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A Two Codebook Format for Robust
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Abstract— An important problem in speech coding is the
quantization of linear predictive coefficients (LPC) with the
smallest possible number of bits while maintaining robustness to
a large variety of speech material and transmission media. Since
direct quantization of LPC’s is known to be unsatisfactory, we
consider this problem for an equivalent representation, namely,
the line spectral frequencies (LSF). To achieve an acceptable
level of distortion a scalar quantizer for LSF’s requires a 36
bit codebook. We derive a 30 bit two-quantizer scheme which
achieves a performance equivalent to this scalar quantizer. This
equivalence is verified by tests on data taken from various types
of filtered speech, speech corrupted by noise and by a set of
randomly generated LSF’s. The two-quantizer format consists
of both a vector and a scalar quantizer such that for each
input, the better quantizer is used. The vector quantizer is
designed from a training set that reflects the joint denmsity (for
coding efficiency) and which ensures coverage (for robustness).
The scalar quantizer plays a pivotal role in dealing better with
regions of the space that are sparsely covered by its vector
quantizer counterpart. A further reduction of 1 bit is obtained by
formulating a new adaptation algorithm for the vector quantizer
and doing a dynamic programming search for both quantizers.
The method of adaptation takes advantage of the ordering of
the LSF’s and imposes no overhead in memory requirements.
The dynamic programming search is feasible due to the ordering
property. Subjective tests in a speech coder reveal that the 29 bit
scheme produces equivalent perceptual quality to that when the
parameters are unquantized.

1. INTRODUCTION

LINEAR predictive (LPC) analysis [1] of a speech signal,
based on the model that a speech sample is a weighted
linear combination of p previous samples, results in the set
of weights a(¢). These weights correspond to the direct form
coefficients of a nonrecursive filter A(z) = 1+ X% a(i)z~".
Passing the speech signal through the filter A(z) results in
the removal of the near-sample correlations and produces an
LPC residual. In addition, the magnitude spectrum of 1/A(z)
describes the spectral envelope of the speech being analyzed.
Therefore, transforming the speech into the LPC residual
also has the frequency domain interpretation that the spectral
envelope is removed.
In predictive speech coders, the LPC residual and LPC
parameters «(7) are quantized and coded for transmission. In
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this paper, we investigate the quantization of only the LPC
parameters. The goal of LPC parameter quantization is to
minimize the spectral distortion (SD) or the root mean-square
deviation between the true log magnitude spectrum of 1/A(z)
and the spectrum that results after quantization. Quantization
of the parameters a(7) is known not to be efficient and can
lead to an unstable filter 1/4(z). We therefore transform the
LPC coeffizients to an equivalent set of parameters, namely,
the line spectral frequencies (LSF) f(4) [2]-[5]. Line spectral
frequencies have several properties that make them more
suitable for quantization. They are approximately related to
the formant frequencies and bandwidths and show a localized
spectral sensitivity. Also, it is possible to define a tractable
distortion measure in terms of LSF’s, which is closely related
to the SD. Finally, it is possible to quantize LSF’s without
destroying an ordering property which guarantees stability of
1/A(z). We have chosen the order of the LPC analysis to be
p = 10, which gives us ten LSF’s to quantize.

Several interrelated issues affect the design of a quantizer:
The type of quantizer involved (scalar or vector), the distortion
measure used, the inclusion or exclusion of memory in the
quantizer, the search complexity, the codebook design, the
desired number of bits, memory requirements for storing the
codebook, robustness to a wide class of inputs and robustness
to channel errors. A study of all these issues is beyond the
scope of this paper. We focus our investigation on the issue of
quantizer robustness to various filtering and noise conditions.
Our objective is to realize a quantization scheme that results
in a prescribed level of distortion, with the lowest possible
number of tits, for a wide class of inputs, under the assumption
that there are no channel errors.

The outline of the paper is as follows. In Section II, we
elaborate on our objective and discuss each of the issues
mentioned zbove. The effect of different filtering conditions on
LSF behavior is qualitatively described in Section III. Results
for a robust scalar quantizer and vector quantizer are given
in Sections IV and V, respectively. Section VI describes a
scheme involving two quantizers. In Section VII, a codebook
adaptation algorithm is described. Section VIII discusses an
optimal search strategy for finding the codevector. The results
obtained by subjective tests of our quantizer in a coder are
reported in Section IX. The search complexity is discussed in
Section X. Section XI summarizes the conclusions.

II. ISSUES IN QUANTIZER DESIGN

The quantizer performance is evaluated by the spectral
distortion (SD) which, in dB, is defined as
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SD = \/l /[10log(lAq(eﬂ"j)|2/iA(€j2”f)|2)]2 df (1)
B Jgr

where A and A, refer to the filters resuiting from the original
and quantized parameters, respectively. Throughout our study,
the speech was sampled at 8 kHz, the region R taken to be
the frequency band from 125 to 3400 Hz and B taken to
be the bandwidth represented by R. It is generally accepted
that a quantizer may be considered transparent if its average
spectral distortion (AVSD) is about 1 dB, the percentage of
Type 1 outliers (SD from 2-4 dB) is less than 2% and there
are no Type 2 outliers (SD greater than 4 dB) [6]. For the
codebook design, we use a computationally more tractable
measure than the SD. The measure is the weighted squared
Euclidean distortion given by

d(f,f) = Zw(i)[f(z‘) - ()2, @

i=1

where f(¢) is the ith component of the original LSF vector
J and f (¢) is the corresponding component of the quantized
vector f. The weights are chosen to be [7]

1 1
IO AT n-f@)

These weights add some emphasis to the formant frequencies
thus making the measure d correspond better to the SD than
the unweighted squared Euclidean distortion. The codebook
design method is based on the Linde-Buzo-Gray (LBG) al-
gorithm with binary splitting [8] in which an input set of
training data is used to determine the codewords such that the
expected distortion is minimized. Note that in comparison to
the SD, the determination of the Voronoi cells and the centroid
computation is much simpler for the weighted squared Eu-
clidean distortion thereby making it computationally feasible.
Although the weighting is input dependent, the centroid is
computed as the average of the training vectors in the Voronoi
region so as to preserve the ordering property.

Since the focus of our study is on robustness to various con-
ditions, we examine the relationship of robustness to the type
of quantizer and number of bits used. The advantage of vector
quantizers over scalar quantizers is that they require fewer
bits to achieve a given level of distortion by exploiting the
multidimensional probability density and allowing for Voronoi
regions of arbitrary convex shape [9]. Since the true probability
density of the LSF’s derived from all possible speech material
is not known, a vector quantizer design is based on a large
set of empirical training data. Due to the sampling variability
of the training set, there is an incomplete description of the
multidimensional probability density. Therefore, the vector
quantizer is sensitive to the distribution of the data on which
it is tested thereby diminishing its robustness. In contrast, a
scalar quantizer is configured by designing codebooks for each
dimension separately. It can adequately cover a designated
multidimensional space. Therefore, it performs well even for
data with a distribution different from that of the training

w(e) 3

set. However, to achieve this robustness, the scalar quantizer
requires more bits than a vector quantizer.

Our goal is to design a quantization scheme that compro-
mises between the conflicting requirements of using few bits
and robustness. A scalar quantizer that results in about a 1 dB
AVSD for various test data serves as a benchmark. Then, we
develop a quantizer with as few bits as possible and with a
performance no worse than that of the scalar quantizer. The
performance is evaluated in terms of AVSD and number of
Type 1 and Type 2 outliers. Note that we attach considerable
importance to reducing the number of outliers especially if the
AVSD is already about 1 dB or less.

Our quantization scheme is memoryless, i.e., each vector is
coded independently of past or future actions of the encoder
or decoder [10]. Finally, search complexity and memory
requirements are important practical considerations. Although
we do not focus on these, neither will be made prohibitively
large.

III. PARAMETER VARIATIONS

Since our aim is to get a robust quantizer, we first study the
effects of various practically reasonable filtering conditions on
the behavior of LSF’s. This will give us information about
the dynamic range of each LSF and the boundaries of the 10-
dimensional space that have to be considered for the design.
The LPC analysis is performed every 20 ms by the modified
covariance method [11] with error weighting [12] by a 25
ms Hamming window, a high frequency compensation factor
of 0.05 and a bandwidth expansion of 10 Hz. The speech is
taken from the TIMIT database and the data comes from 518
different sentences spoken by 209 speakers.

The TIMIT database consists of speech sampled at 16
kHz. We study the effects of applying 3 different lowpass
filters (with cutoff frequencies at 3600, 3400, and 3200 Hz,
respectively) to the speech, followed by downsampling by 2.
It is observed that as the cutoff frequency decreases, f(9) and
f(10) shift downward and the rest remain essentially the same.
After lowpass filtering to 3400 Hz and downsampling by 2, we
study the effect of applying 3 additional filter weightings on
LSF behavior. Applying a 300 Hz highpass filter is equivalent
to examining the limitation of telephone bandwidth. In this
case, the major influence is on f(1) which shifts upward.
Also f(2) and f(3) shift upward but to a lesser extent than
f(1). The other LSF’s do not change. Processing speech by a
bandpass filter that conforms with the Intermediate Reference
Mask (IRS), which is a CCITT standard, has a different impact.
The upward shift of the first 3 LSF's is more than with the
highpass filter. The frequencies fi4), f(5), f(6), and f(7)
shift upward but not as much as the first 3 LSF’s. The last
two LSF’s shift downward while f(8) remains the same. We
do a z to —z transformation on the IRS filter to get another
bandpass filter to observe the effect of different spectral tilts
on the LSF’s. Compared to the standard IRS filter, this other
bandpass filter causes a larger upward shift of f(1) and £(2),
about the same shift for f(3) and a smaller upward shift of
f(4). There are practically no shifts for f(5) through f(8). The
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downward shift of f(9) is about the same and the downward
shift in f(10) is less than for the IRS filter.
The above observations suggest the following:

1) An acceptable vector quantizer designed on training
data from just one filtering condition (e.g., the 3400
Hz lowpass filter) may not work well for inputs from
another condition (e.g., the IRS filter) because of the
shifting behavior of many LSF’s.

2) Even two bandpass filters related by a simple frequency
transformation but having different spectral tilts influ-
ence the joint LSF distribution in different ways.

3) Since the dynamic ranges of some individual LSF’s are
affected by highpass and bandpass filter weighting, the
overall 10-dimensional space that has to be considered
for codebook design is larger than the space described
for LSF’s derived from 3400 Hz lowpass filtered speech
only. This indicates that more bits are needed to accom-
modate the filter weightings.

Differential line spectral frequencies (DLSF) are defined
as follows: A(1) = f(1) and A(i + 1) = f(i + 1) — f(4)
for 2 = 1 to p — 1. These parameters (except A(1)) have
the empirically observed property that the filtering conditions
described above do not change their dynamic ranges. Also,
the standard deviations of the DLSF’s are generally lower than
those of the LSF’s. In view of this, the DLSF’s are more suited
to quantization. However, DLSF’s have potential advantages
only for scalar quantization. Vector quantization of DLSF’s
yields no advantage over that of LSF’s as discussed later.

IV. DESCRIFTION OF SCALAR QUANTIZER

In order to assess the savings in bits offered by our approach,
we first design a benchmark scalar quantizer for LSF’s by
the LBG method. The training data consists of 333355 LSF
vectors collected from the TIMIT database. They correspond to
equal contributions from 5 conditions, namely, 1) the lowpass
filter at 3400 Hz, 2) the lowpass filter at 3200 Hz, 3) the 300
Hz highpass filter, 4) the IRS filter, and 5) the transformed
IRS filter. Two lowpass filters are used to provide some
emphasis to the relatively lower values of the first 3 LSF’s. The
weightings (3)—(5) are applied after lowpass filtering to 3400
Hz and downsampling by 2. Let f,,;,(i) and fia.(i) denote
the smallest and largest values of the ith LSF determined
from the 333 355 data points. The overall space S is described
by the cross-product of the intervals [finin(¢), fmax(4)] under
the usual constraint of ordering. The training set consisting
of the 333355 data points leads to a scalar quantizer that
accomplishes a coverage of the space S. The codebook for
each f(¢) is designed independently of the others.

The performance of the quantizer is evaluated by five sets
of test data as follows:

1) 14780 vectors from the 5 filtering conditions but differ-

ent from the training set.

2) 14780 vectors from LPC analysis of speech corrupted

by additive white Gaussian noise with an SNR of 15 dB.

3) 14780 vectors from LPC analysis of speech corrupted

by car noise (at a speed of 120 km/h) with an SNR of
15 dB.

TABLE 1
PERFORMANCE RESULTS FOR 36 BIT SCALAR QUANTIZER
Condition | AVSD (dB) | Type Type 2
Outliers (%) | Outliers (%)
Different filters 0.99 317 0.03
White noise 0.80 013 0
Car noise 0.92 1.10 0.01
Babble noise 0.96 1.62 0.02
Randomn LSFs 1.16 6.51 0.13

4) 14780 vectors from LPC analysis of speech corrupted
by multitalker babble noise with an SNR of 30 dB.
5) 10000 randomly generated LSF vectors.

For the first four items, 18 sentences of speech from
18 speakers (1 sentence for each speaker) from the TIMIT
database are used. They are different from the ones used to
derive the LSF’s that train the quantizer. The noise is added
to the original 16 kHz sampled speech and filtered in the same
way as the speech such that the resulting SNR (as mentioned
above) is obtained just prior to LPC analysis.

To generate the test data for item 5, the procedure is as
follows. Wz first transform the training data vectors to log-
area ratio vectors, and compute the mean and variance of
each component. To get one random log-area ratio vector, we
use a Gaussian random number generator for each component
with the computed mean and variance. Finally, we transform
this log-area ratio vector into the corresponding random LSF
vector.

A 36 bit scalar quantizer achieves about a 1 dB AVSD for
the test conditions. The bit allocation is (4, 4, 4, 4, 4, 4, 3, 3, 3,
3). Table I shows the performance results. These results were
obtained by doing a sequential search for the best codebook
entry for each LSF separately such that ordering is preserved.
Better search strategies are discussed later.

As seen trom Table I, the scalar quantizer works reasonably
well on a variety of input vectors. The outliers are mainly
due to clipping of one or more LSF components. For speech
degraded by noise, a somewhat better performance is achieved
than for LSF’s obtained from noiseless speech. This is because
additive noise generally moves each f(i) towards a region
in [fmin(4). fmax(7)] that is more densely populated by the
training data, and at the same time reduces its variance. The
case of lowest variance and best performance is for speech
with white noise. The poorest performance is, as expected, for
random LSF's. However, even for these, the resulting AVSD
is only slightly higher than for the LSF’s obtained from the
various filtering conditions.

A 34 bit DLSF scalar quantizer achieves about the same
performance as the 36 bit LSF quantizer for all the testing
conditions. The bit allocation is (4, 4. 4, 4, 3, 3, 3, 3,3, 3).
The sequential search strategy is as outlined in [4]. The first
DLSF is A(1) = f(1). It is quantized to A(1) = f(1). Then,
for i = 1 to p — 1. the value

Ali+1) = f(i+1) - f(9) )
is quantized to A(i +1). The reconstructed LSF’s are given by
fi+ 1) =Ffi)+Agi+1) 5)

for i = 1 to p — 1. The design of a globally optimum scalar
quantizer based on dynamic programming (as opposed to a
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locally optimum solution provided by the LBG method) is
dealt with in [13], [14]).

V. USE OF VECTOR QUANTIZATION

In the previous section, we saw that scalar quantization of
DLSF’s saves about 2 bits compared to scalar quantization
of LSF’s, for the same performance. Also, as pointed out
earlier, the various filtering conditions do not appear to alter
the distribution of the DLSF’s. It appears to be natural,
therefore, to consider a vector quantizer for DLSF’s. However,
unless the DLSF’s are quantized sequentially, (see (4) and
(5)), quantization errors propagate to the higher LSF com-
ponents and yield a large spectral distortion. Inspection of
this sequential quantization procedure shows that, except for
a renaming of the components, vector quantization of DLSF’s
reduces precisely to the vector quantization of LSF’s. We
show this equivalence in detail in the Appendix, for codebooks
constructed with the LBG algorithm, based on the distortion
measure d (see (2)). When the sequential procedure is used as
part of the LBG algorithm, the codebook for the DLSF’s is
shown to be equivalent to that for the LSF’s. Thus, for vector
quantization there is no advantage in going to DLSF’s.

It is clear from our discussion in Sections II and III that
robustness is not guaranteed for a vector quantizer even if the
same training data is used as for a scalar quantizer. The reason
is that the LBG algorithm (or any other reasonable algorithm
for that matter) allocates large numbers of codevectors to
regions of S that are densely populated by the training data,
and very few to the sparse regions. This gives rise to a large
spectral distortion whenever a test vector occurs in one of the
sparse regions. This problem can be alleviated by configuring
a training set with two components. The first component is the
set of LSF vectors corresponding to the 5 filtering conditions
discussed in Section [V. This data provides the empirical
estimate of the probability density. The second component
is a set of uniformly distributed vectors in S (which we
will call a “uniform sheet”). This set increases robustness
by covering the sparse regions of the first component. The
relative proportion of vectors from these two components is
determined experimentally to get the best performance.

It is, of course, not feasible to design a single codebook of
more than 12 bits because of the prohibitively large memory
and computational requirements. Two suboptimum approaches
are the multistage vector quantizer [15], [16] and the split
vector quantizer [6]. For both these methods, the codebooks
at each stage have fewer bits than when using a single
codebook. In the multistage technique, a given test vector is
quantized with the first codebook. For the remaining stages,
the quantization error from the previous stage is quantized
with its particular codebook. The final quantized version of
the test vector is obtained by summing the codevectors of
all the stages. Note, however, that the final quantized vector
is not guaranteed to satisfy the ordering property. Also, it is
not feasible to generate uniform sheets to adequately cover
10-dimensional regions. For LSF vectors, therefore, we are
forced to use a special case of a multistage vector quantizer,
called a split vector quantizer. Here, the codebook at each

TABLE II
PERFORMANCE RESULTS FOR 32 BIT VECTOR QUANTIZER USING RANDOM LSF's
Fraction of | AVSD (dB) Type 1 Type 2
uniform sheet Qutliers (%) | Outliers (%)

0.0 118 9.7 0.16

0.1 1.16 5.28 0.01

0.2 118 3.09 0.0

0.3 118 3.2 0.0

0.4 1.20 3.07 0.01

0.5 1.22 225 0.01

0.6 ] 2.49 0.0

0.7 |12 2.2 0.0

1.0 ‘ 1.49 6.46 0.0

TABLE 1T
PERFORMANCE OF VECTOR QUANTIZERS FOR LSF’s OBTAINED FROM SPEECH
Condition | Lowest bit | Fraction of | AVSDY (dB) | Type L Type 2
rate uniform sheet Outliers (%) | Outliers (%)

Different filters 27 0.0 )2 .31 0.0
White noise 28 0.0 032 0.07 0.0
Car noise 30 0.1 0% 0.51 0.0
Babble noise 28 0.0 0.8 0.77 0.0

stage quantizes only a subvector. We use a (3,3,4) split for
our 10-dimensional vectors. (i.e., the first stage quantizes
(f1, fa, fa), the second stage quantizes (f4, f5, f¢) and the last
stage quantizes (f7. fs, fo, fi0)). Clearly with this scheme, it
is possible to enforce ordering of the quantized vectors. The
ordering property also allows us to use codebook adaptation
which is discussed later. Finally, the reduced number of
dimensions for each codebook makes it feasible to generate
the uniform sheets mentioned in the previous paragraph.

We evaluate the performance of the different vector quantiz-
ers designed by using different proportions of the two training
data components. A sequential search is used to find the best
codebook entry for each subvector subject to the ordering
constraint. By far the most stringent test condition is that of the
random LSF’s. Table II shows the results of experimentation
with different proportions of the uniform sheet for a 32 bit
quantizer for this test condition. The bit allocation for the three
subvectors was chosen to be (11, 10, 11). From Table 11, it is
seen that a fraction of 0.6 for the uniform sheet results in the
fewest number of outliers. In comparison to the 36 bit scalar
quantizer, a matching AVSD and significantly fewer outliers
are obtained for fractions of 0.2 and 0.3. For this condition,
we clearly cannot go less than 32 bits.

Table III summarizes the results of similar experimentation
with the other testing conditions. When tested on LSF’s
obtained from the 5 filtering conditions, additive white noise
and babble noise, it turns out that the best performance is
obtained when nro uniform sheet is used. The criteria for
transparent quantization (see Section II) are met and the
performance is no worse than that of the scalar quantizer.
For the filtering conditions alone, we need only 27 bits. An
additional bit is needed for white noise and babble noise.
For the case of car noise, the best performance is obtained
if 10% of the training data is from the uniform sheet. A 30
bit codebook is required.

To achieve the performance of the 36 bit scalar quantizer,
we need 32 bits if we design the codebook in the manner
outlined above. Of course, the procedure of introducing the
uniform sheet may not be the best way of providing coverage
of sparse regions of the training data. Indeed, as we show in



RAMACHANDRAN et al.: A TWO CODEBOOK FORMAT FOR ROBUST QUANTIZATION OF LINE SPECTRAL FREQUENCIES 161

TABLE 1V
PERFORMANCE RESULTS FOR 30 BIT
Two-QuUANTIZER FORMAT USING RANDOM LSF’s

Fraction of | AVSD (dB) Type 1 Type 2 Vector quantizer
uniform sheet OQutliers (%) | Outliers (%) | selected (%)
0.0 115 4.56 0.01 54
01 1.1¢ 4.07 0.01 50
0.2 1.1t 3.92 0.0 16
0.3 1.1¢ 3.55 0.0 45
0.4 1.26 3.81 0.0 41
0.5 1.21 3.9¢ 0.01 38
0.6 1.2 4.03 0.0 36
0.7 1.27 3.83 0.0 33
10 12 | 553 0.0 19
TABLE V

PERFORMANCE OF 30) BIT Tw0-QUANTIZER FORMAT FOR LSF’s
OBTAINED FROM SPEECH. THE UNIFORM SHEET CONSTITUTES 20
OR 30% OF THE TRAINING DATA FOR THE VECTOR QUANTIZER

Condition | Fraction of | AVSD (dB) Type 1 Type 2 Vector quantizer
| uniform sheet Outliers (%) | Outliers (%) | selected (%)

Different filters | 0.2 1.01 0.64 0.0 67
Different filters 0.3 1.03 0.76 0.0 62
White noise 0.2 0.86 0.01 0.0 73
White noise 0.3 0.89 0.05 0.0 68
Car noise 02 7099 077 0.0 61
Car noise 0.3 1.00 0.38 0.0 38
Bahble noise 0.2 0.99 0.45 0.0 65
Babble noise 0.3 1.01 0.54 0.0 60

the next section, a scheme using two quantizers accomplishes
the coverage more efficiently.

VI. TWO-QUANTIZER FORMAT

Another way to improve coverage of sparse regions of the
training data is to use both a vector quantizer and a scalar
quantizer. The number of bits for each quantizer is the same
and one additional bit specifies which quantizer is used. The
encoding algorithm for each input vector is as follows:

1) Find the codeword for the vector quantizer that mini-
mizes d(f, f')

2) Find the codeword for the scalar quantizer that mini-
mizes d(f. f).

3) Select the codeword that results in the lowest SD.

The training data for the vector quantizer is as before. The
333355 vectors obtained from the 5 filtering conditions are
used to train the DLSF scalar quantizer.

We discuss next the performance of a 30 bit scheme (29 bits
for each quantizer +1 bit to specify the selected quantizer).
For the vector quantizer, the bit allocation is (10, 9, 10). In
the case of the scalar quantizer, the bit allocation is (3, 3, 3,
3,3, 3, 3,3, 3, 2). By examining the quantized vectors, some
benefits of this scheme are understood. The two quantizers
can complement each other. The vector quantizer deals better
with vectors whose components are clipped by the scalar
quantizer. The scalar quantizer can be better for inputs in
regions of the space that are otherwise sparsely covered by
the vector quantizer codebook. Using two quantizers has the
added advantage that the final selection can be based directly
on the SD. Generally, this yields a slight reduction in the SD
and can reduce the number of Type | outliers by 0.5%.

Table IV shows the performance of this scheme on the
random LSF’s as the testing condition. The 30 bit two-
quantizer scheme outperforms the 36 bit scalar quantizer even

0.09F 4

0.08[

Normalized Count
=4
f=3
&
T

0 05 1 15 2 25 3 35 4
Spectral Distortion (dB)

(a)

0.1 T T T

0.09 4

0.08[ g

§

Normalized Count
s o e
R 8 8

T T T
s ' L

°
8

o
o
=3
T
L

o

2
T

"

=3

05 1 15 2 25 3 35 4
Spectral Distortion (dB)

(b)

Fig. 1. Probubility density of spectral distortion for the case of babble noise.
In our scheme, a 20% sheet is used.

=)

when no uniform sheet is used. However, using a sheet
(fraction of 0.3) leads to the fewest number of outliers and
about the same AVSD as the 36 bit scalar quantizer. The next
best situaticn is when the fraction of the sheet is 0.2. When the
fraction of the uniform sheet is 0.2 or 0.3, the 30 bit scheme
is comparable to a 32 bit vector quantizer. It is interesting to
note from the last column of Table IV that the scalar quantizer
is chosen for quite a large percentage of the test data.

Table V shows the performance for the other testing con-
ditions when the uniform sheet comprises 20% and 30% of
the training data. It is seen that the two conditions are almost
equivalent. The fraction 0.2 is better for most of the conditions.
For both the fractions, the criteria for transparent quantization
are met. Compared to the 36 bit scalar quantizer, the number
of outliers are much less at the expense of a higher AVSD.
However, the latter difference is not as significant since the
AVSD is already 1 dB or less. Fig. 1 shows the probability
density of the spectral distortion for a 36 bit scalar quantizer
and our 30 bit scheme (20% sheet) when babble noise is the
testing condition.
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VII. CODEBOOK ADAPTATION

The investigation continues by attempting to further lower
the bit rate without sacrificing performance. Therefore, we no
longer do a comparison with the 36 bit scalar quantizer. Rather,
the results in Tables IV and V serve as the benchmark. The
(3, 3, 4) split vector quantization described above does not
take advantage of any dependence among the subvectors. As
far as the design of the codebooks is concemed, it is not
easy to take advantage of this dependence. The codebook
for each subvector has to be designed independently of the
others because a joint design is not feasible. However, in the
quantization of a given vector it is possible to capitalize on
the dependence. The basic idea is as follows. Suppose the ith
subvector is quantized to f,-. Then the ordering property of
LSF’s restricts the region in which the (i + 1)st quantized
vector fl 41 may lie. Rather than restricting the search of
the (7 + 1)st codebook to the allowed region, the entire
codebook may be mapped to that region, thus providing a
finer sampling of it. Note that if the mapping is completely
specified by the quantized vector f* there is no cost in terms
of bits. Also, since the mapping starts with one fixed codebook,
there is no overhead in terms of memory requirements. This
idea, called codebook adaptation, was first proposed for a
scalar quantizer in [14]. Our method is a multidimensional
generalization of this approach. The complete procedure is
outlined below.

Recall that the ith LSF is in the interval [fmin(2); fmax(?)]
(see Section IV). Suppose there are N subvectors f, of
dimension d; to be quantized by N corresponding codebooks
C;. Then, the quantized vector is f = [fi|fs| - |fw].
The subvector f, is quantized to f; = [f(1)f(2)--- f(d1)]
without any adaptation. Let the jth entry of C, be fj,z =
(fi(dy +1)f;(d1 +2) -+ f;(dy + da)). For each j, it must be
ensured that f;(d, + 1, > f(dy). If f(d1) < fmin(dy +1), this
naturally holds and no adaptation is performed. Otherwise, we
transform codebook C, to C% such that C} covers a smaller
space that is, in general, not similar in shape to the space
covered by Cy. Our transformation maps each component
of the jth entry separately. The mapped first component
fi(di + 1) is given by

fidi+1)
[(fi(di +1) = fmin(d1 + 1)) finax(d1 + 1) — f(d1)]
fmax(dl + 1) - fmin(dl + 1)
+ fldy). (6

Note that this is the mapping used in [14] for the scalar
quantizer. Successive components f;(d; + r) for r = 2 to
dy are sequentially mapped as outlined below. Regarding the

original codebook Cs, let

fmin(dl + T) R

if fmin(dl +r— 1) < fj(dl +7r — 1)
. S fmin(dl +T)
fildv+7-1)

if f]'(dl +r - 1) > fmin(dl + 7‘).

fm(dl + 7') =

Q)
For the transformed codebook C3}, let

fmin(dl +'l") .

i finlds + 7 — 1) < fi(dy 47— 1)
R S fm'm(dl + 7')
Fidy+7 1)

if f;((h +7 = 1)> fuin(d1 + 7).

frldi+7) =

®

Then, the mapping is given by (9) shown at the bottom of
the page.

Note the dependence on the previous component of the orig-
inal codeword and the mapped codeword. This is needed to
maintain the ordering property of the entries of C%. The next
subvector f., is quantized to f, using C%. Then, C3 is mapped
in a similar fashion as outlined above for the quantization
of f3. The process continues until all the N subvectors are
quantized.

In implementing the codebook transformation, we have
considered two options. Option 1 is to map every code-
word of C; (¢ = 2 to N).This is based on the heuristic
claim that the conditional probability density p[f (Ej;ll dy +
1),-+, f(Zi=y do)lf(Z;Z) de)] is similar in shape to the
probability density p[f(E;_} dk + U),---, f(Zi_, dz)]- Op-
tion 2 is to keep the codewords of C; that maintain the
ordering property intact and only map the other codewords.
This guarantees a lower distortion for any input vector if
N = 2. Experiments show that for our vector quantizers in
which N = 3, the performance is much better if Option 2 is
invoked.

Consider the case of a 30 bit vector quantizer alone in which
the fraction of the uniform sheet is either 0.2 or 0.3. For LSF’s
taken from speech, the AVSD consistently decreases by about
0.02 dB. Depending on the quantizer and the testing condition,
the ratio of the number of outliers with and without adaptation
ranges from 0.33-0.91 (average value is 0.57). In the case of
random LSF’s, the AVSD decreases by 0.09 dB and there are
0.58 as many outliers. Table VI gives the results for a 30
bit two-quantizer system with adaptation. The consequences
of adaptation are more apparent in terms of reducing outliers
than in diminishing the AVSD. Note that although adaptation
improves performance, the number of bits is not lowered.

[(£i(di +7) = frn(ds + ) [fmax(dr +7) = fL(dy + )]

fitdy +1) =

fmax(dy + 1) — fim(d1 + T)

+ fr(di+7) ©
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TABLE VI
PERFORMANCE OF 30 Bt Two-QUANTIZER FORMAT WITH
ADAPTATION. THE UNIFORM SHEET CONSTITUTES 20 OR
30% OF THE TRAINING DATA FOR THE VECTOR QUANTIZER

TABLE VII
PERFORMANCE OF 29 BIT TW0-QUANTIZER FORMAT WITH ADAPTATION AND
HYBRID SEARCH TECHNIQUE. THE UNIFORM SHEET CONSTITUTES 20
OR 30% OF THE TRAINING DATA FOR THE VECTOR QUANTIZER

Condition Fraction of | AVSD (dB) Type 1 Type 2 Vector quantizer Condition Fraction of | AVSD (dB) Type 1 Type 2 Vector quantizer
uniform sheet Outliers (%) | Outliers (%) selected (%) uniform: sheet Outliers (%) | Outliers (%) | selected (%)

Different filters 0.2 0.99 0.39 0.0 (] Different filters 0.2 1.03 0.33 0.0 61
Different filters 0.3 1.01 0.42 0.0 66 Different filters 0.3 1.04 0.32 0.0 56
White noise 02 0.85 0.01 0.0 77 White noise 0.2 0.88 0.01 0.0 71
White noise 0.3 0.87 0.02 0.0 72 White noise 0.3 0.91 0.01 6.0 66
Car noise 0.2 0.98 0.64 0.0 64 Car noise 0.2 1.02 0.51 0.0 55
Car noise 0.3 0.99 0.21 0.0 60 Car noise 0.3 1.02 0.21 0.0 51
Babble noise 0.2 097 0.27 0.0 68 Babble noise 0.2 1.01 0.21 0.8 58
Babble noise 0.3 0.99 0.26 0.0 63 Babble noise 0.3 1.02 0.25 0.0 53
Random LSFs 0.2 114 2.70 0.0 53 Random LSFs 0.2 L.15 2.35 0.0 41
Random LSFs 0.3 1.14 2.31 0.0 52 Random LSFs 0.3 1.15 182 0.0 41

VIII. DYNAMIC PROGRAMMING SEARCH

The results generated so far are obtained by a sequential
search. For a split vector quantizer, a sequential search yields
the optimal codevector if the subvectors are _independent.
However, for ordered data (like LSF’s), where f, 41 depends
on f,, this is not true. The search is suboptimal even with
codebook adaptation, because the transformed codebook CY, |
is different for each entry of C!. We use a dynamic program-
ming technique called the A* algonthm [18] to get the optimal
codevector for a given split vector quantizer. The A* algorithm
can be used with or without codebook adaptation. We illustrate
the technique when codebook adaptation is used.

1) Initialization: We have a split vector quantizer with N

codebooks C; each having a size nZ and dimension
d;. The input vector is f = [f(1)f - f(p)] where

p = XN d;. The subvectors of f are denoted by
fi. The jth entry of C; is f], (i) d, +
1)+ fj(Zi_; d.)]. The corresponding entry of Ctis
fji =B de+ 1) fUSI, d,).

2) Quantize the first subvector f1 w1th every entry of
C). Arrange the results in a stack. The jth element
of the stack corresponds to the jth entry of C;. The
path length is p(j) = 1, the accumulated distortion is
do(4) = ZH, w(@)[f(i) - fj(z')]2 and the index matrix
entry is I(j,1) = j. The number of stack elements is
Mot = N7.

3) Given ny, stack elements, find the stack element k
corresponding to the smallest accumulated distortion
subject to a positive path length.

4) If p(k) = N, the algorithm terminates as the encoding
is complete.
5) Now, p(k) = m < N. Depending on the quantized

subvector from the transformed codebook C?! , adapt
Cmy1 to CL 1. Quantize fyy, +1 using each entry of
Cl.41- Accumulate the stack with n,,,, entries. For
these entries (I =: nyoc + 1 10 7oy + N1 corresponding
to the indices j = 110 n,,41),p({) = m + 1,1(1,9) =
I(k.i)fori=1to m,l(l,vn+1) = j. The accumulated
distortion is dy(() = dg(k) + SV_, w(i)[f(i) JHa)?
where u = Y7, d, + L and v = £ 4, Update the
value of n¢. Set p(k) = 0. Go back to step 3.
The A* method has been successfully applied to the scalar
quantization of DLSF’s [19]. However, due to the mismatch

between the weighted squared Euclidean distortion and the SD,
a hybrid scheme is suggested in [19]. For any input vector,
there are two possible codevectors, one from a sequential
search and one from an A* search. The codevector that yields
the smallest SD is chosen. We use the hybrid technique
for both the vector and scalar quantizers to select the best
codevector in terms of SD among four possibilities. The first
two are the codewords from the vector quantizer resulting from
a sequential and A* search. The same procedure is repeated
for the scalar quantizer to get the other two possibilities. Table
VII shows the results for the resulting 29 bit scheme. For the
vector quantizer, the bit allocation is (10, 9, 9). In the case
of the scalar quantizer, the bit allocation is 3, 3,3,3, 3,3,
3,3, 2 2.

Compared to a 30 bit system with no adaptation (see Tables
IV and V), the AVSD is about the same and the number of
outliers are: reduced. The A* algorithm offers much more of
an improvement for the scalar quantizer than for the vector
quantizer. This leads to an increased usage of the scalar
quantizer for all the testing conditions as seen in Tables VI and
VII. Transparent quantization is achieved by a 29 bit system
for LSF’s obtained from speech. The results are generally
about the same whether we use a 20 or 30% uniform sheet to
train the vector quantizer. However, note that the 30% sheet is
better for random LSF’s and can bring the number of outliers
below 2%. The combination of codebook adaptation and the
A* algorithm results in a savings of 1 bit. Fig. 2 shows the
probability density of the spectral distortion using the two-
quantizer scheme (30% sheet) when tested on the filtering
conditions. In Fig. 2(a), 30 bits are used with no adaptation
and a sequential search. In Fig. 2(b), 29 bits are used with
adaptation and a dynamic programming search.

IX. SUBIECTIVE TESTING

The results in Table VII show that our 29 bit system can
achieve transparent quantization. We further tested the scheme
in a coder. Ideally, we would like to compare synthesized
speech signals that differ only due to LPC quantization, and
demonstrate that there is no perceptible difference. However,
in existing predictive coders operating at rates below 8 kb/s,
the coding distortion is not confined to that of LPC quanti-
zation. Specifically, consider Code Excited Linear Prediction
(CELP) [20]. The excitation signal and the LPC parameters
both are subject to quantization distortion. However, the indi-
vidual distortions are not independent. A coarse quantization
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Fig. 2. Probability density of spectral distortion for the case of different

filtering conditions. A 30% sheet is used.

of the LPC parameters. for instance, can be compensated for
by a fine quantization of the excitation signal. There is no
way of rigorously dealing with this problem. We alleviate it
by using the CELP coder of [21]. In that coder the excitation
is quantized at 4.8 kb/s. That is neither too coarse (which
would give poor quality speech) nor too fine (which could
lead to the compensation mentioned above). In implementing
the adaptive codebook. we determined the best delay by an
exhaustive search and used that value without doing any delay
smoothing. The stochastic codebook contribution is adaptively
controlled [22] to enhance the periodicity of the synthesized
speech.

To study the effect of quantization, we generate two syn-
thetic speech signals. Both use the coder of [21] with the
LPC vector updated every 20 ms. The difference is that
in one case, the LPC parameters are not quantized and in
the other case, our 29 bit scheme (including adaptation and
dynamic programming search) is used. In the latter case, the
CELP coder operates at a bit rate of 6.25 kb/s. We compare

the quantizers resulting from both the 20 and 30% sheets
to the unquantized case. Sixteen sentences from the TIMIT
database encompassing 8 male and 8 female speakers were
processed. Eight different conditions were represented such
that for each condition, one male and one female speaker
were used. The five filtering conditions were included. The
other three corresponded to noisy speech. The additive white
Gaussian noise was filtered by the 3400 Hz lowpass filter only
(SNR of 15 dB). The car and babble noise (SNR of 15 and 30
dB, respectively) were filtered by the IRS filter. Ten listeners
participated in a pair comparison test. The two sets of decoded
speech for zach sentence were played in both orders. The
ordering was randomized for each sentence. The participants
had the option of indicating a preference or declaring no
preference.

Consider the scheme in which the vector quantizer is
designed with a 20% sheet. The mean preference for the CELP
coder with quantized LPC parameters is 48.0%. The standard
deviation is 5.3. The 95% confidence interval as calculated
using the t distribution ranges from 44.0 to 52.0. When a 30%
sheet is used, the mean preference for the coder with quantized
parameters s 47.0%. The standard deviation is 4.5 and the
95% confidence interval ranges from 43.6-50.4. This shows
that the coders are indistinguishable and the quantization does
not contribute to audible distortion.

X. SEARCH COMPLEXITY

We define the search complexity to be the total number of
comparisons N¢ between the input vector and the codevectors
to obtain the quantized vector. For a b bit quantizer, an
exhaustive search requires Nc = 2* comparisons, which for a
30 bit quantizer is clearly unfeasible. The use of a sequential
search and a split vector quantizer alleviates the complexity
although the optimal codevector is not necessarily obtained.
Consider our 30 bit system. When there is no adaptation, the
29 bit (10, 9, 10) split vector quantizer involves a maximum of
210 4+ 29 4+ 210 = 2360 comparisons. When adaptation is used,
the number of comparisons always equals this maximum. For
the 29 bit scalar quantizer, 76 comparisons are performed.
An extra comparison dictates the type of quantizer used.
Therefore, N = 2637 assuming adaptation is performed.

Although the 29 bit system gives a savings of 1 bit, a
significantly higher complexity is needed to maintain the same
performance. For the vector quantizer, a sequential search
with adaptarion involves 2048 comparisons. The complexity
of the A* algorithm is input dependent and hence, a random
variable. Since the best codevector in terms of weighted
squared Euclidean distortion is found, we want to show that
the complexity is significantly lower than for an exhaustive
search. In our implementation, if the number of comparisons
exceeds 10°, we revert to a sequential search. Fig. 3 shows
the probability density of the number of comparisons for the
vector quantizer (20% sheet) for two testing conditions. The
first is for LSF’s obtained due to different filters. The second
is for random LSF’s. For the filtering conditions, the average
number of comparisons is 13430 and the standard deviation
is 14977. The number of comparisons exceeds 10° about
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Fig. 3. Probability density of the number of comparisons for a 28 bit vector
quantizer (20% sheet).

1.02% of the time. In the case of random LSF’s, the average
number of comparisons is 28 138 and the standard deviation
is 30853. The number of comparisons exceeds 10° about
9.68% of the time. For both conditions, the search complexity
is significantly less than for an exhaustive search. Since the
training data includes the filtering conditions, the optimal
path is more distinguishable from the competing paths when
the testing also includes the same filtering conditions. This
explains the higher search complexity for the random LSFs.
Since the maximum number of comparisons is a significant
issue, Fig. 3 suggests that an alternative implementation can
lower the threshold below 10° for reverting to a sequential
search. Further studies should examine the tradeoff between
this threshold and pertormance.

For the scalar quantizer, a sequential search involves just
72 comparisons. In our implementation of the A* algorithm,
the number of comparisons again does not exceed 107, Fig. 4
shows the probability density of the number of comparisons for
the scalar quantizer. For the filtering conditions, the average

Fig. 4. Probubility density of the number of comparisons for a 28 bit scalar
quantizer.

number of comparisons is 796 and the standard deviation is
3682. The number of comparisons exceeds 10° about 0.05%
of the time. In the case of random LSF’s, the average number
of comparisons is 1573 and the standard deviation is 8386.
The number of comparisons exceeds 105 about 0.47% of the
time. Again, note the higher search complexity for the random
LSF’s. Alsc, the complexity is less than for a vector quantizer.
Given that 4 comparisons are needed to determine the type of
quantizer used, we add the average value for the A* search to
get N¢ = 16 350 (different filters) and N = 31 385 (random
LSF’s).

The number of comparisons is directly related to a more
precise quantity, namely, the number of arithmetic opera-
tions. The arithmetic complexity depends on the calculation
of the distortion measure, the adaptation algorithm and the
computation of the spectral distortion. Also, one comparison
for the scalar quantizer involves less arithmetic complexity
than for a vector quantizer thereby confirming the lower
complexity the scalar quantizer offers. Consider a 30 bit
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system with adaptation and a sequential search and a 29 bit
system with adaptation and a dynamic programming search.
The maximum number of comparisons for the 30 bit system
is less than the average value for the 29 bit system when
individually examining the vector and scalar quantizers. Also,
the adaptation algorithrm has to be usually applied more than
once when an A* search is used. Two more spectral distortion
computations are needed for the 29 bit system. The 29 bit
system is more complex in terms of arithmetic complexity.
However, it is much better than an exhaustive search which
would involve 228 comparisons for each quantizer.

XI. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a 30 bit quantization scheme
that is robust to a wide variety of inputs. The performance is
at least equal to that of a 36 bit scalar quantizer for various
test conditions that include a set of randomly generated LSF’s.
The scheme is based on a two-quantizer format involving both
a vector and a scalar quantizer. For each input, the quantizer
that achieves the lower distortion is used.

The vector quantizer is designed with training data that has
two components. The first component, consisting of LSF’s
derived from speech passed through various filters in common
use, provides coding efficiency. The second component, con-
sisting of a set of vectors uniformly distributed over the space
S described by the LSF’s in the first component, provides
robustness. The scalar quantizer is designed with training
data from the first component only. The two key factors in
achieving robustness are our configuration of the training set
for the vector quantizer, and the option of using the scalar
quantizer. The scalar quantizer plays an important role by
dealing better with regions of S that are sparsely covered by
the vector quantizer codebook.

A further savings of 1 bit is obtained by codebook adapta-
tion and a dynamic programming search. We present a new
codebook adaptation scheme for the split vector quantizer
that is a generalization of a method for scalar quantizers.
The adaptation is based on transforming the codebook for a
particular subvector in 1 manner that depends on the previously
quantized subvector and is such that ordering is preserved.
This reduces the SD without an increase in bits and without
additional memory requirements. A dynamic programming
search using the A* algorithm alleviates the suboptimality
of a sequential search. Although more complex than the
sequential search, the .4* method is much more efficient than
a prohibitive exhaustive search.

To evaluate our 29 bit quantizer subjectively, we used a
CELP coder to code several sentences with quantized as well
as unquantized LPC parameters. The experiments showed
that the output speech signals obtained with and without
quantization are indistinguishable to the ear.

APPENDIX A

We compare the codebooks that are derived by using the
LBG algorithm (with binary splitting) for LSF’s and DLSF’s
and show that the codebooks are equivalent. We start with a
training set of LSF vectors ¢ with components (¢) for s = 1

to p. The equivalent set of DLSF vectors have components
At(1) = t(1) and At(i4+ 1) = t(s + 1) — () for ¢ = 1 to
p — 1. Consider the vector quantization of LSF’s using the
distortion measure d as given by (2). For a 0 bit system, there
is one Voronoi cell R; and one codeword f1 with components!

fili) =

1 — .
N (R Q) t0) (A1)
for ¢ = 1to p where N(R;) is the number of training vectors in
R;. The procedure continues by splitting the centroid _fl into
two codewords f1 and f2 as a starting point for a 1 bit system.
The Voronoi cells and centroids are iteratively updated until
the average distortion decreases only slightly. The Voronoi
cells are defined as

Bi=t:dt, fy) <d&.fj)  Vi#i] (A2
for + = 1 and 2. The codewords are expressed as
2 1 —
=N .
fo= vy 2t (A3)
teR;

for ¢ = 1 and 2. This process continues until a vector quantizer
with the desired number of bits is designed.
For DLSF’s, we start with the distortion measure

da =Y w(i)[A, (i1 — AG)]?

=1

(A4)

where the weights w(4) are as defined in (3). Note that we are
using the variable A, (¢) to correspond to the sequential search
(see (4) and (5)). It can be shown that d5 = d thereby giving
the same distortion measure as for LSF’s. Consider the LBG
algorithm applied on DLSF’s with the distortion measure da.
For a 0 bit system, there is one Voronoi cell S; and one DLSF
codeword. It can be shown that this codeword has components?

Ay(i) = 51 LAt

for ¢ = 1 to p where N(S;) is the number of training vectors
in S;. Sincz Ry = §;, the LSF and DLSF codewords are
related as

(AS)

A1) = f1(1)
A(i+1) =HG+ 1) - A1)

for ¢ = 1 to p — 1. To proceed to a 1 bit system, the
DLSF centroid is split into two to provide an initial codebook.
Assume that the initial codebook for DLSF’s is related to that
of LSF’s as in (A.6) and (A.7). Since do = d, the Voronoi
cells are identical in that S; = R; for ¢ = 1 and 2. Therefore,
the codebook for DLSF’s is again related to the codebook for
LSF’s as in (A.6) and (A.7). This is true for every iteration. By
induction, as the number of codewords is increased to get the
desired number of bits, the codebooks for LSF’s and DLSF’s
continue to be related.

(A.6)
(A7)

!Note that although the weights are input dependent, we use the above
expression for the components of the centroid that would result if the weights
are constant. This is done to ensure that the ordering property is satisfied.

2 Again, we compute the centroid that would result if the weights are
constant.
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The conclusion of this derivation is as follows. The es-
tablished relationship between the codebooks for LSF’s and
DLSF’s as given by (A.6) and (A.7) shows a form of equiv-
alence in that the same number of bits are needed in either
domain to get a certain performance. However, in applying the
LBG algorithm in either domain, this equivalence is based on
the assumption that the initial codebooks derived from binary
splitting depict this same relationship.
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