z" - B ( z )  = z"( 1 - z - ~ B ( z ) ) .  The  con- 
ditions for stability are  that  1 - z - "B(z )  # 0 or equiva- 
lently that z-"B( z )  # 1 on and outside  the unit circle z 
= e j e .  By the maximum modulus theorem [9], z-"B ( z  ) 
has its maximurn modulus on the  contour surrounding any 
region in which it is analytic. The expression z-"B( z )  
being a polynomial in z - l  is analytic on and outside the 
unit circle  in  the z-plane. Therefore,  a sufficient condition 
for stability is that 1 z -"B(z )  1 < 1 on  the unit circle in 
the z-plane. This condition can be expressed as 

I B ( e j e ) [  < 1. ( 9 )  

i = D  

The left-hand side can be  upper  bounded, 

IB(eje)(  I. \ bo )  + (bl l  + * + Ibn-ll.  (10) 

Then,  a  simple sufficient condition for stability is  that  the 
sum of the moduli of the coefficients be less than one. 

This  simple  test  is well known (e.g., [ lo,  p. 2253)  and 
can be applied to any filter. For pitch filters, B (z ) = 
z " P ( z ) ,  where n is the,highest power of z - l  in P ( z ) .  The 
sufficient condition for stability becomes 

lP1l 1 1taP 

(P1) + I D 2 1  1 2tap 

(P1) + ID21 ID31 1 3taP.  (11) 
This  test is both necessary, and Sufficient for  a 1 tap filter. 
As will be shown later,  this  test applied to 2  tap filters 
also becomes asymptotically necessary and sufficient as n 
increases. 

B. Tight Suficient Test 
A  further examination of the expression for I B (   e i e )  1 

will lead  to  a tight sufficient test  for  a  3 tap pitch filter. 
The 1 and 2 tap pitch filters will be special cases of the 3 
tap filter. 

For  a 3 tap filter, B ( z )  = p1z2 + p2z + p3. For  con- 
venience, define 

a = p1 + p3 and 6 = p1 - p3. (12) 

Then, B ( z )  evaluated on the unit circle becomes 

B ( e j e )  = + d cos 8 + jb sin 81. (13) 

The bracketed term  in (1 3) defines an  ellipse  in  the com- 
plex plane with center p2. The major axis is I a I if p, and 
p3 have  the  same  signs, or I b I if p1 and p3 have opposite 
signs. The  two  cases are illustrated in  Fig. 2. A sufficient 
condition for stability is that  the  ellipse  iie entirely within 
the unit circle.  Since  the  cases p2 > 0 and p2 < 0 are 
symmetrical,  the  analysis proceeds by using I p2 I. Also, 

(b) 

Fig. 2. Illustration of the  stability ellipse for  a 3 tap filter. (a) The  hori- 
zontal axis is the  major axis. (b) Tangency  when  the  vertical axis is the 
major axis. 

the  cases far u > 0 and b > 0 are symmetrical with the 
cases a < 0 and b < 0, respectively. 

If and p3 have  the  same  signs ( 1 a 1 > 1 b 1 ), the  el- 
lipse  lies entirely within the unit circle  if 

1/32) + l a )  < 1, (14) 

I P I I  + l P 2 l  + I P 3 I  1. (15) 

or equivalehtly if 

If p1 and p3 have  opposite  signs ( 1 a 1 < I b 1 ), the anal- 
ysis is more complicated.  The condition 1 o2 I + 1 a 1 < .1 
ensures that no point on  the  minor  axis  lies  outside  the 
circle.  This is a necessary condition for  the  ellipse to lie 
within the unit circle  and  will  be  assumed  to  be satisfied 
for  the following discussion. 

The aim is to  establish  the hitical conditions on, 1 a 1, 
I b 1 ; and 1 p2 I which,  cause  the  ellipse  to be tangent  to  the 
circle. Such a case is shown in Fig. 2(b). ,Let 8, be  the 
vaiue of the  angle 8 which gives tangency.  Since  the  case 
for I p2 I is being considered,  it suffices to consider 0 I 
ec I 7~ /2. A point of tangency occurs  at X when the 
length of OX is equal  to  unity, 

( ) p 2 (  + la1 cos 8,) + (bsin 8,). = 1. (16) 

In  addition, tangency requires that X be  the point on  the 
ellipse that is  furthest away from the  origin, which in turn 
requires that  the  derivative of the left-hand side of (16) be 

2 2 
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zero.  This condition gives 

(a1 sin8,(1P21 + ( a (  cos8,) = b2sin8,cos8,.  (17) 

Solving this equation for cos 0, gives 

where sin 8, is assumed to be  nonzero. Tangency can also 
occur if 8, = 0 (sin 8, = o) ,  giving Ip21 + la1 = 1. 
However, this case is precluded by the assumption that 
the minor axis lies within the unit circle ( I P2 I + I a 1 < 
1 ) .  

If tangency occurs for 8, # 0,  from (16)  and (1 8), it 
can be shown that  the  critical values of 1 a 1 ,  I b 1 ,  and 1 p2 I 
are those which satisfy f ( b2, a2 ,  6;) = 0 where 

The analysis proceeds by assuming that  two of the three 
parameters a ,  b,  and p2 are  given, and then finding the 
critical value of the third.  Consider a and b given.  This 
determines the shape  factor  for the ellipse. Varying p2 
slides the  ellipse along the horizontal axis.  For I a I < 1 
and I b I < 1, if I ,B2 I is less than a critical value &, where 
0 I pZc < 1, the  ellipse  lies entirely within the unit cir- 
cle.  The critical value is that which results in tangency of 
the ellipse with the unit circle. Depending on the relatiye 
values of a and b, this can occur  in  one of two ways. 

For b2 5 I a 1 ,  the point of tangency occurs for 0, = 0, 
giving I a I + PZc = 1. Since I P2 1 < p2,, this condition 
is equivalent to having the minor axis within the unit cir- 
cle.  For b2 > 1 a 1 ,  the point of tangency occurs for 0 < 
8, 5 a /2. Then the  equation f ( b2, a2, &.) = 0 can be 
solved for  the critical value p2,. Since this function is 
monotonic in &, the check that I P2 I < p2, is equivalent 
to the check that f (b2,  a2, 0;) < 0. 

For I a I 2 b2, having the horizontal axis of the ellipse 
lie inside the unit circle is sufficient for  stability. Other- 
wise, the function f (b2,  a2, &) must be tested.  It can be 
shown that this test along with the minor axis requirement 
is sufficient for  stability.  The stability test for  a 3 tap pitch 
synthesis filter is summarized below. 

Stability Test: Let a = PI + p3 and b = PI - &. 
1) If 1 a 1 2 I b 1 ,  the following is sufficient for stabil- 

ity: 
a) ( P I (  + IP2I + IP3I < 1. 

2) If 1 a I < I b 1, the  satisfaction of the two following 
conditions is sufficient for stability: 

a> IP2I,+ la1 < 1 
b) i) b* 5 J a l  or 

ii) b2& - (1  - b2)(b2 - a 2 )  < 0. 
Part 2 of  this  stability  test is tighter than the simple 

sufficient  test given earlier. This part  of the test  is  invoked 
when 1 a1 < 1 b 1 or equivalently when 0, and P2 have 
opposite signs. Experiments show that in voiced speech,' 
P2 is  greater than zero in about 90 percent of the frames. 

'A frame was considered to be voiced when the  pitch prediction gain 
was greater than 1 dB. 

Given that p2 > 0, the number of voiced frames in which 
PI  and ,B3 have opposite signs is about 3.7 times the num- 
ber of voiced frames in which they have the same signs. 
Therefore,  the presence of a  tighter test when I a I < I b I 
is important for speech coders. 

The test for 3 tap filters subsumes the test for 2 tap 
filters. By setting PI  = 0, a 3 tap filter becomes a 2 tap 
filter. Then 1 a [ = 1 b ( and the test involves checking that 
the sum of the moduli of the coefficients is less than 1. 
This is equivalent to the simple sufficient test given ear- 
lier. 

C. Further Examination of the Suficient Condition 
The sufficient test defines a stability region for 3 tap 

filters that is independent of the order n. Consider first the 
simple sufficient test ( 1 P I  1 + 1 p2 I + ,L13 1 ,  < 1 ). The 
stability region can be viewed in (@, , P2, p3) space as a 
region bounded by 8 flat surfaces.  The volume enclosed 
is 4 / 3  units. 

The stability region described by the tight sufficient test 
has two types of surfaces.  Four of the surfaces are flat  and 
coincide with the flat surfaces of the  simple sufficient test. 
The  other  four surfaces bulge out significantly beyond the 
flat surfaces.  The volume enclosed can be determined in 
closed form and is calculated to be 16 /9  units.  Fig. 3 
shows a  contour plot of the stability region defined by the 
tight sufficient test for p3 2 0. A plot for p3 5 0 is a 
mirror image reflected about the vertical axis.  It can be 
shown that this stability region is enclosed by a unit sphere 
and hence, the sum of the squares of the coefficients 
(power gain) is less than unity. 

Both the magnitude and phase of B (  e J e )  determine the 
necessary and sufficient conditions. If the stability ellipse 
lies entirely inside the  circle of unit radius, all of the roots 
of D ( z )  are inside the unit circle in the z-plane. As some 
combination of the parameters I a 1 ,  I b I ,  or I p2 1 is in- 
creased, the stability ellipse will emerGe outside the circle 
of unit radius and the roots of D ( z )  will eventually cross 
the unit circle.  The critical combination of parameters 
which cause roots to lie on the unit circle can be deter- 
mined from 

B(ej ')  = ( 2 0 )  

The points at which the  ellipse crosses the unit circle cor- 
respond to points which satisfy the above equation in 
magnitude. For  a given n,  these intersection points cor- 
respond to phase angles which may or may  not satisfy the 
above equation. However, as n increases, the phase an- 
gles which satisfy the  above equation become increas- 
ingly dense. In the limit of large n ,  as soon as the stability 
ellipse crosses the unit circle, at least one root of D ( z )  
crosses the unit circle.  This indicates that the stability el- 
lipse must lie entirely within the unit circle.  The stability 
test given earlier becomes both necessary and  sufficient in 
the limit of large n. 

The necessary and sufficient conditions as determined 
by the Schur-Cohn test define a region which depends on 
the  order n. This region is bounded by four types of sur- 
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Fig. 3.  Region  described by the tight sufficient test.  Equal  value  contours 
are shown for p3 = 0, 0.1, . . . , 0.9. The dotted  lines represent lines 
on the stability surface with b2 = 1 a 1 .  

Fig. 4. Necessary and sufficient stability region ( n  = 7).  Equal  value  con- 
tours are shown for & = 0, 0.1, . . . , 0.9. 

faces.  Two surfaces are flat and coincide with the flat sur- 
faces for  the regions described above.  Two  other surfaces 
bulge slightly but become flat in the  limit of large n. Two 
other pairs of surfaces bulge significantly and coincide 
with the bulging surfaces of the tight sufficient test in the 
limit of large n. The symmetries of the surfaces switch 
depending on whether n is even or odd.  Fig. 4 shows the 
stability region determined by the Schur-Cohn test  for n 
= 7 and p3 1 0. This rather small value of n is used to 
accentuate the differences between this region and that de- 
termined by the sufficient test. Note also that the  contour 
with p3 = 0 is the stability region for the 2 tap filter with 
n = 6. 

It remains to ascertain how tight the sufficient test is for 
finite n. The  area and volume enclosed by the  true stabil- 
ity regions for 2 and 3 tap filters were computed using 
numerical integration techniques for various values of n. 
The boundaries of the  true stability regions were com- 
puted using the simplified Schur-Cohn procedure de- 
scribed in Appendix A. The region defined by the suffi- 
cient test is contained in  that defined by the Schur-Cohn 
test.  Fig. 5 shows the  percent differences between the 
areas and volumes enclosed by the sufficient test  and  the 
Schur-Cohn test  for 2 and 3 tap filters. It is observed that 
the percent difference decreases rapidly as n increases. 
The lowest order of a pitch filter is typically around 20. 
Even at this low order,  the difference in volume is below 
1 percent. For  higher  orders,  the sufficient test is very 
tight and involves much less computation than the Schur- 
Cohn test. 

D. Extension to Circles of Arbitrary  Radius 

The sufficient condition can be extended in order to de- 
termine whether or not all  the roots of D ( z )  = z n  - B ( z  >; 
[ B ( z )  defined in (S)] are within a  circle of radius r cen- 
tered at the  origin  in  the  z-plane.  Just  as  before,  the max- 

Order n 

Fig. 5. Percent differences between areas and  volumes  enclosed by the suf- 
ficient test and the Schur-Cohn  test. 

imum modulus theorem is used to  derive the condition 

IB(rejs) I < rn .  (21) 

Expanding 1 B ( re j ' )  I yields 

IB(rej')( = Ibo + blreJe + + b n - l r n - ' e J ( n - ' ) O  I 
5 (bo(  + Ibl lr  + - + \ b n P l  I ra- ' .  (22) 

A simple sufficient condition that ensures that all the roots 
of D ( z )  are within the  circle 1 z 1 = r is 

\bo\ + l b l l r  + * -k l b n - l l r n - '  < rn. ( 2 3 )  

The condition 1 p1 I < rn  is necessary and sufficient for 
1 tap filters. For 3 tap filters, a more detailed examination 
ofIB(reJe)IisdoneinthesamefashionasforIB(eis)(. 
The conditions are given below.  The 3 tap  case subsumes 
the 2 tap  case.  Hence,  the condition for 2 tap filters is 
merely I p1 1 r + 1 p2 1 < r'. 
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Conditions for 3 Tap Filters: Let a = P1 r 2  + 0 3  and 
b = P l r 2  - p3. 

1) If l a (  2 J b l ,  

2) Tf l a l  < I h l ,  
a) IP1lr2 + l P 2 k  + l P 3 l  < r". 

a) l & l r  + la1 < r n  
b) i) b2 I '1 a I r" or 

ii) b2/3;r2 - (r'" - b2) (b2  - a') < 0. 

IV. STABILIZATION PROCEDURE 
In each frame of speech,  the predictor coefficients are 

calculated by using the covariance formulation. Then, the 
stability test is used to determine whether the correspond- 
ing synthesis filter is stable. If the filter i s  found to be 
stable, np modification of the coefficients is made. How- 
ever, if the filter is unstable, a stabilization procedure is 
wed to find a new set of coefficients. It is assumed that 
the pitch estimate M remains unaltered. Note that  the new 
coefficients are used for both the pitch predictor and the 
pitch synthesis filter. Therefore,  the prediction gain is re- 
duced at the analysis stage. A major concern in perform- 
ing stabilization i s  to keep the loss  in prediction gain to a 
minimum. Consider three different stabilization strategies 
which demonstrate 'different possibilities, 

A. Scaled Coeficients 
The first Stabilization method is based on a feedback 

control viewpoint. The predictor is use6 in the feedback 
path  of the synthesis filter. Stabilization is accomplished 
by varying the  feedback  gain.  This  action  is equivalent to 
multiplying each predictor coefficient by the  same  factor 
c. As c varies,  the poles of the synthesis filter move along 
the root loci,  The stability test given above will be used 
to determine the factor c so as to guarantee that all the 
poles lie within the unit circle. 

Consider a vector of predictor coefficients p that mini- 
mizes the mean-square prediction residual energy. After 
scaling by a  factor c ,  the  vector of predictor coefficients 
is 0' = cp  = p + 6. This results in  a suboptimum pre- 
dictor for which the energy of the residual is E' = + 
8 T@6, where is the minimum residual energy for an 
optimum predictor [see ( 6 ) ] .  The quantity 6 Tc&S repre- 
sents the excess residual energy resulting from the use of 
a suboptimum predictor. Since 6 = ( c  - 1 ) p,  the excess 
residual energy is ( c  - 1 )2pT+p.  It is observed that as c 
deviates from one,  the loss in prediction gain increases. 
Note that the largest value of c which stabilizes an un- 
stable filter lies in the range 0 < c < 1. Therefore, in 
order to minimize the  loss in prediction gain, c must be 
as  close  to  one  as possible and at the  same  time  give  a 
stable pitch synthesis filter. This procedure is referred to 
as  the common scaling factor method. 

13. Radial Scaling 
A second stabilization strategy is to move the poles ra- 

dially inward,  each by the  same proportion. The motiva- 
tion behind such a method i s  to produce a  stable filter 

which preserves the frequency at which spectral features 
occur. Radial scaling is equivalent to using the transfor- 
mation z ' = rz .  

This stabilization procedure is related to the extended 
stability test for circles of arbitrary radius. The difference 
is that in a stability test, the value of r is given, whereas 
in the stabilization process,  the value of r which results 
in marginal stability must be determined.  For filters with 
more than 1  tap,  the value of r must be found iteratively. 
Use of the simple sufficient test [condition la) in the  test], 
can simplify the determination of r. 

Radial scaling involves multiplying the coefficient of 
zP i  by rLi .  For  a 1 tap pitch filter, radial scaling is the 
same as  the previous method. For a 3 tap filter, the new 
coefficients become 

p;  = r - ( M - l ) p  
1, 

pi = r-M 

p; = , - ( M + 1 ) p 3  

0 2  2 

(24 1 
For typical values of M and  for filters that originally have 
their roots only slightly beyond the unit circle,  the factors 
multiplying the coefficients are very nearly equal.  This 
argues for the case that in practice radial scaling is essen- 
tially the same  as using the common scaling factor 
method. From  another  viewpoint, moving along the root 
loci using a single scaling  factor is very nearly the same 
as radial scaling. 

Experiments show that stabilization using radial scaling 
performs nearly the  same  as  the common scaling factor 
method. Given the need for  an  iterative  solution, radial 
scaling seems unnecessarily complex. 

C .  Reciprocul Poles 
An often-suggested procedure to stabilize a filter is to 

replace each pole  outside the unit circle by its reciprocal. 
This will preserve the frequency response of the filter, but 
in the case of a pitch synthesis filter involves factoring the 
high degree  denominator polynomial. This may be im- 
practical for filters with more than a single coefficient. 

The loss in prediction gain associated with this tech- 
nique can be more than when scaling the coefficients by 
a factor c. This can be seen by considering a 1 tap filter. 
Suppose the filter is unstable with I / 3 , 1  > 1. Replacing 
each unstable pole by its reciprocal is equivalent to scal- 
ing the coefficient p, by a  factor which is smaller than if 
the poles had been brought just inside the unit circle.  This 
implies a  larger loss in prediction gain for the reciprocal 
pole strategy. Since the 2 tap and 3 tap cases subsume the 
1 tap case, the reciprocal method can perform worse than 
simple scaling of the coefficients. 

D. Scaling Procedure 
In light of the foregoing discussion, stabilization will 

be accomplished by using the common scaling factor 
method. The  value of the  scaling  factor c for  the 1 and 2 
tap cases is easily determined since the stability test in- 
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volves only a single condition. The  procedure for deter- 
mining c needs  some elaboration for the 3 tap case. 

Again define, a = P1 + p3 and b = PI - p3. When I a I 
2 (b\,thefactorcmustforce.lplI + ( P 2 (  + ( P 3 1  tobe 
at most equal to 1. The value of c which gives marginal 
stability is 

Corresponding  to the simple sufficient test, this same 
value of c can  be  used  for any a and b. However, using 
the tighter test will result in a larger value of c and  hence 
will result in a smaller  loss in prediction gain. If b2 5 
I a I, marginal stability is achieved  when  the stability test 
ellipse for  the scaled coefficients is tangent to the circle 
with Oc = 0. The appropriate scaling factor  is 

1 
c =  

la1 + P 2 l ’  

After applying this scaling factor, it can  be  shown that 
condition 2b)i) remains satisfied. 

If b2 > 1 a 1 ,  there is a point of tangency  for the scaled 
ellipse (for 0 < c < 1 ) for which 0 < 0; 4 ?r /2. For 
that value of c ,  the function f ( b 2 ,  a2, p i )  with scaled 
coefficients is equal to zero. Solving for  the scaling factor 
gives 

b2 - a2 
b4 + b2& - b2a2‘ 

With this value of c ,  it can  be  shown that all points along 
the minor  axis of the scaled ellipse are within the unit 
circle [condition 2a) is satisfied]. 

V. EXPERIMENTAL RESULTS 

The  experimental results were derived by implementing 
a CELP  coder.  In CELP, the representational waveform 
is chosen  from a set of entries in a codebook constructed 
of Gaussian  random  numbers  with unit variance. Concep- 
tually,  each entry in the codebook (see Fig. 6) is scaled 
by the gain factor, filtered by H p ( z )  and H F ( z ) ,  and sub- 
tracted from the original speech  to  form a difference sig- 
nal. This signal is passed  through a weighting filter W ( z )  
= (1 - F ( z ) ) / (  1 - N ( z ) ) .  The  error is formed by 
squaring and  averaging the filtered difference signal. The 
entry in the codebook that gives the smallest error  is  used 
to represent the residual and its index is transmitted. 

The  experimental conditions involved  the  use of a 10th- 
order formant predictor (coefficients determined by using 
the modified covariance  method)  and a 3 tap pitch predic- 
tor. The speech  was  sampled  at 8 kHz  and divided into 
frames of length 80 samples (these short frame lengths 
tend to exacerbate the stability problem). Forty sample 
blocks of the residual were  compared  to a codebook of 2’’ 
= 1024  waveforms. The parameter y = 0.8 was used  in 
implementing  the  weighting filter W( z ) .  The performance 
of the suboptimum predictor that results from  the appli- 

original spPech s ( n )  1 

( ’ )z 1 
Fig. 6.  Calculating the weighted error. 

cation of the  common scaling factor  method  and the effect 
of unstable pitch synthesis filters on  decoded  speech  were 
investigated. The database consisted of six sentences, 
three of which  were  spoken by males  and  three by fe- 
males. 

A. Perjormance of the  Suboptimum Predictor 
The  common scaling factor  method ensures at least 

marginal stability since  the scaled stability ellipse lies en- 
tirely within the  circle  except  for a point of tangency. 
Complete stability is  achieved by subtracting a small 
quantity from  the calculated value of c.  For  the  coder un- 
der  study, the average prediction gain achieved by the 
covariance formulation is  4.18,  5.32, and 5.71 dB for 1, 
2, and 3 tap filters, respectively. The  average  loss in pre- 
diction gain associated with stabilization is 0.03, 0.26, 
and 0.21 dB for 1, 2, and 3 tap filters, respectively. 

A strategy employed in previous studies [ l l ] ,  [12] in- 
volves the use of a 1 tap filter whenever a 3 tap filter is 
found  to be unstable. Experiments reveal that this ap- 
proach diminishes the prediction gain by an  average of 
1.07 dB when an unstabilized 1 tap filter is  used,  and 1.11 
dB when a stabilized 1 tap filter is used. This  is a signif- 
icantly larger loss than  the 0.21 dB that results when using 
a stabilized 3 tap filter. 

In  an  APC system, output speech quality is  degraded 
when the quantizer clips  high-amplitude portions of the 
residual signal [13]. The 3 tap pitch filters outperform 1 
tap filters since they tend to  further  reduce  the  peak values 
of the residual signal [14]. In  view  of  this, stabilization 
of 3 tap filters is preferred to a scheme  which b.acks off to 
a 1 tap filter during frames of instability. This  is  also  true 
for a CELP  coder since the codebook  entries  (which are 
constructed from  Gaussian  random  numbers)  more closely 
resemble a residual which  is free of high-amplitude pitch 
pulses. 

B. Effect of Instability on Decoded Speech 
Decoded  waveforms for unstabilized and stabilized 

pitch filters are  shown in Fig. 7 for  the sentence “cats  and 
dogs  each hate the  other”  (spoken by a male). Frames 
having unstable pitch synthesis filters are  marked by a 
nonzero indicator function. Both decoded  waveforms  are 
distorted due  to quantization noise filtered by H p  ( z )  and 
HF(z). If H p ( z )  is unstable, the energy of the noise is 
enhanced  and causes further degradation as  observed in 
waveform  (2).  Although  both  decoded signals were intel- 
ligible, waveform (2) suffers from  pops or clicks that can 
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Fig. 7. Original and decoded  signals (1) original  speech, (2) decoded  sig- 
nal for the covariance pitch formulation, (3) decoded  signal for stabilized 
pitch synthesis filters, and (4) frames  having unstable pitch  synthesis 
filters. 

be annoying. Also, background noise is more dominant 
in portions of waveform (2) than in waveform (3). 

Degradations in the output speech are perceptible if a 
sequence of consecutive frames of high input energy have 
unstable filters or if the numerical value of Ci I pi I is large. 
Frames 77-88 consist of high-energy voiced speech and 
have unstable pitch synthesis filters. The quantization 
noise continues to build up causing  the energy of the out- 
put signal to keep rising.  This increased noise is percep- 
tible. Although the  average value of C j  I p i  I is just  1.3, 
distortion is noticeable since this segment has a high input 
energy. 

Certain isolated frames of high input energy having 
unstable filters also demonstrate  a rising output energy 
(frames 38-50). Frames 38 and 39 have filters whose 
value of C j  I pi I equals 2.36 and 2.46, respectively. These 
large values are responsible for considerable distortion. 
This distortion continues since frames 41,42, and 44 have 
unstable filters where C j  I pi I equals 1.45,  1.57, and  1.54, 
respectively. 

The degradation is not serious when unstable filters with 
small values of C j  I pi I are present in frames of relatively 
low energy. This situation occurs during frames 127,  128, 
and 129 in which Ci IPi I equals 1.11,  1.53, and 1.35. 
However, if an unstable filter with a very large value of 
C j  I Pi I occurs even in a frame of low input energy, an 
impulse-type distortion that is heard as a pop or click is 
present. Frames 149 and 150 with values of C j  1 pi I equal 
to 4.43 and 2.70 clearly depict  this. Another example of 
this phenomenon is during frames 196-198. Here, C j  I pi I 
equals 2.37,  4.02, and 2.23. In both cases,  a clear pop 
sound is heard. When pitch synthesis filters are  stabilized, 

the undesirable pops,  clicks, and enhanced background 
noise disappear.  Similar degradations in the output speech 
have been reported for an APC  coder when unstable pitch 
synthesis filters are employed [l 11. 

VI. SUMMARY AND CONCLUSIONS 
Formant and pitch filters are essential components of 

both the transmitter and receiver in low bit rate speech 
coders. Algorithms that ensure the stability of the formant 
synthesis filter are  available.  However, the covariance 
formulation can result in an unstable pitch synthesis filter. 
This paper provides a computationally simple but tight 
sufficient test for pitch synthesis filters that is independent 
of the order n. A  closer examination reveals that this test 
is both necessary and sufficient in the limit of large n and 
involves much less computation than the Schur-Cohn test. 
For typical orders of pitch filters, the sufficient test is very 
tight. This sufficient test has also been extended to check 
if the denominator polynomial of the system function has 
all its roots within a  circle of arbitrary radius r centered 
at the origin. 

From the sufficient stability test, three different stabi- 
lization techniques are  suggested.  The first technique in- 
volves scaling the predictor coefficients by a common fac- 
tor. A second technique involves scaling each of the poles 
radially inward. This is equivalent to scaling the predictor 
coefficients by different factors and requires the solution 
of a nonlinear equation.  The third method of replacing 
each pole outside the unit circle by its reciprocal is not 
practical since it involves the factoring of a high degree 
polynomial. The first technique is judged to  be the most 
practical and the common factor is chosen to minimize the 
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loss in prediction gain at  the analysis stage.  The actual 
average loss in prediction gain is negligible. The  simple 
stabilization procedure derived from an efficient stability 
test can  be easily implemented  as part of a coding  system 
in a real-time environment. 

It is finally observed that decoded  speech generated by 
a CELP  coder  improves in quality when  stable pitch syn- 
thesis filters are used. Degradations in the output speech 
manifest themselves  either  as  background noise or  as pops 
when unstable pitch synthesis filters are used. These un- 
desirable sounds  are clearly audible when a set of consec- 
utive frames of high input energy  have unstable filters or 
when the value of C j  I pi 1 is large in an isolated frame of 
high input energy. 

APPENDIX A 
SCHUR-COHN TEST 

The  Schur-Cohn test [8] can  be  used  to  determine 
whether  or not the roots of a polynomial D( z )  = + 
alz + * - + anzn are within the unit circle.  This test 
has been  shown  to  be equivalent to  the  procedure  to  con- 
vert a set of predictor coefficients to reflection coefficients 
and then checking that their magnitudes  are less than unity 

A sequence of polynomials  of decreasing order Do ( z )  
~ 5 1 .  

= D ( z ) ,  Dl(z), * * , D,_,(z) are defined such that 

D j + l ( z )  = U b j ’ D j ( Z )  - & J j f - J D j ( Z - l ) ,  

f o r j  = 0 t o n  - 1. (A.1) 

In this recursion, aio) = ai ,  the original coefficients of 
D (2). The coefficients of Dj + ( z )  are derived from those 
of Dj ( z )  by the relationship 

a p + l )  = ( j )  ( j )  - .( j), ( j )  
a0 ak n - j a n - j - k ,  

fork = 0 to n - j - 1. (A.2) 

A set of necessary and sufficient conditions for the roots 
of D ( z )  to  lie within the unit circle is 

l a p l  < la;o)l 

1up1 > l a y q  

1ug-1q > I.p-1)I. (A.3) 

Application to Pitch Synthesis Filters 
For pitch synthesis filters, it is noted that many  of the 

intermediate coefficients are zero. For  an 1 tap filter, a 
maximum of 21 - 1 coefficients must be calculated at  each 
stage in the recursion. Specifically, the  denominator poly- 
nomial of a 3 tap pitch synthesis filter is 

D ( z )  = ZM+I - p,z2 - p*2 - p3 
= a$! 1 z M +  + a$”2 + a(lo)z + aho). (A.4) 
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For the simplified procedure, there are at most five non- 
zero coefficients at  any >stage.  These coefficients are 
& + I ) ,  a l j+l) ,  & + l ) ,  &:iJl, and a’$?:). When j = M 
- 4, the  computed coefficients are naturally ordered  from 
c4M-3’ to  Then,  the number of coefficients is re- 
duced by one at each successive stage  and  the test termi- 
nates when the  last condition I aiM,” I > I aiM) I is  exam- 
ined. 
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