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Abstract 

- 

A method is described which can be used to design two-dimensional nonrecursive linear-phase filters. The approach is 
based on formulating the mean-square error between the amplitude responses of the practical and ideal digital filters as 
a quadratic function. The coefficients of the filters are obtained by solving a set of linear equations. This method leads to 
a lower mean-square error and is computationally more efficient than the eigenfilter method. 

Zusammenfassung 

Es wird eine Methode beschrieben, die zum Entwurf von zweidimensionalen nichtrekursiven linearphasigen Filtern 
benutzt werden kann. Die Losung basiert auf der Formulierung des mittleren quadratischem Fehlers zwischen den 
Betragsfrequenzgangen der praktischen und der idealen digitalen Filter als quadratische Funktion. Man erhalt die 
Koeffizienten der Filter durch die Losung eines linearen Gleichungssystems. Diese Methode fiihrt auf einen geringeren 
mittleren quadratischem Fehler und ist recheneffizienter als die Eigenfilter-Methode. 

Rhmi 

Une methode est d&rite, qui peut Ctre utilisee pour concevoir des filtres a phase lineaire nonrecursifs bi-dimensionnels. 
Cette approche est basee sur la formulation comme fonction quadratique de l’erreur quadratique moyenne entre la 
reponse en amplitude des filtres numeriques ideal et pratique. Les coefficients du filtre sont obtenus en resolvant un 
systtme d’tquations lineaires. Cette methode mene a une erreur quadratique moyenne plus faible, et est plus efficace en 
terme de calculs que la methode du filtre aux valeurs propres. 

Keywords: Two-dimensional; Digital filters; Nonrecursive; Least-squares 

* Corresponding author 

0165-1684/95/$9.50 0 1995 Elsevier Science B.V. All rights reserved 
SSDI 0165-1684(95)00036-4 



362 S.S. Kidambi, R.P. Ramachandran / Signal Processing 44 (1995) 361-367 

1. Introduction 

The use of two-dimensional (2-D) nonrecursive filters is motivated by their inherent stability and their 
rendering of linear phase by the imposition of coefficient symmetry. This coefficient symmetry that achieves 
linear phase is important for image processing applications and for simplifying design and implementational 
complexity [2]. Additional coefficient symmetry can be imposed to further alleviate the design and 
computational effort [3]. Design approaches that are extensions of the approaches used for one-dimensional 
(1-D) filters include the use of windows and the frequency sampling technique [3]. The frequency transforma- 
tion method starts with a 1-D linear phase filter designed by a 1-D technique and transforms it into a 2-D 
linear-phase filter [3]. The transformation function is the Fourier transform of a 2-D zero-phase sequence. 
A well known example was introduced by McClellan [4]. Although designs based on the Chebyshev 
approximation problem exist [3], the methodology is not a simple extension of the Remez exchange 
alogrithm. The eigenfilter approach proposed in [ 1 l] for the design of 1-D filters has recently been extended 
to the design of 2-D filters in [S]. In this method, an error function based on the difference between a desired 
response and the amplitude response of the practical filter is formulated. The desired response is equal to 
a scaled version of the ideal response where the scaling factor depends on the amplitude response of the 
designed filter at an arbitrary 2-D frequency. This is done to set up the error function in a quadratic form in 
order that the filter coefficients are found by computing the eigenvector corresponding to the smallest 
eigenvalue of a real, symmetric and positive-definite matrix. 

In this paper, the least-squares approach for the design of 1-D nonrecursive linear-phase filters described in 
[6-81 is extended to the design of 2-D nonrecursive linear-phase filters. The procedure involves formulating 
the error between the practical and ideal responses as a quadratic function. The explicit inclusion of the ideal 
amplitude response in the error function leads to a more meaningful formulation than the eigenfilter method 
and does not necessitate the use of a reference frequency. The coefficients of the filter are obtained by solving 
a system of linear equations. By way of some design examples, our method is compared with the eigenfilter 
approach in terms of several performance measures and it is shown that our method is superior to the 
eigenfilter approach. 

2. Two-dimensional quadrantally-symmetric nonrecursive filters 

A 2-D nonrecursive filter with N1 by N2 taps can be represented by the transfer function 

N, - 1 Nz - 1 

W1,zz) = c c wh,~2)z;“‘G”‘, (1) 

n,=O n,=O 

where h(nl, nz) is the impulse response of the filter. By incorporating the linear-phase symmetry constraints, 
the frequency response of the 2-D filter is given by 

H(ej”l, e jw) = M(ol,02)e-j(v)ml ,-j(y)w , 

where M(m1,m2) is the amplitude response. For the case when the filter has quadrantal symmetry, the 
following condition holds: 

h(nl,n2) = h(N1 - 1 - nl,n2) = h(nl,N2 - 1 - n2) 
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for 0 G nl < Nr - 1 and 0 < n2 d N2 - 1. When N1 and N2 are both odd, from Eq. (3) we have 

h 
N1 - 1 
-yk,,+k2 !!!!+k,,N22-1 I k2 

N1 - 1 
2 + kl, v - k2 

N2 - 1 = ~ + kl, ~ 2 
+ k2 

for 1 < kl < (Nr - 1)/2, 1 < k2 d (N2 - 1)/2. Consequently, the amplitude response is given by 
NI_ Y 

M(%,W2) = 2 1 a(~,,n2)cos(n,o,)cos(n,w,). 

VI! =o n2 =o 

The coefficients a(nr , n2) are related to the filter coefficients h(q) n2) by 

(4) 

(5) 

a(O,O)=h 

a(0,n2)=2h Nr-1 ’ N,-1 2 for n2 = 1,2, . 
- 1 

__ ---n 2 2 . . Nz , ,2 

- 1 1 - a(n,,O)=2h ( ------n N1 17 N2 1 for nl - 
~ 2 2 

= 1,2, . . . Nr 1 
,2, 

- 1 1 - 

a(nl,nz) = 4h ----nl,p-n Nr N2 2 > 

- 

1,2, . . . ,- N1 1 

- 

for nl = , n2 = 2 2 2 1,2, ____ N2 1 . . . . 2 . 

Other cases of symmetry for different Nr and N2 can be obtained in a straightforward manner [ 11. The ideal 
linear-phase frequency response can be written as 

H,(ej”l,ej”2) = D(o,,o,)e-jQ1w ,-jQzm . 
(6) 

By comparing (2) and (6), we note that a 2-D nonrecursive filter can be designed whose amplitude response 
approximates any arbitrary desired characteristic D(or ,w2). 

3. Error function minimization 

The mean-square error between D(or , 02) and M(or , w2) can be expressed as 

where P is the passband and S is the stopband in the (wr ,02) plane. As can be noted from Eq. (7), D(or , 02) is 
zero in the stopband. The quantities a and j reflect the relative emphasis given to the passIband and 
stopband, respectively. By minimizing the error function with respect to the filter coefficients, the required 
filter can be designed. 

For the case when N1 and N2 are odd, let the amplitude response be given by 

Mkh,o2) = ~TCh,W2), @I 
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where 

1 
cos(w2) 

41,O) 
4&l) 

a= 

$.Ni- 1) 
2 

C@l,W2) = (9) 

The mean-square error given by (7) can be rewritten as 

rr 
E a mse = JJ C~2(w,~2) - 2Wo,,a)aTc(~1,4 + aTc(01,W2)cT(W1,02)aldoldo2 

P 

+B IS aTc(~1,~2)~T(W1,W2)adW1 doz. 
S 

(10) 

In minimizing E,,, , we set ~E,,,/~a(i,j) = 0, for 0 < i < (N, - 1)/2,0 < j < (N, - 1)/2, to obtain a system 
of linear equations (aQ + jlR)a = ad where 

Q= IS c(01,02)cT(W1,W2)dW1d02, 
P 

R= c(01,02)cT(OI,W2)d01d02, 

(11) 

(12) 

d= IS D(ol,wz)c(o,,wz)doldoz. (13) 
P 
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It can be noted from the above equations that Q and R are positive-definite, real and symmetric matrices. 
Consequently, the system of linear equations can be solved by a computationally efficient method that avoids 
matrix inversion [lo]. 

4. Design examples 

In this section, we provide two design examples in which the entries of Q, R and d are obtained either in 
closed form or by numerical integration. In the first example, these entries are obtained in closed form while 
in the second, the entries are obtained by numerical integration. For the sake of comparison, the examples 
chosen here are the same as those presented in [S]. For all the designs, CI = /I = 1 and N = N1 = N2. 

Example 1 (Fan jfilter). For this filter the desired amplitude response is given by 

WJl,%) = 
i 

1 P: o<or <x, 01 <<z <K, 

0 s: w,<o1<7r, o<w~<x--~w,. 

Here, N has been chosen to be equal to 23 and o, = 0.167~. The magnitude response of the designed filter is 
shown in Fig. 1. 

Example 2 (Circular lowpassjilter). In this example, the desired amplitude response is given by 

WA ,%l = 
i 

1 P: O~~~~w,, 

0 s: 0, <J_ < 15. 

Here, oP = 0.5x, o, = 0.7x and N = 25. Fig. 2 shows the magnitude response of the designed filter. 

Fig. 1. Magnitude response of a 23 x 23 fan filter with 
W, = 0.16~. 

Fig. 2. Magnitude response of a 25 x 25 circular lowpass filte: 
with n> 
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5. Performance results 

In this section, we compare our design method with the eigenfilter approach from three points of view, 
namely, the saving in the number of floating point operations (flops), the mean-square error E,,,, and the 
peak error, both in the passband and the stopband. The passband peak error E, and the stopband peak error 
E, are defined, respectively, as 

E, = max IWW,O~) - WW,W)I, 
@JI.WZ)EP 

(14) 

Es= max IM(w1,02)I. 
(W,W)ES 

(15) 

For the sake of comparison, the examples in [5] were designed using our method. A comparison of the two 
methods with respect to the number of flops is shown in Table 1 and that with respect to E,,, is shown in 
Table 2. It must be mentioned that the entries for the eigenfilter method in Table 1 have been normalized 
relative to the number of flops in our method. Table 3 shows a comparison of the peak error, both in the 
passband and stopband for the two methods. As can be seen from the tables, our method is computationally 
more efficient and yields a lower mean-square error as compared to the eigenfilter method. A detailed 
analysis of the computational complexity and error measure of the two methods can be found in [9]. 

Table 1 Table 2 
Comparison of the two methods with respect to the number of Comparison of the two methods with respect to the mean- 
floating point operations square error 

Examples 

Floating point operations 
(flops) (normalized relative 
to our method) 

Our Eigenfilter 
method method 

Saving 
in 
flops 

(W 

Mean-square error (E,.) 

Examples 
Our Eigenlilter 
method method 

Rectangular filter 
Fullband filter 
Fan filter 
Conic filter 
Circular filter 
Minimum energy 
filter 

1 4.3845 77.19 
1 3.0071 66.75 
1 2.0027 50.07 
1 1.4435 30.72 
1 1.2435 19.58 

1 1.0059 0.59 

Rectangular filter 1.600 x lo-’ 2.121 x 10-S 
Fullband filter 3.461 x lo+ 5.132 x lo-“ 
Fan filter 7.000 x 1o-3 7.000 x 10-S 
Conic filter 5.819 x lo-“ 1.113 x 10-S 
Circular filter 1.745 x 10-3 1.745 x 10-S 
Minimum energy filter 4.788 x 1O-6 4.799 x 10-b 

Table 3 
Comparison of the two methods with respect to the peak error 

Examples 

Peak error in the passband (EJ Peak error in the stopband (E,) 

Our Eigenfilter Our Eigenfilter 
method method method method 

Rectangular filter 2.399 x lo-’ 2.154 x lo-* 8.084 x lo- 3 8.144 x 1O-3 
Fullband filter 4.179 x 10-2 4.455 x lo- * - 

Fan filter 1.013 x 10-l 1.005 x lo- I 1.339 x 10-l 1.348 x 10-l 
Conic filter 3.823 x lo-’ 2.457 x lo-* 1.355 x 10-Z 1.326 x lo- * 
Circular filter 2.216 x lo-* 2.191 x lo-* 1.794 x lo- * 1.808 x lo-* 
Minimum energy filter - 8.716 x 1O-3 8.735 x lo-” 
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6. Conclusions 

In this paper, a method to design 2-D nonrecursive linear-phase filters has been presented. In this method, 
we explicitly minimize the absolute mean-square error between the ideal and actual frequency responses. 
This leads to a closed form solution for the filter coefficients in terms of a system of linear equations. The filter 
coefficients are found in a noniterative and computationally simple manner. It has been shown that the filters 
designed using our method have a lower mean-square error as compared to those designed using the 
eigenfilter method. Moreover, the computational complexity in our method is significantly lower than that in 
the eigenfilter method. 
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