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Complex Coefficient Nonrecursive Digital
Filter Design Using a Least-Squares Method

* Sunder S. Kidambi and Ravi P. Ramachandran

Abstract—In this correspondence, a method for the design of complex-
coefficient nonrecursive filters is described. In this method, a mean-square
error is formulated in a quadratic form. The filter coefficients are
obtained by solving a system of linear equations using computationally
robust and efficient algorithms. Examples are presented to demonstrate
the efficacy of our method.

I. INTRODUCTION

Least-squares design of nonrecursive digital filters has been dealt
with quite extensively in the last two decades [1]-{5S]. In all these
methods, an error function is formulated in a quadratic form. In
one method, the filter coefficients are contained in the eigenvector
corresponding to the smallest eigenvalue of an associated real,
syminetric, and positive-definite matrix [1]. This is popularly known
as the eigenfilter method. In another method, the filter coefficients are
obtained by solving a system of linear equations using either matrix
inversion or other efficient algorithms [2]-[5].

It is only in the recent past that the design of complex coefficient
nonrecursive digital filters has gained significant importance [6], [7].
In both [6] and [7], the eigenfilter method has been used to design
complex coefficient filters. In [6], the complex-coefficient design
problem is converted to an equivalent real-coefficient design problem.
In [7], however, such a conversion is circumvented, and consequently,
the dimension of the associated matrix is half that of the matrix
involved in the design presented in {6].

In this correspondence, we extend the least-squares design pre-
sented in [4] and [5] to the design of 1-D and 2-D complex-
coefficient filters. The approach is based on formulating the mean-
square error between a desired complex-valued response and the
complex-coefficient filter. The filter coefficients are obtained by
solving a system of linear equations. By ‘way of analysis and
examples, it is shown that our method is not only significantly more
computationally efficient but also yields lower peak and group delay
errors than the eigenfilter method.

II. PROBLEM FORMULATION FOR THE DESIGN
OF 1-D CoMPLEX-COEFFICIENT FILTERS

The frequency response of a nonrecursive filter with NV taps
specified by a complex-valued impulse response h(n) is given by

N—1
H(e™) =Y h(n)e™ ™ = h'e(w) 6
where - )
h = [A(0)R(1)A(2) - - R(N — 1)]¥
and

e(w) = [Le™™e ... 8—J(N—l)w] T

Manuscript received August 19, 1994; revised September 26, 1995. The
associate editor coordinating the review of this paper and approving it for
publication was Dr. Kamal Premaratne.

S. S. Kidambi is with the Ray Stata Technology Center, Analog Devices
Inc., Wilmington, MA 01887 USA.

R. P. Ramachandran is with the CAIP Center, Department of Electrical
Engineering, Rutgers University, Piscataway, NJ 08855 USA.

Publisher Item Identifier S 1053-587X(96)02405-X.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 3, MARCH 1996

The phase response of the filter is given by

1 aTs(w) — bTe(w o
#(w) = — tan (ﬁﬁ) 2)

where
a = Re(h),
b = Im(h),
c(w) = [1 cos(w) cos(2w) - - - cos((N — 1)w)]¥
and

s(w) = [0sin(w) sin(2w) - - - sin((V — Dw)]*.
The group delay is given by

k(w)
U(w)

r(w) = — g (w) = 11 cos® (9(w)) - ®
where ‘
E(w) = (a’c(w) + bTs(w))(a”é(w) + b 8(w))
+ (aTs(w) — bT c(w))(a’8(w) — b7 &(w))
I(w) = (a"e(w) + b s(w))?
and
&(w) = [0 cos(w) 2 cos(2w) - - - (N —1) cos((N = 1)w)]"
8(w) = [0sin(w) 2sin(2w) - - - (N — 1) sin((V — Dw)]F.
If D(w) is the desired complex-valued response, then the weighted
mean-square error between D(w) and H (e’”) can be expressed as

En = / W ()| D(w) ~ H(e™)[Fdw
P
+ [ o))

:/pr(w)[D(w)—-hTe(wﬂde

—l—/ Ws(w)[hTe(w)|2dw . “)
s
where

P passband,

S stopband, .

Wp(w) frequency dependent weighting function in the passband,

Ws(w) frequency dependent weighting function in the stopband.

By minimizing the error function E,; with respect to the filter
coefficients, the required filter can be designed. In minimizing E.,,
we set gf('”: =0 forn =0,1,...,V — 1 to obtain a system of
linear equations Qh = d, where

Q(n,m):pr(w)ef<"—m>de+/SWS(w)eJ(”—’")”d@ 5)
for 0 < n,m < N —1 and

d(n) = /P Wp(w)D(w)e™™ duw. (6)

It can be seen from (5) that Q is an N X N Hernﬁtian Toeplitz

matrix. Consequently, only the first row (or column) of Q needs

to be calculated, and the system of linear equations can be solved
efficiently using the Levinson algorithm [8]. ‘
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Fig. 1. Frequency response of the filter of Example 1: (a) Magnitude

response; (b) group delay response.

Example 1: We consider the design of a filter meeting the follow-
ing specifications:

e—;le

D(w) = {0

We have chosen Wp(w) = 1 and Ws(w) = 2. The magnitude
response of the designed filter is shown in Fig. 1(a), whereas the
group delay is shown in Fig. 1(b).

w € P=[-0.17,0.3x]
w€ S =[-m —0.187] U [0.38, 7].

III. DESIGN OF 2-D COMPLEX-COEFFICIENT FILTERS

The frequency response of a 2-D N, x N2 nonrecursive filter with
complex coefficients is given by

Ni—1Np—1

H(t,e??) = Z E h(n, m)e "1eT I,

n=0 m=0 .

)
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For the sake of simplicity, we shall choose N; = N = N. Let us
now define )

h=[b b ---n5_,]"
and
e(wr,we) = [eoT(wl,wz)eT(wl,wz)‘“ezl\ﬂi—1(w1,w2)]T
where
h, = [A(n, O)h(n,1)--- h(n, N — 1)]¥

and

=Wy —mwy g | T Inwl e"J(N—l)m] T

en(wi,we) = [e e

for 0 < n < N — 1. The phase response of the filter is given by

_ _1 {aTs(w1,w2) = bT c(wr, ws)
d(wr,w2) = —tan (aTc(wl,wg) T st(wl,W2)> ®)

where a and b are the real and imaginary parts of the 2-D complex
impulse response, and
c(wi,wa) = [e] (wr,w2) ] (w1,w2) - Ry (wr,w2)] "
s(wi,wz) = [85 (wiywe) s (wr,wa) -+ sha (wr,02)]
where
Cn (w1, w2)
= [cos(nwy) cos(nwy + wa) « -+ cos(nwy + (N — Dwsy)]”
Sn (w1, w2)

= [sin(nw;) sin(nwy + w2) - -+ sin(nw; + (N — l)wz)]T

for 0 < n < N — 1. The group delay function is given by

’ d
Ti(wi,w2) = = o= (w1, w2)

— k(wl,U)z)
l(wl,wz)

(&8

cos® (¢(w1,w2))

for ¢ = 1,2, and

k(wi,w2) = (alc(wr,wz) + b s(wr, wa))
% (al&(w,ws) + bT8(w1,wa))
+ (aTs(wl, wa) — ch(wl, ws))
x (aT8(wi,ws) — bl e(wr,ws))
(wy,we) = (aTc(wl,wz) + st(wl,wg))z.

When ¢ = 1, we have
(wi,wa) = [0e] (wi,we) -+ (V = ek (wi,w2)]”
§(wr,w2) = [Osir(wl,wz)--~(N - 1)sf;_1(w1,w2)]T.
On the other -hand, when 7. = 2, we have
&wn, wz) = [6F (w1, wz) & (w1, wa) -+ R (wr,w2)]”
s(wi,w2) = [ég(wi,wz) g (w1, w2) -~ éﬁ_l(wl,wz)]T
where

&n(wy,w2)

= [0 cos(nwi + wa)- -+ (N — 1) cos(nwi + (N — Dwy)]”
8n (w1, w2)

= [0sin(nw; + wz) -+ (N — L) sin(nw; + (N — Dws)]”

for0 <n <N -1
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Fig. 2. Frequency response of the 2-D filter of Example 3: (2) Magnitude response; (b) group delay response along the wy direction; (c) group delay

response along the wp direction.

If D(wi,ws) is the desired 2-D complex-valued response, then
the weighted mean-square error between it and H (e’*?, e’“2) can be
formulated as

Fp = / ‘ WP(wth)]D(wl,o.)z) - H(eyuldwz)?dwldwz
P
—|~/ W (wr, ws) | H (2172 *dwi dws
s ;
= / We (w1, ws)|D(wr,ws) — h%e(w1,ws)|Pdwidws
P N

+ / Ws(wl,w2)|hTe(w1,w2)]2dw1dw2 10)
5

where P and S are as defined earlier, The functions We (wi, ws) and

Ws(wi,ws) are 2-D frequency-dependent weighting functions in the

passband and stopband, respectively.

By minimizing the error function Ey, given in (10) with respect to
the 2-D filter coefficients, the requlred filter can be designed. Again,
in minimizing E.,, we set m. =0for 0 <n,m<N-1to
obtain a system of linear equations Qh = d, where

Q ://P WP(whwa)e*(wl,wz)eT(wl,wz)dwld@
+/ SWS(wlvWﬁ)e*(wlywg)'eT(wl,wg)dwldwg 1
- / P W (w1, w2) D(wi,w2)e” (w1, wa)dws dws (12)
It can be seen that Q is a- Hermitian block-Toeplitz matrix. Thus,

only N x (N? — ‘_) (for odd V) elements have to be computed.
The system of linear equations involving a Hermitian block-Toeplitz

P

matrix can be solved efficiently using a modified version of the
Levinson algorithm [8].

Example 2: We consider the design of an 11 x 11 filter having
the response

D(wi,ws)
_ e~ 74wt e—J‘MQ
10

In this example, we choose Wp(wy,wz) = Ws(wi,wa) = 1.
Fig. 2(a) shows the magnitude response of the designed filter. The
group delay of the filter along wi and w. directions are shown in
Figs. 2(2) and (b), respectively.

V(w1 +0.2m)% + (wa — 0.37)2 < 0.37
V(w1 +0.27)2 + (w2 — 0.37)% > 0.57.

TV. PERFORMANCE COMPARISON

We shall compare our method with the eigenfilter method of [7]
in terms of the peak and group delay errors and computational
complexity. Tables I and I show a comparison of the two methods

with respect to the peak and group delay error for Examples 1 and
2, respectively. Although the differences are negligible, our method
yields better results.

For the comparison in terms of computational comf)lexity, let us
consider the 1-D filter design. In our method, Q is Hermitian Toeplitz
and poéitive definite. Thus, enly the first row (or column) of Q needs
to be evaluated. Moreover, efficient and robust algorithms for solving
a system of linear equations having a computational complexity of
O(N?) can be used. Our method does not depend on any reference
frequency and consequenily there is no need for any normalization.
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TABLE 1
COMPARISON OF THE PEAK AND GROUP DELAY ERROR FOR EXAMPLE 1

Magnitude of the
complex peak error

in the passband

Magnitude of the

complex peak error

in the stopband

Group delay
error

in the passband

Our method 0.05048 0.04068 1.23
Method of [16} 0.05054 0.04121 1.25
TABLE 11
COMPARISON OF THE PEAK ERRORS AND
GROUP DELAY VARIATIONS FOR EXAMPLE 2
Magnitude of the Magnitude of the Group delay
complex peak error | complex peak error variation

in the passband

in the stopband

in the passband

Our method 0.08673 0.09632 wy: 3.81-4.45
wy: 3.81-4.45
Method of {16] 0.08774 0.09671 wy: 3.77-4.45
wy: 3.78-4.44

In addition, the filter coefficients are obtained by solving a system

of linear equations just once.

For the eigenfilter method, the mean-square error for the 1-D filter

design is formulated as

E.=h"Q.h

(13)

where Q. is an N x N Hermitian positive-definite matrix. As a
consequence, N(N + 1)/2 elements of Q. have to be evaluated. -
The coefficients of the filter are obtained as the complex eigenvector
corresponding to the smallest eigenvalue of Q.. The smallest eigen-
value is computed by using the iterative inverse power method. This
method requires solving a system of linear equations several times
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before obtaining the required eigenvector. Furthermore, Q. is not
Toeplitz, and consequently, the computational complexity for solving
a system of equations involving Q. is O(N®). In addition, since
the method is iterative, the results are only approximate. The mean-
square error E. is dependent on a reference frequency, and as a
consequence, so are the filter coefficients. Moreover, the eigenvector
of the smallest eigenvalue has to be normalized with respect to the
reference frequency to obtain the filter coefficients. For Example 1,
the saving in the number of floating point operations (flops) in our
method is approximately 85% compared with the eigenfilter approach.

Let us now consider the 2-D filter design. As mentioned earlier,
it is evident from Example 2 that our method yields better results.
In our method, Q is Hermitian block-Toeplitz. Consequently, only
N x (N? — &21) (for odd N) elements have to be computed, and
the system of linear equations involving a Hermitian block-Toeplitz
matrix can be solved efficiently using a modified version of the
Levinson algorithm [8].

The mean-square error using the 2-D eigenfilter formulation is
again given by (13), where Q. is Hermitian and positive-definite.
Here, N2(N2 +1)/2 entries have to be evaluated. All the comments
regarding the 1-D eigenfilter formulation apply equally well to the
2-D eigenfilter formulation. The saving in flops for Example 2 using
our method is approximately 94%.

V. CONCLUSION

A method for the design of 1-D complex-coefficient nonrecursive -
filters has been described. In this method, the error between the
desired complex-valued response and the frequency response of a
filter with a complex-valued impulse response is formulated in a
quadratic form. The filter coefficients are obtained by solving a
system of linear equations that involves a Hermitian Toeplitz and
positive-definite matrix. Consequently, the system of linear equations
can be solved by using the computationally efficient and robust
Levinson algorithm. The method for the design of 1-D filters has
been extended to the design of 2-D complex-coefficient filters.
Here again, the filter coefficients are obtained by solving a system
of linear equations involving a' Hermitian block-Toeplitz matrix.
Such a system of equations can also be solved efficiently by a
modified version of the Levinson algorithm. Examples have been
presented to demonstrate that our method is superior to the eigenfilter
method.

REFERENCES
[1] P. P. Vaidyanathan and T. Q. Nguyen, “Eigenfilters: A new approach
to least-squares FIR filter design and applications including Nyquist
filters,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 11-23, Jan. 1987.
D. W. Tufts and J. T. Francis, “Designing digital low pass filters:
Comparison of some methods and criteria,” IEEE Trans. Audio Elec-
troacoust., vol. AU-18, pp. 487-494, Dec. 1970.
W. C. Kellogg, “Time domain design of nonrecursive least mean-
square digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-20,
pp. 155-158, June 1972.
S. Sunder and R. P. Ramachandran, “Least-squares design of higher-
order nonrecursive differentiators,” IEEE Trans. Signal Processing, vol.
42, pp. 956-961, Apr. 1994.
, “An efficient least-squares approach for the design of two-
dimensional linear-phase nonrecursive -filters,” in Proc. IEEE Symp.
Circuits Syst., May 1994, pp. 2.577-2.580.
T. Q. Nguyen, “The design of arbitrary FIR digital filters using the eigen-
filter method,” IEEE Trans. Signal Processing, vol. 41, pp. 1128-1139,
Mar. 1993.
S. C. Pei and J. J. Shyu, “Complex eigenfilter design of arbitrary
complex coefficient FIR digital filters,” IEEE Trans. Circuits Syst.- II,
vol. 40, pp. 32-40, Jan. 1993.
S. L. Marple, Jr., Digital Spectral Analysis with Applications.
wood Cliffs, NJ: Prentice-Hall, 1987.

[2]

B3]

4

o

(5]

[6]

[8] Engle-



