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Design of Nonrecursive Filters Satisfying
Arbitrary Magnitude and Phase Specifications
Using a Least-Squares Approach

Sunder S. Kidambi and Ravi P. Ramachandran

Abstract—A method is described which can be used to design nonrecur-
sive filters satisfying prescribed magnitude and phase specifications. The
method is based on formulating the absolute mean-square error between
the frequency response of the practical filter and the desired response as
a quadratic function. The coefficients of the filters are obtained by solving
a set of linear equations. It is shown that our method, in general, has an
order of magnitude lower computational complexity than the eigenfilter
method. For the design of allpass filters, in particular, the computational
complexity is three orders of magnitude lower than the eigenfilter method.
In addition, our method yields a lower mean-square error.

I. INTRODUCTION

The design of linear-phase finite impulse response (FIR) filters
is generally carried out using the McClellan-Parks (MP) algorithm
[1] and least-squares methods [2]-[9]. The MP approach is based on
the Remez exchange algorithm and yields filters that are optimal in
the minimax sense. In {3]-[6], FIR filters are designed using a least-
squares method, called the eigenfilter method, in which the mean-
square error is formulated in a quadratic form. The filter coefficients
are obtained by computing the eigenvector corresponding to the
smallest eigenvalue of a real, symmetric and positive-definite matrix.
In [2], [7]-[9], the least-squares method is based on formulating the
mean-square error as a quadratic function. Here, the filter coefficients
are obtained simply by solving a system of linear equations.

A linear-phase FIR filter has symmetry/antisymmetry constraints
imposed on its impulse response. Consequently, for a given filter
length, the group delay assumes a constant value for all frequencies.
Furthermore, a large length FIR filter is needed to satisfy a narrow
transition-band specification thereby leading to a rather high group
delay. On the other hand, a minimum phase FIR filter can be designed
to achieve a lower group delay but does not provide a constant group
delay for all frequencies including those in the passband. Therefore,
to achieve an arbitrary constant group delay filter, neither a linear
phase nor a minimum phase filter can be used. Other nonlinear phase
characteristics, such as mandated by allpass phase equalizers, can
only be achieved by filters satisfying arbitrary magnitude and phase
specifications.

In [10]-[14], several methods have been proposed to simulta-
neously approximate magnitude and phase specifications. In [10],
a complex Chebyshev approximation is first converted into a real
approximation problem. The solution to an overdetermined set of
linear equations obtained by linear programming techniques [15]-
[17] yields the filter coefficients. A linear programming approach is
also used in [11] to design FIR allpass phase equalizers. This method
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requires a large memory space and considerable computing time. In
[12], a complex Chebyshev approximation is converted into two real
approximation problems. The MP algorithm is applied to the two real
problems individually to obtain the filter coefficients. In [13] and [14],
the eigenfilter method for the design of linear phase filters is extended
to the design of FIR filters whose frequency response approximates a
complex-valued function in a least-squares sense. It is shown that the
eigenfilter method is computationally efficient and yields filters that
are comparable in performance with those obtained in [10] and [11].

It has been shown that the least-squares method in [8] and
[9] for the design of linear phase filters is computationally more
efficient and leads to a lower mean-square error than the eigenfilter
method. In this paper, we extend this method to the design of FIR
filters satisfying prescribed magnitude and phase specifications. Our
method has, in general, an order of magnitude lower computational
complexity than the eigenfilter method [13], [14]. For the case of
allpass filters, in particular, our method only requires the evaluation
of a vector. Consequently, our method has approximately three orders
of magnitude lower computational complexity than the eigenfilter
method. Through examples, it is also shown that our method yields
a lower mean-square error.

II. DESIGN PROCEDURE FOR FIR FILTERS

The frequency response of an FIR digital filter with N taps
specified by a real-valued impulse response h(n) is given by

N-1
H(e™) =Y h(n)e ™
n=0
N-1 N-1
= Z h(n)cos(nw) — Z h(n)sin(nw)
n=0 n=0
=hTc(w) — jh7s(w) ¢}

where
h = [R(0)h(1)R(2)---A(N — 1)]T
c(w) = [Lcos(w) cos(2w) - - - cos((N — 1)w)]T
s(w) = [Osin(w) sin(2w) - - - sin((N — 1)w)]”.
The phase response of the filter is given by
—1 (hs(w)
1
w)y=—t —_
o(w) an (hTC(w)
and the group delay is given by
d
T(w) = —EQ‘J(W)-
The desired frequency response D(w) having an amplitude re-
sponse M (w) and a phase response p(w) is given by
D(w) =
M(w)e?®™) = M(w) cos(p(w)) + JM(w)sin(p(w)) weP

w €S
(2
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Fig. 1. Frequency response of the bandpass filter. (a) Magnitude response.
(b) Group delay response in the passband.

where P is the passband, S is the stopband and
_dp(w)
dw

is the desired group delay response. Comparing (1) and (2) it can
be seen that a nonrecursive filter satisfying prescribed magnitude and
phase specifications can be designed provided the coefficients h(n)
are determined appropriately.

The mean-square error between D(w) and H(e’) can be ex-
pressed as

Euse = a /P ID(w) - H(e™)Pdw + 3 / H(e™) P
- a/P {(]\l(w)cos(p(w)) - th(w))2

+ (]\/I(w)sin(p(w)) +hTs(w))2}dw

Tp(w) =

+ 3/ h"(Q. + Q.)hdw 3)
S

where Q. = ¢(w)eT(w) and Q, = s(w)sT(w).

TABLE 1
BANDPASS FILTER COEFFICIENTS

3

h(n)

5.130387523660900e-03

9.888451904419063¢-03
-1.578075087670760e-02
-3.395956668768713e-02

7.426244047221808e-03

2.965599220047781e-02

3.559780413337920e-04

4.261220691298246¢-02

7.210925899355972e-02
-1.147468270152104e-01
10 | -2.332935178712081e-01
11 | 6.795511270065929e-02
12 | 3.382773056358781e-01
13 | 7.225351626564923e-02
14 | -2.620347047088969e-01
15 | -1.363457704465302e-01
16 | 9.006787721835299e-02
17 | 5.424676022631854e-02
18 | 1.326573210346884e-03
19 | 4.979996695722889-02
20 | 1.296947769629594e-02
21 | -5.938791705183812e-02
22 | -2.694045681525601e-02
23 | 1.359597120131944e-02
24 | -2.544992623975987e-03
25 | 5.119408357996645e-03
26 | 2.560589327968212¢-02
27 | 3.943365630876753e-03
28 | -1.658958743785633e-02
29 | -5.637372306205530e-03
30 | 2.395612858651372e-03

00 =3 O OV W N O

©

By minimizing the error function Emsewith respect to the filter
coefficients, the required filter can be designed. In minimizing E'nse,
we set 2Emse = 0 for 0 < n < N — 1, to obtain a system of linear

(n
equatiotfsh(on + 3R)h = ad, where
Q= / (Qc + Qs)dw @
P
R= [(Q-+Qui )
s

d=/ M (w)(cos(p(w))c(w) — sin(p(w))s(w))dw. (6)
P

It can be noted that Q and R are symmetric Toeplitz matrices.
Consequently, the system of linear equations can be solved by the
computationally efficient and robust Levinson’s algorithm which
entails only O(N?) complexity [19].

III. DESIGN EXAMPLES

Example 1
We design of a bandpass filter having the following specifications:

cos(yw) — jsin(~vw) w € P=[0.37.0.567]

D(w) = .
0 w €8 =1[0,0.2r] U [0.667. 7

The desired passband group delay is v = 12. The magnitude and
group delay response of a 31-tap bandpass filter designed using a =
1 and 3 = 10 are shown in Fig. 1(a) and (b), respectively. The filter
coefficients are tabulated in Table L.
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IV. DESIGN OF FIR ALLPASS PHASE EQUALIZERS

For an allpass phase equalizer, the desired characteristic can be
expressed as

D(w)=e

10(w)

= cos(p(w)) + jsin(p(w))w € P = 0,7].

Following the development in the previous section, E,j. is mini-
mized and a system of linear equations Qh = d is obtained. For
the design of allpass filters with specified phase responses, it is not

necessary to solve a system of linear equations to obtain the filter
coefficients. This is because Q can be written as

Q=/ (Qc+Q,)d
0
=l (®)

where I'is an V' x N identity matrix. Thus the filter coefficients can
be obtained simply as

h== ©
m

and consequently, the computational effort is significantly reduced.
In addition, if p(w) is symmetric or antisymmetric with respect to
7/2, the computational complexity is further reduced since only half
the number of coefficients need to be determined. Below we shall
consider the design of two allpass phase equalizers advanced in [11]
using our method.

A. Symmetric Phase Characteristics
The desired phase characteristic is given by

N-1
2

where the first term on the right-hand side is the linear phase term and
p(w) is a function of w symmetric about /2. It must be mentioned
that the number of filter taps N is odd. It follows that [11]

N - V
h(—l - n) = h<\T + n)when n is even

N
) = —h(—Q—l + n)when n is odd.

From (1), the allpass phase equalizer can be characterized by

plw) = —

@+ plw) (10)

Z ) cos(2nw) +]Zb n)sin((2n — 1)w)
n=0 n=1 (11)
where U = |¥1], v = | X4
r(35) n=0
a(n) =
2h(82 —2n0) n=1.2,....U
and
b(n )—2h<7\7 1 >n:1,2 ..... V.
2
Consequently (11) can be written as
T H(e) = 2" 6(w) + T a(w) (12)
where
a = [af O)a(l) L))"
b= [b(1 )"
(w) =[1cos(2w). .cos(ZUw)]T
(w) = [sin(w) sin(3w)...sin((2V — 1)w)]".

From (11), the mean-square error associated with the real part can
be written as
2
.u)) du.

En= / (costit=)) —ae(
0

By setting & Ba(n =0,for 0 <n <, we get Q a = d., where the
elements of Q are given by

(13)

i T n=m=0
Qa(nom)=¢% n=m#0 (14)
0 n#m
for 0 < n.m < U. The elements of d, are given by
da(n) = / cos(p(w)) cos(2nw)dw n =0,1,...,U. (15)
0
From (14) and (15), the elements of a are given by
—da,fn) n=20 6
a(n) = 4 o4 (
Meln) o yoU
m

Similarly, the mean-square error associated with the imaginary part
can be written as

T 2
E; = sin{p(w)) — br§()) de.
I ‘/O (Sll’l p )

Again, by setting L 8,7(" =0,for1 <n <V, weget Q)b = ds,
where the elements of Q,, are given by

a7

Qb(n.m)={§ o (18)
for 1 < n.m < V. The elements of d, are given by
dy(n) = /” sin(p(w))sin((2n — 1)w)dwn =1.2,.... 1.
’ (19)
From (18) and (19), the elements of b are given by
b(n) = w n=12.... V. (20)

Example 2: Chirp Allpass Phase Equalizer
The desired phase characteristic of the chirp allpass phase equalizer
is given by

N-1 8 T2
w)=—= w==lw—=]. 21
p() . ~(+-%) @1
Consequently, the group delay is given by
N-1 16 ™
w)y="——+—(w-=). 2
)= =+ — (2= 3) (22)

The amplitude and group delay response of a 61-tap phase equalizer
are shown in Fig. 2(a) and (b), respectively. Fig. 2(c) shows the
variation of the group-delay error (difference between the ideal group
delay and the obtained group delay) with frequency.

B. Antisymmetric Phase Characteristics

When p(w) is antisymmetric with respect to 7 /2, the coefficients
satisfy the following condition {11]:

hy<N_2_1__n>—h(\2 1+n)=0 when n is odd (23)

where, again, N is odd. In designing such allpass filters, Q and
h are given as in (8) and (9) except that the rows and columns
corresponding to the zero-valued coefficients are deleted.
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Fig. 2. Frequency response of the Chirp allpass filter. (a) Magnitude re-
sponse. (b) Group delay response. (c) Group delay error.

Example 3: Sine-Delay Allpass Phase Equalizer
The desired characteristic of the sine-delay allpass equalizer is
given by

N-1
plw)=— 5w + 27(1 — cosw). 24)
Consequently, the group delay is given by
N -
To(w) = - 2mwsinw. (25)

The amplitude and group delay response of a 61-tap phase equalizer
are shown in Fig. 3(a) and (b), respectively. Fig. 3(c) shows the
variation of the group-delay error with frequency.

V. PERFORMANCE RESULTS

In this section, we compare our design method with the eigenfilter
approach in terms of the mean-square error Eie, the peak error
given by

— 1Y — Jw
Eum = max |D(w)— H(e™)] (26)
and the peak passband group-delay error given by
E, = max|7,(w) = 7(w)] @7n

for all the examples in {13]. A comparison of the two methods with
respect to Emse, Far and E; is shown in Table II. The reference
frequencies for all the designs using the eigenfilter method have been
chosen as in [13].

A. Error Measure

Our method formulates a better error measure than the eigenfilter
method in that we explicitly minimize the mean-square error between
the ideal response and the frequency response of the obtained filter.
In contrast, the eigenfilter method does not take the ideal response
into account. Rather, it uses a scaled version of the desired frequency
response where the scaling factor is H(e’*°)/D(wo) and wo is an
arbitrary reference frequency. As a consequence, our method yields
a lower mean-square error. However, the differences in the value of
Esc obtained for both methods are small. Also, the differences in
the values of Ens and E- obtained for both methods are small.

B. Computational Complexity

For our method, the filter parameters are obtained by a system
of linear equations involving a symmetric Toeplitz matrix G =
(aQ + S8R). Such a system of linear equations can be solved by
the computationally efficient and robust Levinson’s algorithm {19]
which involves only O(N?) complexity.

In the eigenfilter approach [13], the mean-square error is formu-
lated as

Emse = hTPh

where P is a real, symmetric and positive-definite matrix. The coef-
ficients of the filters are obtained as the eigenvector that corresponds
to the smallest eigenvalue of P. In order to compute the smallest
eigenvalue and its corresponding eigenvector, generally, an iterative
inverse power method is used [3]. At the (k + 1)th iteration, a vector
Xi4+1 is computed from the previous iterate X as

-1
Yi+1 = P7xi

Xe+1 = Y1/ || Yet1 ||

(28)
29

where || yx+1 || denotes the Lo norm of yx41. If || Xeq1 — Xk ||< €
(typically e is about 1076), then xx 1 is a good approximation of the
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Fig. 3. Frequency response of the Sine-delay allpass filter. (a) Magnitude
response. (b) Group delay response. (c) Group delay error.

TABLE II
COMPARISON OF THE TWO METHODS WITH RESPECT TO THE MEAN-SQUARE, PEAK
MAGNITUDE AND PEAK GROUP-DELAY ERRORS FOR ALL THE EXAMPLES IN {13]

Erse Ey E,

Examples

Our Eigenfilter Our Eigenfilter Our Eigenfilter

method method method method method method

Lowpass 6.414e-05 | 6.525e-05 | 6.706e-02 | 6.503¢-02 | 1.007¢-00 | 1.029¢-00
Baadpass 4.209e-04 | 4.279¢-04 | 1.148¢-01 | 1.197e-01 | 1.319e-00 | 1.338¢-00
Differentiator 2.439e-05 | 2.443e-05 | 4.325¢-02 | 4.339e-02 | 4.587e-02 | 4.609e-02
Hilbert Transformer | 1.474e-06 | 1.479e-06 | 1.189¢-02 | 1.195e-02 | 5.102e-01 | 5.132¢-01
Chirp allpass 1.803e-07 | 1.806e-07 | 1.769¢-03 | 1.773e-03 | 1.172e-01 | 1.174e-01
Sine-delay allpass 2.934e-07 | 2.935e-07 | 1.583e-03 | 1.584¢-03 | 1.290e-01 | 1.290e-01

eigenvector corresponding to the smallest eigenvalue of P. We can
rewrite (28) as x; = Py, . By solving a system of linear equations,
we can obtain yi4; and subsequently Xx4+:. Since P is real,
symmetric and positive-definite but not Toeplitz, the solution of the
system of linear equations involves O(N?) complexity. Moreover,
the eigenfilter method requires solving a system of linear equations
several times before obtaining the eigenvector corresponding to the
smallest eigenvalue. As is evident, our method has an order of
magnitude lower complexity than the eigenfilter method. For the
design of allpass filters, our method involves only the evaluation
of d. Consequently, our method has approximately three orders
of magnitude lower computational complexity than the eigenfilter
method.

VI. CONCLUSION

In this brief, a method to design FIR filters satisfying arbitrary
magnitude and phase specifications has been presented. In this
method, the absolute mean-square error between ideal and actual
frequency responses is explicitly minimized. The filter coefficients
are found in a noniterative and computationally efficient manner.
The mean-square error achieved by our method is lower than that
achieved by the eigenfilter approach.
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Transient Suppression at the
Boundary for 2-D Digital Systems

W. W. Edmonson and W. Alexander

Abstract— We present an approach to the suppression of transients
due to unspecified initial conditions or truncation of data for 2-D digital

systems. The approach is based upon the use of Roesser’s 2-D state space
model.

I. INTRODUCTION

Many practical digital systems require the use of appropriate
boundary values or initial conditions. The classical approach of
assigning a value of zero to initial conditions and boundary values
often leads to undesirable transients in the output. Ad hoc approaches
to this problem usually involve extending the data by replication or
by the use of window functions [1]. The boundary value transient
problem is more prominent for systems which have an impulse
response of long duration, e.g., edge enhancement and high pass
filters.

In this brief, we present an approach to this problem based upon
associating transients with changes in the state of the system. We
develop a suppression algorithm based upon not permitting the state
of the system to change at the boundaries. Although this approach
makes the system shift variant [1], it gives very desirable results
for most applications. Appropriate boundary values can minimize the
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transients due to initial conditions. This problem has been addressed
previously in [2] for image restoration and in [3] and [4] for 2-D
recursive filters.

We have chosen to restrict the development of the transient
suppression algorithm to the recursively computable, discrete, linear,
shift-invariant system (DLSI) with first quadrant support as repre-
sented by the 2-D state space (SS) model. A recursively computable
system with support other than first quadrant support can be mapped
into a corresponding system with first quadrant support {1]. Thus, our
results can apply to any recursively computable system.

. THE 2-D STATE SPACE REPRESENTATION

We use a modified Roesser’s state space model [5], [6] which
represents a recursively computable 2-D DLSI system with quarter
plane support and is given by

Qu(ni.ng)| _ , [Qu(ny —1,n2)
[Q\"(n1~n2):| h A[Q\"(Tll-nz - 1)} +Bi(ni.n2)
QH(n 1,n2) M
_ QH(n L N2
g{ning) = C[Q\'(nl.ng _ 1)] +Df(ni,n2)

where f(ni,n2) and g(ni.n2) are the input and output scalars, re-
spectively. A, B, C, and D represent the SS parameters of appropriate
dimensions.

We simplify the analysis of the boundary state equations by
representing the SS parameters in block matrix form, shown below as

A= [Au

A12 . — Bl . —
a ] B= [Bz]. C =[C; Csl. @)

Ay

We also define A; as the matrix made up of the ith matrix subcolumn
of A with all other submatrices equal to null matrices of the
appropriate dimensions. Thus, for the 2-D system

. _[An @] ; _[0 Aw
Al_{Am @].Az-[@ An} 3)

where © is a null matrix of appropriate dimensions. In a similar
manner, we define C; as

¢, =[C,0:C: =[0C,) (4)
We can then express the 2-D state space model in the form
Q(ni,n2) = A,Q(ny — 1.n2)

+ A2Q(n1,n2 — 1) + Bf(n1,n2)
g(ni,n2) = CIQ(nl —1l.n2)

+C2Q(ny1.n2 — 1) + Df(n1.n2) (5)
where
_ QH(nl.TIZ)
Q(n1.n2) = [Q‘,(nl,nz):l‘ X

HI. 2-D BOUNDARY STATE SPACE EQUATIONS

We can associate a transient with a change in the state of the
system. Thus, we can suppress any transient associated with a
boundary by not allowing a change in the state as the system crosses
that boundary. Initial conditions are required for the (0, 0), (0, n2)
and the (n;,0) boundaries for the 2-D system with first quadrant
support. Thus, we require

Q(0,0) = Q(—1,0) = Q(0.-1) @)
Q(n1,0) = Q(ny1,-1);  Q(0,n2) = Q(~1.n2). 8)
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