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Abstract. The use of Nyquist filters in data transmission systems is important in avoiding intersymbol interference. Moreover, 
the Nyquist filters should be factorable into Iowpass transmitter/received filter pairs. Here, the design problem is formulated 
so as to generate zero-phase FIR lowpass Nyquist filters that can be split into minimum and maximum phase parts. Two 
factorable minimax design methods are given. These methods use the McClellan-Parks algorithm as a first step to control 
the stopband behaviour. The time domain constraints, imposed by solving a linear system of equations, determine the passband 
response. The final filter exhibits equiripple stopband behaviour. The advantages of these methods are that the minimum 
and maximum phase parts are obtained without direct factorization and that arbitrary frequency weighting can be easily 
incorporated to allow for a nonequiripple behaviour. Design examples depict both equiripple and nonequiripple magnitude 
responses. The new design approach is compared with other methods in terms of both magnitude and group delay behaviour. 
Finally, a practical design that conforms to a CCITF voice band modem specification is shown. 

Zusammenfassung. Die Verwendung von Nyquist-Filtern ist fiir die Dateniibertragung wichtig, wenn Intersymbol-lnterfer- 
enzen vermieden werden sollen. Dariiberhinaus wiinscht man sich, daJ3 die Nyquist-Filter in TiefpaJ3-Eilterpaare fiJr die Sende 
und Empfangsseite zerlegt werden kEnnen. Im Folgenden wird das Entwurfsproblem so formuliert, dab nullphasige FIR- 
Nyquist-Tiefp/isse so bestimmt werden, daJ3 sic in einen minimalphasigen und einen maximalphasigen Teil aufgeteilt werden 
kEnnen. Zwei faktorisierbare Minimaxentwiirfe werden angegeben. Die Methoden verwenden den McClellan-Parks- 
Algorithmus als ersten Schritt, um das Sperrverhalten zu bestimmen. Das Durchla~verhalten wird durch Zeitbereichsvor- 
schriften bestimmt, die in Form eines linearen Gleichungssystems eingebracht werden. Das fertige Filter zeigt Tschebyscheti- 
Verhalten im Sperrbereich. Die Vorziige dieser Methoden bestehen darin, dab die minimal- und maximalphasigen Teilfilter 
ohne explizite Faktorisierung erhalten werden und daJ3 eine beliebige Frequenzgewichtung auf einfache Weise eingefiigt 
werden kann, mit der auch eine nicht-gleichm~i~ige Approximation erzielt werden kann. Entwurfsbeispiele sowohl mit als 
auch ohne Tschebyscheff-Verhalten der D/impfung werden gezeigt. Der neue Entwurfsansatz wird mit anderen Methoden 
hinsichtlich des Diimpfungs- wie des Gruppenlaufzeit-Verhaltens verglichen. Zum Schlu~ wird ein praktisches Entwurfsbeispiel 
gezeigt, das die Anforderungen fiir ein CCITT-Sprachband-Modem erfiillt. 

REsumE. ll est important d'utiliser des filtres de Nyquist dans les syst~mes de transmission numEriques en vue d'Eviter 
l'interfErence entre symboles. De plus, la factorisation des filtres de Nyquist en paires de filtres de transmission et de reception 
devra ~tre possible. Le probl~me de conception de ces filtres est formul6 de fa~:on ~t gEndrer des filtres pass-bas RIF ~ phase 
zero qui peuvent ~tre sEparEs en une section fi phase minimale et une section ~ phase maximal. Deux mEthodes de conception 
~t factorisation minimax sont prEsentEes. Dans un premier temps, ces mEthodes font usage de l'algorithme de McClellan-Parks 
pour contrEler la rEponse dans la bande d'arrEt. Les contraintes sur la rEponse temporelle, imposEes par la solution d'un 
syst~me d'Equations, dEterminent la rEponse dans la bande passant. Le filtre resultant possbde une bande d'arr& possEdant 
des ondulations uniformes. Les avantages de ces mEthodes sont, d'un part, que les sections :~ phase minimale et h phase 
maximale sont obtenues sans factorisation directe, et d'autre part, qu'une pondEration frEquentielle arbitaire peut ~tre 
faqilement incorporEe pour permettre des ondulations non uniformes. Des examples montrent des rEponses en amplitude 
dans les cas uniformes et non uniformes. La nouvelle mEthode de conception est comparEe h d'autres mEthodes en termes 
de rEponse en emplitude et de dElai de groupe. Enfin, un exemple pratique de conception de filtre se conformant aux 
specifications du CCITT quant h la conception d'un modem/t bande vocale est prEsentE. 

Keywords. Minimax filter design, Nyquist filters. 

* This work was supported by the Natural Sciences and Engineering Research Council of Canada. 
** Also at INRS-TEl6communications, Universit6 du QuEbec, 3 Place du Commerce, Verdun, Quebec, Canada H3E 1H6. 

0165-1684/89/$3.50 © 1989, Elsevier Science Publishers B.V. 



328 R.P. Ramachandran, P. Kabal / Minimax factorable Nyquist filters 

1. Introduction 

Intersymbol interference occurs when a received 
data symbol is influenced by a combination of 
several transmitted data symbols. Intersymbol 
interference is avoided through the use of Nyquist 
filters. Nyquist filters have an impulse response 
with regular zero crossings. These zero crossings 
result in the condition that the output of the data 
receiver taken at symbol intervals depends only on 
its corresponding transmitted symbol. Further- 
more, the filters for bandwidth efficient data trans- 
mission systems are based on lowpass prototypes. 
The design problem incorporates both time and 
frequency domain constraints. 

This paper focuses on the design of zero-phase 
lowpass FIR Nyquist filters. The Nyquist filters 
are split into a transmitter/receiver filter pair. It is 
desirable that the transmitter and received filters 
have identical lowpass magnitude responses. One 
approach is to use the same filter at the transmitter 
and receiver. However, this strategy leads to non- 
linear constraints on the filter coefficients. In fact, 
only a trivial solution can be obtained for the case 
in which the regular zero crossings occur for every 
second sample. In this paper, we proceed to split 
the Nyquist filter into a pair having identical mag- 
nitude responses but allow different phase 
responses. Specifically, the filter is split into 
minimum and maximum phase parts. The Nyquist 
filter designed by our approach is fundamentally 
equiripple. A nonequiripple filter can be obtained 
by applying an additional frequency weighting 
factor. 

In the past, FIR Nyquist filters have been 
designed using linear programming techniques 
[7, 13], by the eigenfilter approach [11, 15], and 
by the use of the McClellan-Parks algorithm [8] 
as an intermediate step [9, 10, 14, 16]. The methods 
in [10, 11, 13] allow for the splitting of the filter 
into its minimum and maximum phase parts. 
Salazar and Lawrence [13] set up the design as a 
linear programming problem incorporating the 
time domain constraints. In addition, the 
frequency response of the filter is forced to be 
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nonnegative in order that the minimum and 
maximum phase factorization be possible. Mintzer 
[10] deals exclusively with the case when the zero 
crossings occur for every second sample. In that 
paper, the frequency response of an unconstrained 
filter is offset to ensure that it becomes nonnegative. 
In [ 11 ], the eigenfilter concept is applied to obtain 
a Nyquist filter that is factorable into minimum 
and maximum phase parts. 

Nyquist filters with Chebyshev stopband 
behaviour have been designed in [14] using a 
multistage structure. The focus in [14] is on a 
computationally efficient multistage implementa- 
tion. However, the resulting filters are not 
necessarily factorable. One can make these filters 
factorable by adding a positive constant to the 
frequency response [4, 10] to make it nonnegative. 
However, this fixup excessively reduces the stop- 
band attenuation for nonequiripple filters. 

This paper proposes two design methods which 
use the McClellan-Parks algorithm as a first step 
to control the stopband response and achieve a 
Chebyshev stopband behaviour. The subsequent 
step incorporates the time domain constraints and 
automatically generates the passband response. A 
few iterations of the above steps produces a factor- 
able Nyquist filter with Chebyshev stopband 
response. We refer to the proposed approaches as 
factorable minimax design methods. 

In the factorable minimax methods, we directly 
achieve a nonnegative frequency response with 
controlled stopband characteristics. Furthermore, 
the polynomial factorization problem for the deter- 
mination of the minimum phase part is consider- 
ably eased. The complexity of polynomial factoriz- 
ation is directly related to the order and hence, to 
the length of the designed Nyquist filter. We reduce 
this complexity by determining a partial factoriz- 
ation of the transfer function of the Nyquist filter 
as a byproduct of the design procedure. The 
remaining factorization involves a polynomial of 
much lower order than the overall transfer 
function. 

The paper first discusses the concept of factor- 
able Nyquist filters. Then, the two factorable 
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minimax design procedures are described in Sec- 

tion 3. The factorization problem is examined in 
Section 4. A discussion of the methods in this paper 
along with design examples are given in Section 
5. Comparisons with other design approaches are 
presented in Section 6. 

2. Factorable Nyquist filters 

Zero-phase FIR Nyquist filters H(z) have the 
impulse response characteristic 

h(iN)= -N' for i = 0 ,  (1) 

0, for i ~ 0 .  

The parameter N is the zero crossing interval in 
the time response h(n). In the frequency domain, 
this corresponds to 

N - 1  

H(e  j(~-2~'/N)) = 1. (2) 
i=o 

The minimum bandwidth solution is an ideal 
lowpass filter bandlimited to ,rr/N. For practical 
filters, we allow an excess bandwidth /3xr/N to 
bring the overall bandwidth to (l+/3)'rr/N. The 

parameter/3 is the roll-off factor of [H(eJ°')[. Fur- 
thermore, bandwidth efficient systems use less than 
100 percent excess bandwidth thereby imposing 
/3 <~ 1. ~ In this case, only adjacent replicas of the 
spectrum of  H(e  J'°) (located at center frequencies 
that are multiples of 2~r/N) overlap. Also, the 
upper edge of  the passband is top= (1-/3)~r/N 
and the lower edge of  the stopband is tos = 
(1 +/3)'tr/N. The ideal frequency characteristic is 

1, for 0 ~< [to[ <~ top Passband, 

]H(eJ°')l= O, fortos~<[to[~<~rStopband. 

(3) 

The response of an ideal filter makes a sym- 
metrical transition from the passband to the stop- 

Note  t ha t  fo r  N > 2 , / 3  ~< 1 is no t  a r e q u i r e m e n t  fo r  the  
des ign .  

329 

band passing through the value 0.5 at to = rr/N. 
The factorable minimax design methods generate 
filters that approximate this ideal magnitude 
characteristic. First, the approximation is made in 
the stopband region. Then, forcing zero crossings 
in the impulse response leads to a spectrum that 
exactly satisfies (2). With a response satisfying (2), 
an approximately zero stopband assures an 
approximately constant passband (assuming 
/3 < 1). In addition, the transition band will be 
inherently symmetrical. 

The fact that H(z) is zero-phase means that the 
time domain response is symmetric ( h ( n ) =  
h(-n)). In addition, real axis zeros occur in pairs 
at z = Zo and Zo 1 . Unit circle zeros occur in complex 
conjugate pairs. The general complex zeros of 
H(z) occur in groups of  four at z = Zo, z*, Zo I and 
(ZOO) *. For H(z) to be factorable into minimum 

and maximum phase parts, the additional con- 
straint is that all of  its zeros on the unit circle must 
occur as double zeros. The overall design problem 
includes the time and frequency domain approxi- 
mations along with the additional requirement of 
double order unit circle zeros. The next section 
describes the design procedures. 

3. Minimax factorable design procedures 

The Nyquist filter H(z) must have an odd num- 
ber of coefficients in order to be factorable into 

minimum and maximum phase parts. As in [11], 
we factorize H(z) as H(z)= Ho(z)H2(z) where 
H2(z) contains all the double zeros of  H(z) on 
the unit circle and Ho(z) contains the other zeros 
of  H(z). The double zeros of  H2(z) on the unit 
circle imply that it has an odd number of  
coefficients and that it is a zero-phase function. 
The zeros of  Ho(z) must occur in mirror image 
pairs reflected about the unit circle. Hence, Ho(z) 
also has an odd number of coefficients and is a 
zero-phase function. 

Let the lengths of  Ho(z) and H~(z) be 2/0+ 1 
and 21~ + 1 respectively. The number of coefficients 
of the overall Nyquist filter H(z) is M =  
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2 ( /o+10+1 .  2 The inverse z-transforms of  H(z),  
Ho(z) and H~(z) are defined to be h(n), ho(n) and 

f (  n ), respectively. 

3.1. First method 
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The design procedure for the first method is as 

follows: 

(1) Initialization: Fix 10, 11, N, and tos. Set Ho(z) = 
1. The weighting is given as W(eJ~). 
(2) Design H~(z) using the McClel lan-Parks 

algorithm such that it has zeros only on the unit 
circle in the s topband region [tos, ~r]. 

(3) Impose the time domain constraints by solving 

for the coefficients of  Ho(z) through a linear system 

of  equations. 
(4) Form the Nyquist filter H(z).  I f  the design 

warrants improvement,  go back to Step 2. 
(5) Split H(z)  into its minimum and maximum 

phase parts. 
We now describe Steps 2-5 in more detail. 

3.1.1. Step 2: Frequency domain specifications 
The McClel lan-Parks algorithm is used to get 

the coefficients of  H~(z). The specifications are 

that the frequency response must be one at to = 0 
and must approximate  zero in the s topband region 

[tos, ~r]. The weighting function applies to H~(z). 
The weighting function is W(e>)lHo(eJ~')[. 
Initially, it is W(e j'°) since Ho(z)= 1. Subsequent 

iterations involve an update of  the weighting func- 

tion as Ho(z) is recomputed.  For the design of 
H~(z), tabulated values of  the square root of  the 
weighting function are inputs to the algorithm. 

In the stopband, the frequency resoonse of H~(z) 
exhibits a ripple-like behaviour  with local minima 

and maxima occurring at the extremal frequencies. 
I f  l~ is even, H~(z) has an odd number  of  
coefficients (l~ + 1). Two of the extremal frequen- 
cies are 0 and ,rr [12]. However,  the total number  
of  zeros is a multiple of  two, all occurring in 

complex conjugate pairs (no zero at z = - l ) .  At 

2 The case /o+1 t = kN for any integer k renders a Nyquist 
filter with h(-lo-lO=h(lo+lt)=O thereby reducing the 
effective length by two. 
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to = 7r, either a local maximum or a local minimum 

occurs. I f  11 is odd, H~(z) has an even number  of 
coefficients. In this case, a zero occurs at z = - 1 .  

However,  ~r is not an extremal frequency. The other 

zeros occur in complex conjugate pairs bringing 

the total number  of  zeros to I~. 

3.1.2. Step 3: Time domain constraints 
Given Hi(z) ,  we form H~(z) and solve for the 

coefficients of  Ho(z) such that H(z)  has the 

Nyquist property. Since h(n) has samples for n = 

-(lo+l~) to /o+/1, the number  of  zero-valued 
samples that occur as n goes from 1 to lo+ 11 is 

[(/o + I i) /NJ.  The same holds true as n goes from 

- 1  to - ( l o +  11). Since, the sample for n = 0 is also 
known, the number  of  known coefficients of  H(z)  
is 3 

The coefficients of  H(z)  are found by perform- 

ing the convolution ho(n) * f (n) .  By expanding the 
convolution sum, one can uniquely determine 

Ho(z) such that the time domain constraints are 
satisfied [11] if the number  of  unknown coefficients 

of  Ho(z) equals the number  of  known coefficients 

of  H(z ) .  This results in a system of linear equations 
of  dimension 2/0+ 1. By further exploiting the time 

domain symmetry of each filter, the problem is 

reduced to that of  a system of dimension lo+ 1. 
The system of  equations can be expressed as 
F/t = c where h T= [ho(O) , . . . ,  ho(lo)], c T= 

[ l / N ,  0 . . . .  ,0] and 

]- f(O) 2f(1) 
F = ]  f(N)__ f (N-1)+f (N+l)  

Lf(Nlo) f(Nlo-1)+ f(NIo+ l) 

• " 2f(/o) 
• .. f ( N  - lo) + f ( N  + lo) 

• .. f (Nlo- lo)+f(Nlo+lo)  

(5) 

3 This formula is a corrected version of the formula given 
in [11]. 
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The constraint that L =  2/0+ 1 is equivalent to 
/o = [(lo+l~)/NJ which in turn translates to con- 
straints on lo and 11 given by 

lo(N - 1) ~< 11 < lo(N - 1) + N. (6) 

Appendix A gives the derivation of closed form 
expressions for lo and l~ in terms of N and M, 

/o = M - 1  

(7) 
Ii M - 1  [M-IJ 

2 - - ~ - "  

This method of satisfying the Nyquist property 
automatically takes care of the passband response 
of H(z). Note that Ho(z) is a highpass function 
that primarily controls the passband characteristic 

and hence has no zeros on the unit circle. 

3.1.3. Step 4: Convergence 
The coefficients of H(z) are found from Ho(z) 

and H~(z). Steps 2 and 3 are iterated if the design 
warrants improvement. For Step 2, the weighting 
function W(eJ'°)[Ho(e#°)] is updated to include a 
new [Ho(eJ'°)[ calculated from the coefficients of 
Ho(z) formed in Step 3 of the previous iteration. 
The application of this weighting factor sig- 
nificantly influences the stopband behaviour of 
H(z) through the design of  H1 (z). In the weighting 
function, the factor [Ho(em)[ leads to a stopband 
behaviour of  H~(z) that compensates for the high- 
pass response of Ho(z). The stopband behaviour 
of  H(z) is either equiripple or nonequiripple 
depending on the other factor W(e j'°) in the 
weighting function. The iterations are terminated 
when the extremal frequencies obtained by design- 
ing H~(z) do not change by more than a given 
threshold. 

3.1.4. Step 5: Final filter 
This step factors H(z) into minimum and 

maximum phase parts. Let the minimum phase 
part of H ( z )  be H-(z)  = Ho(z)H~(z) where Ho(z) 
is the minimum phase part of  Ho(z). The factor 
H~(z) is known as a byproduct  of the design pro- 
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cedure. Only Ho(Z) needs to be factored in order 
to derive its minimum phase part. The maximum 
phase part of H(z) is obtained by time reversing 
the coefficients of the minimum phase filter. 

3.2. Second method 

The difference between the second method and 

the previous approach lies in Step 2 in which a 
constrained form of the McClellan-Parks 
algorithm is used to directly compute the 
coefficients of  H2(z) rather than to first design 
H~(z). The specifications are that the frequency 
response must be one at to --0 and must approxi- 
mate zero in the stopband region [tos,w ]. As 
before, the weighting function is W(eJ~)[H0(eJ~)l. 
Tabulated values of the weighting function are 

supplied as inputs. Since double zeros on the unit 
circle are required, we constrain the frequency 
response to be nonnegative in the stopband region. 
We implement the procedure in [3] (see also [6]) 
to obtain a minimax approximation to a desired 
response that satisfies given upper and lower con- 
straints. 

In the stopband, the frequency response of  
H2(z) exhibits a ripple-like behaviour with local 
minima and maxima occurring at the extremal 
frequencies. The local minima correspond to the 

frequencies at which the response touches zero. It 
is these frequencies which determine the double 
zeros of H2(z) on the unit circle. Given that H~(z) 
has 21~ + 1 coefficients, a total of l I d- 1 extremal 
frequencies result [12]. Two of the extremal 
frequencies are 0 and w regardless of  the value of  
l~. If l~ is odd, the extremum at ~r is a local 
minimum thereby producing a double zero at z = 
- 1. The other zeros occur in groups of four in the 

stopband region bringing the total number of zeros 
to 21~. If I~ is even, the extremum at w is a local 

maximum (no zero at z = - 1 ) .  The total number 
of  zeros is a multiple of  four and occur in groups 
of four in the stopband region. 

Steps 3 and 4 are identical to the first approach. 
In splitting H(z) into its minimum and maximum 
phase parts, we take advantage of the fact that the 
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frequencies corresponding to the double zeros of 

H~(z) are available as a byproduct  of  the modified 
McClel lan-Parks algorithm (similar to the 

approach used in [6] to generate minimum phase 
filters). Given these frequencies and hence, the 

locations of  the zeros on the unit circle, H~(z) can 

be formed without directly factoring H~(z). As 

before, only Ho(z) must be factored to form 

H-(z)=Ho(z)Hl(z) .  
The next section discusses the merits of  factoring 

only Ho(z) as opposed to H(z) in determining the 
minimum phase part. Also, observations concern- 

ing the relative orders of  Ho(z) and H(z) are given. 

4. The faetorization problem 

Polynomial factorization can be an ill-condi- 

tioned problem [17]. There is an advantage to 

substantially lowering the order of  the polynomial  

to be factored. A general zero plot of  H(z) includes 
s topband zeros, passband zeros and extra real 

zeros [1]. The double order s topband zeros on the 
unit circle contribute to the s topband ripples and 
the passband zeros that occur in mirror-image pairs 

reflected about  the unit circle contribute to the 

passband response. The extra real zeros insert a 

compensating spectral tilt. I f  H(z) were to be 

factored, the double zeros on the unit circle and 
the other zeros would be determined through one 

factorization procedure. Note that finding the 
double zeros can be an ill-conditioned problem 

[ 17]. Furthermore,  the use of  polynomial deflation 
can be troublesome since the zeros of  the resulting 

polynomial  may in some cases diverge from those 

of the original polynomial  [17]. In our approach,  
both factorization and deflation of H(z) are 
avoided. In particular, the knowledge of  H~(z) 
ensures that any errors that would normally occur 
in locating the unit circle zeros are absent and do 
not affect the zeros of  Ho(z). Furthermore, the 
factorization of Ho(z) does not involve multiple 
zeros since Ho(z) has only the simple passband 
and extra zeros of  H(z). 
Signal Processing 

Since only the zeros of  Ho(z) have to be deter- 
mined, the extent to which the factorization prob- 

lem is eased depends on the ratio l~/lo. The ratio 

ll/lo is both a measure of  the proportion of unit 

circle zeros to the other zeros of  H(z) and of the 

degrees of  H(z) and Ho(z). The higher the value 

of 11/Io, the lower the relative orders of Ho(z) and 
H(z). Appendix B shows that l~ is greater than lo 

by a factor of  at least N - 1. Therefore, the inherent 
advantage in terms of  polynomial  factorization 

increases as N increases. However, even for the 

lowest value, N = 2, the degree of  H(z) is at least 

twice the degree of Ho(z). Note that the lower 

bound for l~/lo = N - 1  is satisfied when the end 
points of  the impulse response are zero-valued 
(shown in Appendix B). We discard this artificial 

case because the values of  lo and M can be reduced 
by 1 and 2 respectively thereby giving a new value 

of 11/Io. 
A typical designed Nyquist response h(n) is 

depicted in Fig. 1. The time response consists of  
a main lobe between n = - N  and n = N and a 

series of  sidelobes each occurring between the zero 

crossings. The value of lo is a measure of  the 

number  of  sidelobes. As the number  of  coefficients 

M increases, l~ also increases. For a fixed number  

of  lobes (constant value of  lo), increasing M results 

in a higher s topband attenuation while maintaining 
the same factorization complexity. Hence, for a 

fixed number  of  lobes, one can maximize I~/lo by 

increasing M. The largest disparity in the relative 
orders of  Ho(z) and H(z) results by choosing the 
filter lengths to be of  the form M = 2kN - 1. 

Given that the filter lengths are constrained to 

be of the form M = 2 k N -  1, the ratio I~/lo is 

Ii k ( N -  1) 
l o -  k -  1 (8) 

This ratio is a maximum for k = 2. 4 AS k increases, 

a tradeoff results in that a higher stopband attenu- 
ation due to a longer filter is obtained at the 

expense of  both a lower l~/lo and a higher Io. The 
subsequent examples show that a value of  k = 5 

4 This  is a lso a un ique  m a x i m u m  for a genera l  M (see 
A p p e n d i x  B). 
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h(n) 

i 
t 

/ 
/ 

s 

¢ 
• 0"4 t ' 19 ,  / a _ J D "  , 

0 "~2N 3N "o..o-e-~ n 

Fig. 1. Typical Nyquist response h(n) (shown for N = 5, M = 39 and/3 = 0.2). 

results in about an 80 dB stopband attenuation for 
a roll-off factor of  0.52. Then, l ~ / l o = 5 ( N - 1 ) / 4  
and lo = 4. Only an eighth order polynomial with 
simple zeros needs to be factored. Smaller roll-off 

factors require a larger number of  taps (larger value 
of  k) and hence, a lower value of  ll/lo and a higher 
value of  1 o for an 80 dB stopband attenuation. 

5. Discussion of the design techniques 

Given that two factorable minimax design 
methods are proposed, their relative merits are 
considered. Design examples are given. Finally, 

the group delay behaviour of the minimum phase 
part is examined. 

5.1. Comparison of the two proposed methods 

The two methods in this paper can be used to 
design factorable Nyquist filters with Chebyshev 
stopband behaviour. An equiripple stopband is 
obtained when W(e j°') = 1. A nonequirriple design 
is achieved by specifying a nonconstant W(eJ~). 
In the first method, we design an unconstrained 
Hi(z).  When this H~(z) is squared, the resulting 
nonnegative frequency response has extremal 
frequencies that include those obtained in the 
design of  H~(z). These are augmented by another 
set at which the response is zero. In the second 
method, we design Hi(z )  directly. The error is 
minimized over the same closed region as in the 
first method while maintaining the same total num- 
ber of extremal frequencies. Since the constrained 

minimax approximation is unique [3], Hi(z)  is the 
same for both methods. 

Despite the theoretical equivalence of  the two 
methods, numerical differences do arise. The 
coefficients of  Hi(z)  obtained by the two methods 
differ slightly in practice. Although these small 
differences lead to more pronounced differences 
in the coefficients of  Ho(z), the coefficients of  the 
overall Nyquist filters formed by the two methods 
show only small differences. These differences 
manifest themselves mostly in the stopband region 
of  the frequency response. An equiripple charac- 
teristic is more closely approached by the first 

method. 

5.2. Design examples 

Examples are presented to demonstrate both 
equiripple and nonequiripple designs. The design 
computations were done using double precision 
floating point arithmetic. Four iterations were 
necessary to resolve the coefficients. The following 
examples are generated by the first of our methods. 

Example 1. We generate an equiripple design with 
parameters N = 6, lo = 4, !1 = 25, tOp = 0.08~ and 
tOs=0.254~r. This results in a filter with 59 
coefficients having a roll-off factor/3 = 0.52 whose 
magnitude response is shown in Fig. 2. The pass- 
band response is flat to within 0.003 dB. The filter 
length is of  the form M = 2 k N -  1 with k = 5. 

Example 2. The parameters used in this example 
are N = 4, lo = 4, !1 = 15, tOp = 0.12~ and tOs = 0.38~r. 
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Fig. 2. Magnitude response of the Nyquist filter: Example 1. 

The weighting is 

1, for to =0,  

W(eJ'°) = 20 (9) 
~--~r(to-tos)+l, for to~<~to~<~r. 

This gives a nonequiripple Nyquist filter with 39 
coefficients and a roll-off factor/3 = 0.52. The filter 
length is of the form M = 2 k N - 1  with k = 5 .  

Fig. 3 shows the magnitude response of  the filter. 
The passband response is flat to within 0.002 dB. 
Fig. 4 shows the group delay response of the mini- 
mum phase part of the filter. 

5.3. Group delay 

An important question concerns the delay dis- 
tortion of the minimum phase part. The group 

--4o 
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Fig. 4. Group delay response of the minimum phase part: 
Example 2. 

delay of the minimum phase part is only important 
in the passband and is primarily influenced by the 
passband zeros which are within the unit circle. 
For a given number of taps and a given N, the 
group delay tends to be more constant as the 
roll-off factor increases. Also, for a given roll-off 
factor and a given N, a larger number of taps 

produces a group delay with a greater deviation. 
The minimum phase filters generated in Examples 
1 and 2 that achieve about a 40 dB stopband attenu- 
ation have a relatively small passband group delay 
variation (approximately 0.15 zero crossing 
intervals). 

If factorization of H(z) into two constant group 
delay functions A(z) and B(z) is a requirement, 
a procedure is possible as follows. First, the double 
zeros of H2(z) are allocated one each to A(z) and 
to B(z). Then, we classify the zeros of Ho(z) in 
polar form re j° and only consider 0<~ 0<~r. The 
zeros of Ho(z) are taken in ascending order of 0 
and the mirror-image pairs are alternately assigned 
to A(z) and B(z). This ensures that both A(z) and 
B(z) have constant group delay. Note that if lo is 
odd, the number of taps of A(z) and B(z) differ 
by two. Otherwise, they have the same number of 
taps. Due to the presence of identical stopband 
zeros in A(z), B(z) and H(z) ,  the stopband 
response of both A(z) and B(z) is good. However, 
the passband responses can deviate significantly 
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6. Comparison with other approaches 

This section discusses the relative merits of  the 
factorable minimax design methods when com- 
pared with other approaches. 

6.1. Linear programming technique 

In [13], a linear programming approach that is 
also based on a minimax criterion is used to design 
a factorable Nyquist filter. For comparison, we 

generate a filter with the same parameters as the 
example in [13] using our factorable minimax 
approach. It is observed that the magnitude and 
group delay responses of  the filters given by the 
two designs are very similar. The equiripple magni- 
tude characteristic is more exactly given by our 
approach. Arbitrary weighting can be easily 
applied in both the factorable minimax approach 
and a linear programming formulation [7]. 

6.2. Eigenfilter formulation 

The eigenfilter approach [11] also simplifies the 
factorization problem and meets the time domain 
constraints by solving a linear system of equations. 

The differences between the factorable minimax 
approach and the eigenfilter method are as follows. 
First, our approach is based on a minimax criterion 
as opposed to a least squares design achieved by 
the eigenfilter method. The factorable minimax 
approach naturally generates an equiripple 
behaviour whereas the eigenfilter method naturally 
renders nonequiripple filters. However, weighting 
can be applied in both methods to alter the stop- 
band characteristic. For the factorable minimax 
method, the McClellan-Parks algorithm can easily 
incorporate arbitrary weighting, whereas, the 
incorporation of  an arbitrary weighting factor into 
the eigenfilter formulation involves the use of 
numerical integration techniques. 

A design example illustrates the differences in 
performance of  the two methods. Identical param- 
eters to the ones in [11] are used. In particular, 
N = 3, lo = 10, l~ = 21, tOp = 0.233~r, tOs = 0.433~r and 
W(e j'°) = 1. This gives a Nyquist filter with 63 

coefficients and a roll-off factor /3 =0.3. Fig. 5 

shows the magnitude response of the minimum 
phase part generated by our factorable minimax 
method. The stopband attenuation of  the minimum 
phase filter achieved by our method is about 48 dB 
whereas the first stopband ripple of its counterpart 
generated by the eigenfilter method shows an 
attentuation of approximately 45 dB. For higher 
frequencies, the ripples of the filter designed by 
the eigenfilter method show an attenuation that is 
more than that achieved by our method. 

0 

-lll 

-211 

-3° 

~ -40 

-50 

-61[ 0~1 °i~ °.3 °., 0.~ 
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Fig. 5. Magnitude response of the minimum phase part of 
the Nyquist filter designed with the same parameters as 
in [11] (N=3, /o=10, 11=21, ~%=0.233~r, ~o~=0.433w and 

W(e TM) = 1). 

6.3. Direct use of  the McClellan-Parks algorithm 

Factorable Nyquist filters can also be designed 
by invoking the constrained form of the 
McClellan-Parks algorithm [3] to get a nonnega- 
tive response that approximates a raised cosine 
characteristic. Another approach is to design a 
linear phase filter to approximate the square root 
of a raised cosine response using the McClellan- 
Parks algorithm (no constraints required) and con- 
volve it with itself to produce a Nyquist filter. In 
this case, no factorization is required. The basic 
drawback of  these two approaches is that exact 
zero crossings in the impulse response are not 
guaranteed as compared to other design methods. 
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The direct approaches used to design approxi- 
mations to raised cosine Nyquist filters can be used 
for modem design. The CCITT recommendation 
V.22 [2] includes the specification of a pair of 
transmitter/receiver filters which should approxi- 
mate the square root of a raised cosine response. 
The specified roll-off factor is 0.75. Upper and 
lower bounds in the frequency response in both 
the passband, transition band and a small portion 
of the stopband must be met. In addition, the group 
delay variation should be below a prescribed limit 
in the passband and a portion of the transition 

band. 
We design Nyquist filters with a roll-off factor 

of 0.75 and with N = 4 using the first factorable 
minimax method and the direct approaches that 
use the McClellan-Parks algorithm. The 
approaches are described in slightly more detail 

as follows: 
(1) Design a filter that approximates a raised 
cosine response by invoking the constrained form 
of the McClellan-Parks algorithm [3] such that 

the response is nonnegative and its minimum and 
maximum phase parts have a frequency response 
that satisfies the upper and lower bounds specified 

by V.22. 
(2) Design a linear phase filter that approximates 
a square root raised cosine characteristic by invok- 
ing the modified form of  the McClellan-Parks 
algorithm such that its frequency response satisfies 

the upper and lower bounds specified by V.22. 
(3) Use the first factorable minimax method to 
design a Nyquist filter such that its minimum and 
maximum phase parts satisfy the V.22 
specifications of the frequency response. 

In all cases, the smallest number of taps that 
satisfy the constraint M = 2 k N - 1  is used. This 
leads to 15 tap Nyquist filters for the three methods. 
The weighting, W(e j°') = 1, is used in the factorable 
minimax method. 

Before considering the relative performance of 
the three methods, some general comments are in 
order. In the first method, factoring the z-transform 
of  the Nyquist filter can be avoided since the unit 
circle zeros can be extracted from the extremal 
Signal Processing 
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frequencies. However, the other zeros would have 
to be determined by first deflating the original 
polynomial. It is observed in [17] that deflation is 
more stable is the zeros of smaller magnitude were 
extracted first. This further discourages the division 
of the original polynomial by a polynomial that 
has the unit circle zeros since they have a larger 
magnitude than the zeros within the unit circle 
which should be extracted first to enhance the 
stability of the deflation process. A remedy to this 
problem is to use interpolation as in [6] to obtain 
a polynomial that represents the passband zeros 
and then factor it to obtain the zeros inside the 
unit circle. An alternative is to use a modified 
Newton's iteration [1] on the original polynomial 
to obtain the zeros inside the unit circle. The second 
method imposes no factorization problems. 

The third approach using the first factorable 
minimax method does not guarantee a filter that 
satisfies any prescribed specifications of the 
frequency response. However, filters that satisfy 
the V.22 specifications can be designed by choosing 
the number of taps, carrying out the design and 
finally verifying that the constraints are met. We 
find that the constraints are met with 15 taps. It is 
observed that increasing the number of taps will 
cause the frequency response constraints to be 
violated since the transition band becomes more 
steep and lies outside the acceptable region. 

In comparing the performance of the three 
methods, we consider the stopband attenuation of 
the Nyquist filter, the group delay of the factorized 
filter in the region considered in the V.22 
specifications and quantitative measures of the 
intersymbol interference. The measures of the 
intersymbol interference are the peak distortion 

Op and the RMS distortion DaM s defined by 

Op= Y Ih(nN)l/lh(O)l (10) 
n 

n ~ 0  

and 

The 

DaMs = ~ / ~  h2(nN)/h2(O). (11) 

. ~ 0  

stopband attenuations produced for 
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methods 1, 2 and 3 are about 45, 42 and 50 dB 
respectively. The allowable variation in group 
delay as specified by V.22 is 0.18 zero crossing 
intervals. Method 1 generates a minimum phase 
filter whose group delay variation is slightly under 
the prescribed 0.18 zero crossing intervals. Method 
2 generates a filter with no group delay variation. 
Only Method 3 does not meet the group delay 
requirement in that the filter it produces has a 
variation of  0.24 zero crossing intervals. 5 In terms 
of peak and RMS distortion, Method 3 assures 
exact zero crossings and hence, produces no such 
distortion. Method 1 produces peak and RMS 
distortions of  0.0004 and 0.0003, respectively. 
Method 2 leads to much higher peak and RMS 
distortions of  0.186 and 0.132, respectively. This 
coupled with the lower stopband attenuation 
achieved by the second method leads us to choose 
Method 1 over Method 2. Method 3 gives a higher 
stopband attenuation than Method I and produces 
exact zero crossings in the impulse response. This 
enhanced stopband attenuation comes at the 
expense of  a larger group delay variation. 

7. Summary and conclusions 

This paper describes two factorable minimax 
methods to design zero-phase FIR lowpass factor- 
able Nyquist filters. Both use the McClellan-Parks 
algorithm as a first step in establishing the unit 
circle zeros and achieving a Chebyshev stopband 
response. The time domain constraints and the 
passband response are found by solving a system 
of linear equations. Both methods are iterative and 
four iterations are found to be sufficient in our 
examples to resolve the coefficients. The main 
advantages of the design techniques are that the 
polynomial factorization complexity in finding the 
minimum phase part is considerably eased and 
that arbitrary frequency weighting can be applied 

5 A simple second order allpass equalizer brings the group 
delay within specifications. However, the use of such equalizers 
sacrifices the exact zero crossing property of the original design. 

without additional computational overhead. 
Although the two design approaches should 
theoretically give the same filter, the first of our 
methods is numerically more accurate and hence, 
renders a slightly better frequency response. No 
numerical difficulties were encountered when 
using this technique. Both the appropriate zero 
crossings and expected weighted stopband 
behaviour are achieved. 

The transfer function of  the Nyquist filter is split 
into a product of a relatively low order polynomial 
having zeros that are not on the unit circle and a 
relatively high order polynomial having all its zeros 

on the unit circle. The orders of  these polynomials 
are unique given the number of  filter coefficients 
and the zero crossing interval N. This decomposi- 

tion of  the transfer function of  the filter is advan- 
tageous in that the minimum and maximum phase 
parts are found by only factoring the low order 
polynomial as opposed to factorizing the overall 
polynomial representing the Nyquist filter. The 
relative factorization complexity depends on the 
proportion of  the number of unit circle zeros to 
the number of  other zeros. Upper and lower 
bounds for this ratio are derived. For practical 
filter lengths, the polynomial factorization remains 
simple and can be done by a general purpose 
routine. 

Design examples include both equiripple and 
nonequiripple filters. Comparisons with both a 
linear programming approach and the eigenfilter 
formulation show that the proposed methods are 
good in terms of both magnitude response and 
group delay variation. A practical design that con- 
forms to the CCITT V.22 specifications is com- 
pared with approaches that directly invoke the 
McClellan-Parks algorithm to approximate a 
raised cosine response. The factorable minimax 
method and the use of  the McClellan-Parks 
algorithm differ in performance in that the former 
achieves a higher stopband attenuation but a group 
delay with a greater variation. Furthermore, the 
direct approaches do not guarantee exact zero 
crossings in the impulse response thereby leading 
to residual intersymbol interference. 
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The ideas in this paper  are generalizable to the 

design of factorable partial response filters. Only 
two of  the nine partial response systems described 

in [5] can be factored into equal magnitude parts. 

The transfer functions of  these two filters can be 

obtained by first designing the Nyquist filter H(z)  
and cascading it with the appropriate  polynomial 
in z N. This introduces the controlled amount  of 

intersymbol interference. The minimum phase fac- 
tor of  the partial response filter is the minimum 

phase factor of  H(z)  multiplied by the minimum 
phase factor of  the polynomial  in z N as given in [5]. 

Appendix A. Constraints on the parameters lo and l~ 

Let the zero crossing interval be N and the number  

of  filter coefficients be M = 2 ( l o + l O + l .  The 

parameters lo and 11 satisfy 

lo(N - 1) <~ 1~ < lo(N - 1) + N. (A.1) 

Since 1~ = ½(M - 1) - / o ,  the inequality reduces to 

M - 1  
1o <~ < 1o+ 1. (A.2) 

2 N  

This new inequality is satisfied by a unique lo given 
by 

M - 1  

Then, l~ is given by 

M - 1 M - 1 (A.4) 
, T  

an insufficient length for an acceptable stopband 

attenuation. 

B.1. Lower bound 

The lower bound for ll/lo is given by the lefthand 

side of  (A.1), 

ll>~ N _ l .  
lo 

The lower bound is achieved if and only if lo and 
I~ are given by 

M - 1  
/0 = 

2 N  ' 

( M - 1 ) ( N - 1 )  
I I = 

2 N  

(B.1) 

In this case, the filter length is of  the form M = 

21oN + 1 thereby giving an impulse response with 

the two end coefficients equal to zero. 

I f  lo and l~ are chosen as above, the system of 

equations Fh = c that solve for the coefficients of 

Ho(z) can be decoupled into a reduced system 

of dimension Io and the additional equation 

f(l~)ho(lo) = 0. Hence, ho(-lo) = ho(lo) = 0 thereby 
reducing the effective values of  lo and M by 1 and 
2 respectively. Such a choice of  parameters gives 

results that are identical to the case when lo is 

reduced by 1. 

B.2. Upper bound 

The upper  bound for l~/lo is obtained by examining 

the righthand side of (A.1), 

l~ N 
- - < N - l + - - .  
1o 1o 

Appendix B. The ratio l~/lo: Lower and upper 
bounds 

This appendix derives lower and upper  bounds for 

ll/lo and shows how to fix the filter length to 
achieve these bounds. This ratio is only finite for 

lo # 0 which is a reasonable assumption. I f  lo = 0, 
the filter length M < 2 N - 1  thereby giving an 
impulse response with no zero crossings and hence, 

Since the minimum value of lo is 1, an upper  bound 
is 2 N - 1 .  Achieving a ratio equal to a value of 
2 N - 2  is possible if and only if /o = 1 and I~= 
2 N - 2 .  I f /o  > 1, the upper  bound N - l + N / l o < ~  
2 N - 2  for every N~>2. Hence, l ~ / l o < 2 N - 2  for 
every lo > 1. The final conclusion is that for a given 
N, there exists only one filter length, namely, M = 
4 N - 1  that achieves the maximum value ll/lo = 
2 N - 2 .  

Signal Processing 
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