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Least-Squares Design of Linear-Phase FIR Half-Band Filters
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Two approaches are described which can be used to design half-band filters for multirate applications. The
approaches are based on the method of formulating the weighted mean-square error between the amplitude responses
of the practical and ideal filters as a quadratic function. The filter coefficients are obtained by solving a set of linear
equations. This method yields filters that are optimal in the least-squares sense. Design examples are provided.
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linear phase half-band filter is an efficient tool to increase

or decrease the sampling rate by a factor of 2 and is used
in multirate digital filtering with nearly a two-fold reduction in
the computational burden as compared to symmetric linear-
phase finite impulse response (FIR) filters [1]. Half-band filters
have been designed using the well known McClellan-Parks
algorithm [2-3], the linear-programming techniques [4] and the
eigenfilter method [5]. The first two methods yield filters that
are optimal in the minimax sense. In the eigenfilter method, an
error function between the desired and -practical amplitude
responses is formulated in a quadratic form. The desired
amplitude response is equal to the amplitude response of the
designed filter at an arbitrary reference frequency. The
coefficients of the filter are obtained as the eigenvector
corresponding to the smallest eigenvalue of a real, symmetric
and positive-definite matrix.

The least-squares method was first proposed in [6] for the
design of lowpass filters and involves the solution of a linear
system of equations to obtain the filter coefficients. The
method advanced in [6] has been used to design first-order
differentiators in [7] and higher-order differentiators in [8].
Later, in [9], this method was generalized to accommodate
various types of linear-phase nonrecursive filters including
those with time domain constraints. The motivation of this
method is to formulate an error function that directly minimizes
the weighted mean-square error by explicitly including the
ideal amplitude characteristic and obtain the filter coefficients
with low computational complexity. It has been shown that the
weighted mean-square error and computational complexity
achieved by this least-squares method is lower than those
resulting from the eigenfilter approach. In this paper, we
present two approaches based on the method in [9] to design
half-band filters that are’optimal in the least-squares sense.

HALF-BAND FILTERS

Consider a nonrecursive digital filter with N taps
represented by an impulse response A(n) for 0 <n <N - 1. For
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the case of a linear-phase filter having a symmetric impulse
response, we have s(n) = h(N — 1 — n). Half-band filters belong
to the class of linear-phase filters with a symmetric impulse
response. In addition, N is required to be odd. The ideal
amplitude response D(w) of half-band filters is that of a
lowpass filter as given by

lweP

D(w) = {0 s )]
where P is the passband and S is the stopband. Furthermore, the
frequency response of a half-band filter is symmetric with

respect to the half-band frequency #/2 in that

H(e/®) + H(e/(7®)) = | ?)
As a consequence of this symmetry,
Wt 0= 7 (€))
and
% % “)

where @, and @, are the passband edge and stopband edge
frequencies, respectively, and &, and J, are the maximum
passband and stopband ripples, respectively. In addition, the
impulse response satisfies

0 nodd =2t
h(n) = N-1 )
e o ‘

Note that we force (N — 1)/2 to be odd since, if it is even,
h(0) = 0 and A(r) has a support starting at n = 1. The frequency
response of a half-band filter can be written as

H(eJ?) = M(w) e5® N-1)2 (6)
where
(N-1)72
M) = a(0)+ X a(n) cos(nw)
n=13..
=a(0) + M(w) @)
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(N-1)2
where My(@) = X a(n)cos(nw)
n=13..
a(0) = A[(NV - 1)/2] = 0.5 and a(n) = 2h[(N — 1)/2 — n] for odd
n > 0. Below, we shall present two approaches to design half-
band filters.

®

Approach 1

The objective function E,, that reflects the weighted mean-
square difference between the ideal amplitude response, D(w),
and the amplitude response of the filter, M(w), is expressed as
[91

_ Ense = %EP a: éE‘ ®
where :
E, = [ Wp(@ID@)- M) do (10)
P
and : -
' (11

E, = [ W5 (@)ID(@)~ M do
8 .

The quantities o and S reflect the relative emphasis given to
the passband and stopband, respectively. On the other hand,
Wp(w) and Wg(w) are nonnegative frequency domain
weighting functions for the passband and stopband that can be
used to emphasize certain frequenies over others.

By virtue of (4), @ = B and Wp(w) = Wg (n— )
for 0 £ w £ w,. Also, due to the frequency response symmetry

as given by (28, it is enough to minimize either £, or E;. Given -

the decomposition of M(w) as the sum of a(0) = 0.5 and M,(®),
we determine the coefficients a(i) for i= 1,3, ..., (N - 1)/2 such
that M;(w) approximates a modified ideal response D(@)
given by

0.5 welP
D](w} =
-05 weS

For the case of half-band filters we have M;(w) = a’c(w),

(12)

where

a=[a(i)a(3) N ..a(N; 1)]T 13)
and

¢ (@) =|:cosaj cos3w ....cos(')y'é:l" w)]T (14)

In terms of D,(w) and M; (), we have
E, = [ Wp(@)Dy(@)- M@} do (1s) -
P
E, = [ Ws(o)Dy(@) - My(@)P do (16)

S

Filter coefficients that are optimal in a weighted least-
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Choosing the minimization of E, we set "5;(‘:5)‘ =0, fori =1,
3, ..., (N=1)/2, to obtain a system of linear equations Ra = d,
where

R= f Wg(@) ¢ (@) T () do L)

and

d= f Wg(@) D, (@) ¢ (@) do (18)

It can be noted that R is:a real, symmetric and positive-
definite matrix and thus, a unique solution is guaranteed. In
addition, the system of linear equations can be solved by a
computationally efficient method, like the Cholesky
decomposition, that avoids matrix inversion. The filter
coefficients k(n) are easily found from a.

E.tampfg 1

A half-band linear-phase filter with N = 31, o, = 0.557 and
W(w) = 1 is designed. Figure 1 shows the magnitude response
of the designed filter.

Approach 2

In this method, H(z) is designed by a two-stage process [3].
First, a one-band prototype linear-phase filter G(z) with an even
number of taps equal to J = (N + 1)/2 is designed. Its passband
is P = [0,20,] and its transition band extends from 2w, to 7
(there is no stopband). The ideal response is D(@) = 1 in P,
Since J is even, G(z) has a zero at @ = z. Given G(2),"H(2) is
defined as :

N-1
= o) :
7 6'522! +2z
H(z) = > (19)
Then,
(_fz
0.5g |\ 5 neven
h(n) =30 nodd # ﬁ;'i (20)
N-1
0.5 e
where g(n) is the impulse response of G(2).
The frequency response of G(z) is
G(e/?) = K(w) 7@ -1 2 1)
where
Jr2
K(w)= Y. b(n)cos(n-112) @ (22)

n=1

and b(n) = 2g (J/2 — n) for 1 € n < J/2. The mean-square error
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Fig | Magnitude response of a 31-tap linear-phase FIR half-band filter (example 1)
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Fig 2 Magnitude response of an 18-tap linear-phase FIR prototype filter (example 2)

| = [b(1) b2) ... bU2I" 24
Emsezflrf[D(ﬂ’)— K(0))? do @ b =[b(1) b(2) V/2)] 24)
It

The amplitude response, K(w), can be expressed as c(m)=|:cos %w s %m ...cos( N-L w)];, i

K(w) = bTe(w), where 2
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Fig 3 Magnitude response of a 35-tap linear-phase FIR half-band filter obtained from the prototype (example 3)

The filter coefficients can be obtained by minimizing E_ ..

PEnse

Consequently, we set 250

= 0,fori=1,2, ..., J/2, to obtain

a system of linear equations whose solution yields the optimal
vector b. From b(n), we obtain g(r) and then, A(r).

Example 2

In this example, we design a half-band filter with o =
0.4225x and N = 35. Using approach 2, we first design G(z)
with J = 18 and then. obtain the coefficients of the half-band
filter. Figure 2 shows the magnitude response of G(z). Figure 3
shows the magnitude response of the half-band filter H(z)
obtained from G(z). :

CONCLUSIONS

In this paper, two computationally simple approaches to
design half-band filters that are optimal in the least-squares
sense are discussed. The first approach is direct in that the filter
coefficients are obtained in one step. The second approach
consists of two stages. In the first step, an intermediate filter
based on a least-squares method is designed. In the second
step, the filter obtained in the first step is fransformed to yield
the half-band filter. : ;
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