he future commercialization of speaker- and speech-rec-
ognition technology is impeded by the large degradation
in system performance due to environmental differences
between training and testing conditions. This is known as the
“mismatched condition.” Studies have shown [1] that most
contemporary systems achieve good recognition performance if
the conditions during training are similar to those during opera-
tion (matched conditions). Frequently, mismatched conditions
are present in which the performance is dramatically degraded
as compared to the ideal matched conditions. A common exam-
ple of this mismatch is when training is done on clean speech
and testing is performed on noise- or channel-corrupted speech.
Robust speech techniques [2] attempt to maintain the perform-
ance of a speech processing system under such diverse condi-
tions of operation.

- - This article presents an overview of current speaker-rec-
ognition systems and the problems encountered in operation,
and it focuses on the front-end feature extraction process of
robust speech techniques as amethod of improvement. Linear
predictive (LP) analysis, the first step of feature extraction,
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is discussed, and various robust cepstral features derived
from LP coefficients are described. Also described is the
affine transform, which is a feature transformation approach
that integrates mismatch to simultaneously combat both
channel and noise distortion.

Overview
Speaker and Speech Recognition

A speaker-recognition system attempts to recognize a
speaker by his/her voice. The system can be either text-de-
pendent (constraint on what is spoken) or text-independent
(no constraint on what is spoken). The idea is to identify the
inherent differences in the articulatory organs (the structure
of the vocal tract, the size of the nasal cavity, and vocal cord
characteristics) and the manner of speaking. Speech recogni-
tion, on the other hand, is the task of understanding what is
being said rather than who is speaking. First, the stream of
sounds comprising the incoming speech must be recognized.
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A language model can then be applied to the sequence of
recognized sounds to improve performance through the use
of contextual information.’

Pattern Recognition

Speaker recognition and speech recognition are subsets of a
more general area known as pattemn recognition. Given the
features that describe the properties of an object, a pattern-rec-
ognition system aims to recognize the object based on its
previous knowledge of the object. Three stages are generally
involved“in building a pattern-recognition system: training,
testing, and implementation. In the training stage, a set of
parameters of the model is estimated so that in some sense the
model “learns” the correspondence between the features and the
labels of the objects. One such learning criterion is to minimize
the overall estimation error. In the testing stage, the parameters
of the model are then adjusted using a set of cross-validation
data to achieve a good generalization of the performance of the
system. The cross-validation data usually consists of a set of
features and labels that are different from the training data. The
task of recognition is carried out in the implementation stage,
where the feature with an unknown label is passed through the
system and assigned a label at the output.

A pattern-recognition system basically consists of a front-
end feature extractor and a classifier, as shown in Fig. 1. The
feature extractor normalizes the collected data and transforms
them to the feature space. In feature space, the data are
compressed and represented in such an effective way that
objects from the same class behave similarly and a clear
distinction among objects from different classes exists. The
classifier takes the features computed by the feature extractor
and performs either template matching or probabilistic-like-
lihood computation on the features, depending on the type of
algorithm employed. Before it can be used for classification,
the classifier has to be trained so that a mapping from the
feature to the label of a particular class is established. Since
an object is characterized in the classifier by a module or a
part of an integrated model, training is also the stage of
enrollment. Such an approach has been demonstrated to be
efficient in performing a pattern-recognition task. However,
the implicit assumption of this approach is that the training
and testing conditions are comparable. Problems arise when
there is a mismatch between the environments for training
and testing, which is generally true in most applications. For
example, assume that speaker recognition is carried out over
the telephone network. It is very likely that a test speaker calls
from a telephone other than the one used at the time of
training (communication-channel mismatch).

Feature Classifier

Extractor

1. The structure of a pattern recognition system.
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Robust Speech Techniques

Two strategies of robust speech techniques have emerged to
mitigate the problems that arise due to channel effects and
noise. The first strategy is normally carried out in the front-
end feature extractor before the feature vectors are passed to -
the classifier for comparison and labeling. One method is to
enhance the speech by spectral subtraction [3] so that the
features are more representative of clean speech in that noise
effects are suppressed. Also, if the features are the cepstral
vectors, mean removal [4] attempts to remove the transmis-
sion channel effect. Efforts are also made to find new features
that are robust to noise and channel effects (one example is
the short-time modified coherence [5]). The second strategy
aims at making the classifier more robust by compensating
for the distortions at the classification stage. Statistical ap-
proaches are usually adopted to obtain the probabilistic mod-
eling of features so that a robust mapping from the testing
data to the training data can be created. Methods such as
probabilistic optimum filtering [6], Gaussian mixture model
(GMM) [7], and hidden Markov model (HMM) adaptation
[8] all fall into this category. Also, robust distance metrics
such as the Itakura spectral distortion measure [9, 10] and the -
projection measure [11] will lead to more accurate labeling
of the test data.

Linear Prediction of Speech

The general feature-extraction step of interest here can be
divided into two parts. First, LP analysis of speech is carried
out to produce a set of predictor coefficients. Second, the
predictor coefficients are transformed into feature vectors. In
this section, we discuss the rationale behind the use of LP
analysis, give some interpretations, and point out the compu-
tational aspects of LP analysis.

Autoregressive Model

Speech sounds can be classified into three distinct classes:
voiced sounds, fricative or unvoiced sounds, and plosive
sounds. The speech waveform is an acoustic pressure wave
that originates from voluntary physiological movements of
anatomical structures such as the vocal cords, vocal tract,
nasal cavity, tongue, and lips [12; 13]. The vocal tract is
usually modeled as a concatenation of nonuniform lossless
tubes of varying cross-sectional area that begins at the vocal
cords and ends at the lips [13]. The opening of the vocal cords
is called the glottis. Voiced sounds such as /i/ and /e/ are
produced by forcing air through the glottis with the tension
of the vocal cords adjusted so that they vibrate in a relaxed
oscillation and thereby excite the vocal tract with quasi-peri-
odic pulses of air. The greater the tension, the higher the pitch
or fundamental frequency of the voice. Unvoiced sounds are
generated by voluntarily holding the vocal cords open, form-
ing a constriction using the articulator, and forcing the air
through the constriction at a high enough velocity to produce
turbulence. The vocal tract is excited by a broad-band noise
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2. The linear vocal-tract model for Spééch p?oduétzon.

source during the production of unvoiced sounds. Plosive
sounds result from building up air pressure in the mouth and
abruptly releasing it.

A linear model of speech production was developed by
Fant in the late 1950s [14] where the glottal pulse, vocal tract,
and radiation are individually modeled as linear filters. A
complete model of speech production represented in the
z-transform domain is shown in Fig. 2. The source is either
a quasi-periodic impulse sequence for the voiced sounds
or a random noise sequence for unvoiced sounds with a
gain factor G set to control the intensity of the excitation.
The transfer function V(z) for the vocal tract relates volume
velocity at the source to volume velocity at the lips. It is
generally an all-pole model for most speech sounds. Each
pole of V(z) corresponds to a formant or resonance of the
sound. For nasals and fricatives that require both reso-
nances and anti-resonances (poles and zeros), an all-pole
model is still preferred because the effect of a zero in the
transfer function can be achieved by including more poles
[15]. The radiation model R(z) describes the air pressure
at the lips, which can be reasonably approximated by a
first-order backward difference. Combining the glottal
pulse, vocal tract, and radiation yields a single all-pole
transfer function [13, 14] given by

HZD)=GV@R@D)=——=—c>— ¢))

G G
AQ@) 1-3Xlazt

With this transfer function, we get a difference equation for
synthesizing the speech samples s(n) as

s(n) = iais(n —i)+ Gu(n). (2)

It can be noted that s(n) is predicted as a linear combina-
tion of the previous p samples. Therefore, the speech produc-
tion model is often called the linear prediction (LP) model,
or the autoregressive model.

Modulation Model Representation of Speech

The transfer function H(z) in Eq. 1 can be rewritten as
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1 i 3

H(z)=

where r; represents the residues and z; represents the poles of
H(z). The poles are expressed as

z,=0., i=12,..p, @

where ®; corresponds to the i center frequency. The magni-
tude of the poles are denoted G;, which falls into the range

(0,1). The bandwidth of the i pole is defined as [16]
B =tmy=Lindy. )
n gzl ® o

d

Thus, the vocal-tract model corresponds to the causal
impulse response given by

=

i

h(n)=zp“},;_zin =2}‘.(5?6ij (6)

i=l

which, in turn, is also the form of the homogeneous solution
to Eq. 2. The speech signal s() is a multicomponent signal
expressed as a linear combination of amplitude- and phase-
modulated exponentials that are specified by the autoregres-
sive model. This is a special case of the more general
modulation model for speech as discussed in [16]. For each
component, there are three parameters, namely, r;, G;, and,
;. The parameters r; and o; specify the amplitude-modulated
portion, while ®; is the parameter for phase modulation. A
pole close to the unit circle signifies a formant at ; with a
relatively low bandwidth.

Computational Aspects

In practice, the predictor coefficients {ai} describing the
autoregressive model must be computed from the speech
signal. Since speech is time-varying in that the vocal-tract
configuration changes over time, an accurate set of predictor
coefficients is adaptively determined over short intervals
(typically 10 ms to 30 ms) called frames, during which
time-invariance is assumed. The gain G is usually ignored to
allow the parameterization to be independent of the signal
intensity. The autocorrelation method and the covariance
method are two standard methods of solving for the predictor
coefficients [12, 17]. Both approaches are based on minimiz-
ing the mean-square value of the estimation error e(n) as
given by

e(n)=s(n)— ia,.s(n —1i) )

The methods differ with respect to the details of imple-
mentation. The autocorrelation method is computationally
simpler than the covariance approach and, unlike its covari-
ance counterpart, assures that all the poles of H(z) lie within
the unit circle. Specifically consider the autocorrelation
method. The mean-square error is minimized over a frame of
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N samples. Moreover, it is assumed that the speech samples
are identically zero outside the frame of interest. If the
autocorrelation of the signal s(n) is defined as

nk)= 3 s(msn+ k), ®)

n=0

then the predictor coefficients a; can be obtained by solving
the following set of equations

r,(0)
r.(l)

r (D)
r,(0)

7}(17_1) aq
r(p=-2)| a,

(1) )
r(2)

rp-1) rn(p-2) r0) A, ) \n(p)

Denoting the p x p Toeplitz autocorrelation matrix on the
left-hand side by Ry, the predictor coefficient vector by a, and
the right-hand-side vector of autocorrelation coefficients by
rs, we have

Rsa =rg (10)
Therefore,
a=Rsrs. (11)

Since the matrix Rs is Toeplitz, a computationally effi-
cient algorithm known as the Levinson-Durbin recursion can
be used to solve this system of equations [13]. Upon solving
for H(z), the magnitude response |[H(¢/®)l represents the spec-
tral envelope of the speech.

A robust solution technique will result in the vocal-tract
information being captured by H(z), whether speech is clean
or corrupted by noise and/or channel effects. Then, the pre-
dictor coefficients would either be invariant or show very
little variation when speech is corrupted. Subsequently, the
features would be naturally robust. A comparative study of
different approaches to find the predictor coefficients based
on minimizing various objective functions was done in [18].
In addition to the standard LP autocorrelation and covariance
approaches, methods based on the least-absolute-value crite-
rion, the iterative weighted least-squares criterion, and the
total least-squares criterion were considered. It was found
that the best method depends on the type of noise present and,
hence, a universally acceptable solution is not known [18].

Another attempt at representing the speech spectrum in-
volves an approximation that gives more emphasis to those
frequencies that have greater auditory prominence. This is
known as perceptual linear prediction (PLP) [19]. The actual
speech spectrum (obtained by a DFT of the speech samples)
is modified based on the principles of critical-band auditory
masking and the unequal sensitivity of human hearing at
different frequencies [19]. This modified spectrum is ap-
proximated by an autoregressive model to obtain H(z). The
autocorrelation values are obtained as the inverse DFT of the
modified spectrum and Eq. 10 is solved to obtain the predictor
coefficients. It has been recently shown that the PLP tech-
nique is more robust to some mismatched environments than
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the standard LP autocorrelation method for large-vocabulary
speech recognition [20]. In this article, we proceed by assum-
ing that the standard LP autocorrelation method is used to
find the predictor coefficients.

Robust Cepstral Analysis

The next step is to convert the predictor coefficients into
feature vectors. Examples of such vectors include [15] the
predictor coefficients themselves, cepstral coefficients and
their derivatives, line spectral pairs (LSP), log area ratios
(LAR), vocal-tract area functions, and the impulse response
h(n) of the filter H(z). For speaker recognition, some of the
above features were compared and the cepstral coefficients
were found to provide the best results [21]. Also, the deriva-
tives of the cepstral coefficients capture the temporal infor-
mation in speech that is essential for text-dependent tasks.
Although the line spectral pairs recently have been shown to
have some promise [22], emphasis will be put on cepstrum-
related features in this article. All the cepstrum-related fea-
tures described are obtained after LP analysis, with the
exception of the mel-warped cepstrum that is obtained from
a filter-bank analysis [17] (discussed later).

Cepstrum

Consider a (not necessarily causal) signal x(n) whose z-trans-
form X(z) exists and has a region of convergence that includes
the unit circle. Suppose C(z) = log X(z) has a convergent
power series expansion in which, again, the region of conver-
gence includes the unit circle. The cepstrum is defined as the
inverse z-transform of C(z) in that [23]

Cz)=Y c(n)z™. (12)

Note that c(n) is also not necessarily causal. Let us con-
tinue by assuming that X(z) is a rational function of z that is
completely described by its poles, zeros, and gain. Then, the
cepstrum C(z) will have the following properties [23]:

1. The sample c¢(0) is the natural logarithm of the gain.

2. The poles and zeros of X(z) inside the unit circle
contribute only to the casual part of c(n) starting at n = 1.

3. The poles and zeros of X(z) outside the unit circle
contribute only to the anticausal part of c(n).

4. The cepstrum is causal if and only if X(z) is mini-
mum phase.

5. The cepstrum is anticausal if and only if X(z) is maxi-
mum phase.

6. The cepstrum c(n) decays as fast as 1/Inl as n approaches
oo and —oo,

7. The cepstrum has infinite duration whether x(n) is of
finite or infinite duration.

8. If x(n) is real, c(n) is real.

As a special case of the more general X(z), consider the
minimum phase all-pole LP filter H(z) obtained by the auto-
correlation method. Given that all the poles z = z; are inside
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the unit circle and the gain is 1, the causal LP cepstrum cgp(n)
of H(z) is given by [17, 23, 24].

c,p(n)=%izi" n>0. (13)

=0 n<0

A recursive relation between the LP cepstrum and the
predictor coefficients is given as [17]

c,(n)=a,+ 2(%)(:1”(1')(1”_,.. (14)

The use of this recursion allows for an efficient computa-
tion of cjp(n) and avoids polynomial factorization. Since
cip(n) is of infinite duration, the feature vector of dimension
p consists of the components cjp(1) to cip(p), which are the
most significant due to the decay of the sequence with in-
creasing n. Even with this truncation, the mean-square differ-
ence between two LP cepstral vectors is approximately equal
to the mean-square difference between the log spectra of the
corresponding all-pole LP filters [17]. Hence, this provides a
good measure of the difference in the spectral envelope of the
speech frames that the cepstral vectors were derived from.

Cepstral Derivatives

The LP cepstrum represents the local spectral properties of a
given frame of speech. However, it does not characterize the
temporal or transitional information in a sequence of speech
frames. For text-related applications such as speech recogni-
tion and text-dependent speaker recognition, improved per-
formance has been found by introducing cepstral derivatives
into the feature space because the cepstral derivatives capture
the transitional information in the speech. The first derivative
of the cepstrum (also known as the delta cepstrum) is defined
as [17]

de,, (n,1) (15)
ot

K
=Ac, (nn)=p Y ke, (n1+k),
k=-K

where cp(n,t) denotes the n"Lp cepstral coefficients at time
t, pis an appropriate normalization constant, and (2K + 1) is
the number of frames over which the computation is per-
formed. The LP cepstrum and the delta cepstrum together
have been used to improve speaker recognition perform-
ance [25].

Cepstral Weighting

The basic idea behind cepstral weighting is to account for the
sensitivity of the low-order cepstral coefficients to overall
spectral slope and the sensitivity of the high-order cepstral
coefficients to noise [17]. Weighting is accomplished by
multiplying cip(n) by a window w(n) and using the weighted
cepstrum as the feature vector. This weighting operation is
also known as liftering. The first consequence of liftering is
in extracting a finite dimensional feature vector from an
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infinite duration cip(n). Also, careful choices of w(n) enhance
robustness. There are several schemes of weighting that differ
in the type of cepstral window w(n) that is used. The simplest
one is the rectangular window as given by

1
w(n)= {0

where L is the size of the window. The first L samples, which
are the most significant due to the decaying property, are
kept. Other forms of w(n) include quefrency liftering (or
linear weighting) where

n=12,...,L
otherwise

(16)

W) = n n=1,2,...,Li, (17)
0  otherwise
and bandpass liftering (BPL) [17, 26] where
Lgin(2m =
W(n)={l+28m(L) n=12,...,.L (18)

0 otherwise

The quefrency liftering weights each individual cepstral
component by its index n, thereby downplaying the lower-or-
der components. The BPL weights a cepstral sequence by a
raised sinusoidal function so that the lower- and higher-order
components are de-emphasized. Note that the weighting
schemes described are fixed in the sense that the weights are
only a function of the cepstral index and have no explicit
bearing on the instantaneous variations in the cepstrum that
are introduced by different environmental conditions (like
noise and channel effects).

Cepstral Mean Subtraction (CMS)

A speech signal transmitted over a telephone network often
encounters a linear distortion due to the filtering effect of the
channel. This is simply expressed as T(z) = S(z)G(z) where
S(z) corresponds to the original clean speech, G(z) corre-
sponds to the telephone channel, and 7(z) corresponds to the
filtered speech. In the log domain,

logT(z)=1og S(z) +1og G(z) . (19)

Assuming that the speech and channel spectra are well
approximated by the all-pole LP.model, it is observed that a
channel influence on the speech leads to an additive compo-
nent on the LP cepstrum of the clean speech S(z). By further
assuming that the mean of the LP cepstrum of the clean
speech is zero, the estimate of the channel cepstrum is merely
the mean of the LP cepstrum of the filtered speech T(z). To
compensate for the channel effect, the channel estimate is
removed by way of cepstral mean subtraction (CMS) [4, 21,
27]. The feature vector is

Cons (W) = ¢, (M)~ El, ()] 20)
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3. The cepstral vector of (a) voiced sound /a/; (b) voiced sound /u/; (c) unvoiced sound /sh/; and (d) plosive sound /pl.

where the expectation is taken over a number of frames of
channcl—conjilpted speech. Note that rectangular weighting is
implicitly assumed.

It has been shown that mean subtraction significantly
improves the performance of a system in which training is
done on one channel condition while testing is done on
another channel condition. However, considerable loss of
recognition accuracy is experienced when CMS is used for
speaker recognition in which training and testing are done on
the same channel. This is due to the implicit assumption of
CMS that, in order to represent the channel cepstrum by the
long-term cepstral mean of the channel-corrupted speech, the
long-term cepstral mean of the clean speech has to be zero.
Also, the assumption is only true when the speech segment
is phonetically balanced in that the speech segment includes
approximately the same amount of voiced, unvoiced, and
plosive sounds. This is because the trajectories of cepstral
coefficients for different sounds deviate from each other by
a significant amount, but behave similar to that of sounds in
the same category. This phenomenon can be observed from
plots in Fig. 3. A more accurate estimate of the channel
cepstrum could be obtained if the cepstral mean, solely due
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to the clean speech prior to convolution with the channel,
could be maximally reduced.

Pole-filtered Cepstral Mean Subtraction (PFCMS)

The CMS concept is based on getting a channel estimate
given by E[cip(n)]. The LP poles with narrow bandwidths that
lie close to the unit circle usually represent the formants and
are less sensitive to channel and noise effects. Hence, these
poles do not contribute to the channel estimate as they contain
much speech information. In contrast, the broad bandwidth
poles model the spectral tilt, sub-glottal variation, and the
channel effects. These poles offer a better estimate of the
channel. A new concept, known as pole filtering, modifies
the LP poles so as to broaden the bandwidth of the formant
poles [28]. Bandwidth broadening is accomplished by mov-.
ing the formant poles radially away from the unit circle. The
pole frequency is left intact. Figure 4- illustrates the concept
of pole filtering. The cepstrum formed from these filtered or
modified poles (denoted as cmip(n)) has less speech informa-
tion and more channel information than ciy(n), due to the
de-emphasis of the formant poles. The channel estimate is
given as E[cmip(n)] and the feature vector is
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4. Concept of polé ﬁftenng.

LP analysis

pole filtered calculation of §
cepstrum the mean |

inverse
filter

5. Inverse filtering of channel effects.

Coioms (M) = €, (M) — E[ ¢, (1)] 21
Note that rectangular weighting is implicitly assumed.

The technique of forming the feature vector is known as
pole-filtered cepstral mean subtraction (PFCMS) and the
details are given below.

o Select a threshold radius 7

e For each frame of speech:

—Calculate LP poles zi fori=1top

—For each pole z;:

* If Izil > rs, modify z; such that its magnitude is 7 and
angle is unaltered.

—Calculate ciip(n) based on the modified or filtered poles
e Find the channel estimate E[cmip(n)] over all speech frames
e Find Cpfcms(l’l)

It has been shown that PFCMS outperforms CMS in
speaker-identification experiments [28].

Note that since E[cmip(n)] is a good channel estimate, it
can be converted to an all-pole filter representing the channel

it;

w1
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and, hence, to an inverse finite impulse response (FIR) filter.
When this FIR filter is applied to the speech, the speech is
enhanced as the channel effects are alleviated. This enhance-
ment of the speech prior to feature extraction also improves
speaker-identification performance [29]. Figure 5 shows a
block diagram.

Adaptive Component Weighted Cepstrum

The techniques of CMS and PFCMS are examples of inter-
frame processing techniques in that information over more
than one frame is used to develop the feature vector. In this
and the next subsection, two intraframe (information taken
only over the frame of concern) approaches are described.
The first is known as adaptive component weighting (ACW)
[30]. Consider the LP transfer function H(z) as parameterized
by the residues rx and the poles zx, which are in turn further
described by ok and k. First we can write the impulse
response A(n) as

rDY (o™ 6, o, | (22)
, ) .2

W) |_| o™ ol . 6l |,
p ,ip01 §250) p pOp

h(p) c’e cle cle 7,

Formants of the speech signal are weighted by the residues
r; individually. It was observed in [30] that the residues show
considerable variation when speech is passed through a chan-
nel. This is equivalent to saying that the amplitudes rx of the
individual eigenmodes in the modulation model repre-
sentation (see Eq. 6) are most perturbed by the channel among
the three parameters rk, Gk, and . The ACW cepstrum
removes the variations caused by channel variability by nor-
malizing the residues so that the narrow-band components
corresponding to formants are emphasized and the broad-
band components are suppressed. Hence, we get a pole-zero
system function of the form

Ny 1 23)
GCW( ) A(Z) gl_zkz_l
where
N@=3 TTa-52") (24)
which can be further written as
p-1
N(@@)=p(-3Y bz"). (25)
k=1

It can be shown that N(z) is minimum phase [31].
Therefore, the ACW cepstrum is causal and given by cacw(0)
=log p and
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6. Various magnitude spectra when speech is corrupted by the
CMYV channel (clean spech = solid line, channel-corrupted
speech = dashed line). (a) Magnitude response of 1/A(z), (b) Mag-
nitude response of Hacof(2), (c) Magnitude response of Hyp(z)
(a=1, =0.9).

(26)

Comy (M =c,, (M) =, (1)
for n > 0 where cnn(n) can be found by a recursion involving

the coefficients bg (same type of recursion as in Eq. 14).
Moreover, since by is simply expressed as [31]

27)

for 1 £k <p-1, the computation of the ACW cepstrum is very
simple. The subtractive component cnn(n) serves as an esti-
mate of the channel. Unlike CMS and PFCMS, this compo-
nent is adaptive on a frame-by-frame basis. In practice,
rectangular weighting is applied so that the feature vector
consists of the: components of cacw(n) for n = 1 to p. The
performance of speaker-identification systems is definitely
better if the ACW cepstrum is used as opposed to the LP
cepstrum [30, 32].

Postfilter Cepstrum

The concept of a postfilter was introduced in [33] to enhance
noisy speech. The philosophy in developing a postfilter relies
on the fact that more noise can be perceptually tolerated in
the formant regions (spectral peaks) than in the spectral
valleys. The postfilter is obtained from A(z) and its transfer
function is given by ’ :

AGz/B)
Az/ o)

H,(z)= 0<B<ac<l 28)

If A(z) is minimum phase, Hpfi(z) is guaranteed to be
minimum phase. Therefore, the postfilter cepstrum (referred
to as the PFL cepstrum) [32] is causal and given by cpa(0) =
0 and
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Letr

7. Various cepstral spectra when speech is corrupted by the CMV
channel (clean spech = solid line, channel-corrupted speech =
dashed line). (a) LP cepstrum cip(n), (b) ACW cepstrum cacw(n),
(¢) PFL cepstrum cpa(n) (0i=1, B=0.9).

“ep(ny=c,(mo" -B"] 29
for n>0. The PFL cepstrum is merely a weighting or liftering
of the LP cepstrum and is very robust to channel and noise
effects [32]. Like other ways of liftering the LP cepstrum,
namely, bandpass liftering [26], quefrency liftering [34], and
inverse variance liftering [35], the lower-indexed cepstral
coefficients are de-emphasized. If o = 1, cpa(n) =
czp(n)—B"clp(n). There is a subtractive component that serves
as a channel estimate and that is adaptive on a frame-by-
frame basis. In practice, rectangular weighting is applied so
that the feature vector consists of the components of cpf(n)
forn=1top.

Figure 6 shows the magnitude responses of H(z), Hacw(2),
and Hpfi(z) for a frame of clean speech and for the same frame
of speech corrupted by the continental mid voice (CMV)
channel [36], which is a typical bandpass channel encoun-
tered on the telephone network. Due to the channel-filtering
effect, there is a glaring mismatch in the spectra of 1/A(z) as
revealed in Fig. 6(a). This mismatch is alleviated consider-
ably by introducing Hacw(z) and Hpfi(z). As can be seen in
Fig. 6(b) and (c), the mismatch in the magnitude spectrum for
the ACW and PFL methods is reduced over that of 1/A(2).
The ACW spectrum and the PFL spectrum are similar in that
they both emphasize the formant peaks that are more crucial
for speaker identification. Also, there is no apparent spectral
tilt. The PFL spectrum is sensitive to changes in o and B. A
decrease of o causes formant bandwidth broadening while a
change in P affects the spectral tilt.- As B decreases, the
spectral tilt becomes more apparent.

Figure 7 shows the corresponding cepstral coefficients of
cip(n), cacw(n), and cpsi(n) for a frame of clean speech and for
the same frame of speech corrupted by the CMV channel
[36]. There is much less mismatch in cacw(n) and cppi(n) as
compared with cip(n).
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Mel-warped Cepstrum

The mel-warped cepstrum differs from the LP cepstrum in
that the mel-warped cepstrum is calculated using a filter-bank
approach in which the set of filters are of equal bandwidth
with respect to the mel-scale of frequencies. This is because
human perception of the frequency content of sounds does
not follow a linear scale. Instead, they are approximately
linear with logarithmic frequency beyond about 1000 Hz. In
addition, the critical band is a constant with the logarithmic
frequency below 1000 Hz and linear with respect to the
logarithmic frequency beyond 1000 Hz. The critical band
refers to the bandwidth within which subjective responses
such as loudness remain constant until the noise bandwidth
exceeds the width of the critical band. The mel-scale is
defined in such a way that the 1000 Hz in the linear frequency
domain is 1000 mels, and the other values are obtained by
adjusting the frequency of a tone such that the human per-
ceived frequency is half or twice the perceived frequency of
areference point with a known mel frequency. The mel-scale
spectrum is simulated using a filter bank spaced uniformly
on a mel-scale, where the output energy from each filter band
approximates the modified spectrum. If we denote the output

energy of the & filter by S, the mel-warped cepstrum cei(n)
gy %

is obtained by taking the shifted discrete cosine transform
(DCT) of the mel-scale spectrum as

6a(m) =Y log(5, )cos(n(k - 0.5) %) (30)
k=1

Other Robust Cepstral Techniques

Methods such as noise-cancelling microphones, preprocessor
noise suppression, and internal modification of the process-
ing algorithms to explicitly compensate for signal contami-
nation have been proposed to reduce the background noise
acoustically added to speech. Noise suppression [30] using
spectral normalization enhances the auditory quality of
speech. However, it rarely improves the performance of a
recognition system. The autoregressive moving average
model (ARMA) for getting a robust estimate of the linear
predictor coefficients suggests adding zeros to the vocal-tract
model to take into account the effect due to uncorrelated
additive noise. However, it is not feasible because the com-
putation is intensive and the solution is not guaranteed to
converge to the global minimum of the highly nonlinear cost
function. The relative spectral (RASTA) technique [37] takes
advantage of the fact that the rate of change of nonlinguistic
components in speech often lies outside the typical rate of
change of the vocal-tract shape. Therefore, it suppresses the
spectral components that change more slowly or quickly than
the typical rate of change of speech. The RASTA approach
can be combined with the PLP method to get the LP transfer
function H(z) [37]. The critical-band speech spectrum is
found just like in the PLP method. The time trajectories of
the spectral components are filtered to suppress the nonlin-
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vectors due to
noise and channel effects: (a) the spatial distribution of the clean
cepstral vectors; (b) the spatial distribution of the cepstral vec-
tors of noise and/or contaminated speech.

ng, rotation, and translation of cep.

guistic components in the spectrum. This filtered spectrum is
approximated by an autoregressive model. The delta cep-
strum, which also reflects spectral changes, has been shown
to be a special case of RASTA processing [37]. Also, unlike
cepstral mean subtraction, which removes the dc component
of the short-term log spectrum, RASTA processing influ-
ences the speech spectrum in a more complex manner and
emphasizes spectral transitions. The use of RASTA process-
ing has been shown to improve speech-recognition perform-
ance under mismatched environments [37]. Alternatively,
RASTA processing can be directly applied to cepstral coef-
ficients found from the LP transfer function obtained by the
conventional autocorrelation method. A bandpass filter of the
form [38]

aytaz vaz? +azt

31
1=z (B

B(z)=

is applied to the cepstral coefficients. This bandpass opera-
tion, combined with BPL filtering, has been shown to im-
prove speaker-recognition performance under mismatched
conditions [38]. Other techniques that attempt to internally
modify the algorithm to adapt the model set-up from a clean
environment to that of a noisy environment can be found in
[6, 39, 40]. ’

Distortion Correction
Using Affine Transformation

When the speech signal is corrupted by a channel and noise
from the environment, the cepstral vectors are found to be
rescaled, rotated, and translated. This can be seen in Fig. 8.
In practice, CMS, cepstral liftering, and other techniques
previously mentioned have been found to offer enhanced
robustness of speaker-recognition systems. Specifically, if
we consider doing CMS to normalize the channel, and per-
forming cepstral liftering to reduce the noise effect, then the
corrected cepstral coefficients ¢, can be represented as

A [~
C;, =W, —¢

T

32)

SEPTEMEER 1996



where ¢/ are the cepstral coefficients of the clean speech. The
generalization of the relationship can be written as an affine
transform given by

¢=Ac+b (33)
where ¢’ is the cepstrum of the degraded speech and ¢ is the
cepstrum of the original clean speech. This becomes a simi-
larity transform when the matrix A is diagonal and the vector
b is zero. '

The concept of using an affine transform to correct the
distortions of the cepstral coefficients caused by the channel
and noise interferences has been proposed in [41]. Its under-
lying idea is that the predictor coefficients are affinely trans-
formed when the speech signal is contaminated by
environmental perturbations, resulting in an affine transform
of the cepstral coefficients. The transformations are depend-
ent on the spectral properties of the sounds. A degraded,
spectrally similar set of cepstral vectors would undergo the
same transformation. In the following, we will briefly review
the analysis and examine the effects of additive noise and the
linear channel individually. The autocorrelation-based solu-
tion of the predictor coefficients as given by a = Ry ry will
be used throughout the following analysis.

Additive Noise

The random noise arising from the background and the fluc-
tuation of the transmission channel is generally assumed to
be additive white noise (AWN). The noisy observation of the
original speech signal is then given by

§'(n) = s(n) + q(n) (34
where the noise g(n) is such that
Elgm)]=0 and Elg’(w)]=0" (35)

It can be shown that the predictor coefficients of the
noise-corrupted speech as given by Eq. 11 are [41]
’ ~1 21,1 21,1

a’ =Ry r¢y=(Rs+06T) rs=Rs+6T) Rsa. (36)

It can be seen from Eq. 11 that the addition of AWN noise
to the speech is equivalent to taking a linear transformation
of the predictor coefficients. The linear transformation de-
pends on the autocorrelation of the speech and thus, in a
spectrum-based model, all the spectrally similar predictors
will be mapped by a similar linear transform.

The singular value decomposition (SVD) of the transfor-
mation in Eq. 36 will help gain some insight into the interac-
tion of noise and the predictor coefficients. Assume that the
Toeplitz autocorrelation matrix of the original speech signal
R is decomposed as

R, = UAU” 37
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where U is a unitary matrix and A is a diagonal matrix whose
diagonal elements are the eigenvalues of the matrix Ry. It can
be shown that Eq. 36 can be rewritten as [41]

' =[U(A+o’T)U"] (UAUT)a = Ul(A +o* D" AJUTa (38)

2
)Ll

From the above equation we can see that the norm of the
predictor coefficients is reduced when the speech s perturbed
by white noise. When speech is corrupted by additive white
noise, the predictor coefficient vector maintains its general
orientation but undergoes a shrinkage that brings it closer to
the origin.

Linear Channel

When a sample sequence is passed through a convolutional
channel of impulse response s’(n), the filtered signal obtained
at the output of the channel is

s'(n) = p(m)s(n) (39

If the power spectra of the signals s(x) and s"(n) are denoted
Ss(®) and Sy’(®), respectively, then

Sy(@) = IP(@)1*S(). (40)
Therefore in the time domain,
rs(k) = [p(n) @ p(-m)] @ rs(k) = rp(k) @ rs(k) 41)

where rg(k) and ry’(k) are the autocorrelation of the input and
output signals, respectively, and ) is the convolution opera-
tor. By using these relations, it can be shown that the predictor
coefficients of the output signal s'(n) is given by [41]
as’ = Aa. (42)
Therefore, the predictor coefficients of a speech signal
filtered by a convolutional channel can be obtained by taking
a linear transformation of the predictor coefficients of the
input speech signal. No translation of the predictor coeffi-
cients results. Note that the transformation in Eq. 42 is sound
dependent, as the estimates of the autocorrelation matrices
assume stationarity.

Co-channel Interference

The co-channel interference due to a second speaker can also
be interpreted as an affine transformation. In the case of
interference due to another speaker talking on the same
channel, the observed signal s7is

ST=51+ 82 43)
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Accordingly,

R, =R, +2R  +R (44)
and
r, =r, +2r  +r, (45)

Therefore, the linear prediction coefficients for sig-
nal sTis

a, =R_r,_
= (R, +2R, +R )R R}(r, +or,  +r) (40
=Aa, +b
where
A=(R, +2R, +R,)"R, (A7)
and
b=(R, +2R,, +R )R, (r, +r,) (48)

Again, the co-channel interference carries out an affine
transformation on the predictor coefficients.

The above derivations show that mismatches due to addi-
tive noise, linear channel, and co-channel interference are
individually either a linear or an affine transformation on the
linear predictor coefficients. In general, due to the transitivity
of the affine transform, a sequence of distortions resulting
from the noise and channel interferences are also equivalent
to an affine transformation of the form

a’=Aa+b
(49)

Affine Transform of Cepstrum

Empirically, cepstral features have been found to be the most
robust to various sources of degradation. In this section, we
will see that for the LP cepstrum, the effect of channel and
noise can also be modeled as an affine transformation.

The LP cepstrum is by definition

6, () = 2 log(H(2))} = & llogl—y—1 .

yraz® (50)

The first-order partial derivative of cjp(n) with respect to
ajis given by
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dc, (n) oz log(7—) (51)
da, ada,
1
=z [ ’ log( =X e <k )
da,
=h(n—1)

where A(n) is the causal and stable impulse response associ-
ated with the LP transfer function H(z). Therefore, if ¢ is the
vector of the first p LP cepstral coefficients, then

dc = Hda (52)
where

h(0) 0 e 0 (53)
w0

hp-1) h(p-2) h(0)

Note that the impulse response matrix H would be the
same for a group of spectrally similar cepstral vectors. The
relationship between a differential LP cepstral vector and a
differential predictor coefficient vector is given by Eq. 52.

Suppose the speech signal undergoes distortion due to a
channel and/or noise. A new LP transfer function H'(z) results
with the corresponding predictor coefficient vector given by
a’ and the LP cepstrum vector given by ¢’. For a set of
spectrally similar cepstral vectors, the same transformation
can be written as

dc’ =H'da’ (54)
Since the predictor coefficients are affinely transformed

in the presence of interference in that a’ = Aa + b, differen-
tiating both sides yields

da’ = Ada (55)
Then, we have

de’  de¢’ da’ da R (56)
= () (=) =H’AH

de (da’)( da )(a’c)

By performing integration, we see that the LP cepstrum
corresponding to the distorted speech is given by

¢=HAH 'c+b (57)
which is an affine transformation. At this point, we observe
that the LP cepstral coefficients are affinely mapped by
mismatches in the noise and channel conditions of the acous-
tical environments. The parameters of the affine mapping are
spectrally dependent.

Computation of Affine Transform Parameters

Assume that the correspondence between the cepstral vectors
for the training condition ¢, =[c,c,,-+¢, 1" and the cepstral
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9. The spatial distribution of cepstral coefficients under various conditions, “*’ for the vowel /a/, ‘0’ for the nasal sound /n/, and ‘+’ for

the sound /sh/. (a) Cepstrum of the clean speech; (b) Cepstrum of signals filtered by continental U.S. voice mid channel (CMV); (c) Cep-
strum of signals with 15 dB SNR. The noise type is additive white Gaussian (AWG); (d) Cepstrum of speech corrupted by both CMV

channel and AWG noise of 15 dB SNR.

vectors for the testing condition ¢, =[cjc;,---¢;,]" are known

i

for i =1to N where N is the number of cepstral vectors. The
affine transform relating the vectors ¢j and ¢’i is given by

ci=Aci+b (58)
which is expanded as
Cy ay, A, | Cn b, (59
=| : : +|
ci; T AN b,

for i = 1 to N. Each individual row of the matrix A (the
elements ajk for k = 1 to p) and the corresponding element of
the vector b (element b;) are determined separately. To deter-
mine the jth row of A and bj, we gather the jth component of
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each of the cepstral vectors of the testing condition and get
the following system of equations

0 (e e 1% (&)
cy ) Cus Cyp 1 CZ”
5
c, 1 a.”
i c.N 1 ‘;j”

forj=1to p. This is almost always an overdetermined system
of equations and, hence, a least-squares solution is obtained

as [42]
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@ (61)

s ilctczT z{ilci
= N T
o, T\ (She) N
b

i

for j = 1 to p. With the affine transform as presented above,
the vectors for the training condition can be mapped into the
space occupied by the vectors of the testing condition. The
reverse mapping is also possible by solving for the vectors
for the training condition in terms of the vectors for the
testing condition.

Geometric Interpretation of Affine Transform

The affine transform can take care of a wide variety of
mismatched conditions and subsumes other robust tech-
niques. Consider the following examples.

1. If the training and testing conditions are matched in that
the corresponding cepstral vectors are identical, the affine
transform parameters will be found to be A =T and b = 0.

2. Channel distortion will lead to A being close to the
identity matrix and b representing a translation that is equiva-
lent to the techniques of CMS or PFCMS. The methods of
CMS and PFCMS are subsumed by the affine transform.

3. Liftering, which does offer enhanced robustness [17],
is subsumed in that A is diagonal and b = 0.

4. Additive noise causes the magnitude of the cepstral
vectors to shrink without significantly changing their orien-
tation [11]. This type of distortion can be taken care of by a
diagonal A in which the diagonal elements are generally
different and have a magnitude less than 1. Also, b = 0. Note
that this is also a special case of liftering.

5. Composite effects of channel and noise are also mod-
eled as an affine transform with A primarily responsible for
the noise distortion and b primarily responsible for the chan-
nel distortion. Fig. 9 shows the change of the spatial cluster-
ing of the cepstral coefficients due to interferences of the
linear channel, white noise, and the composite effect of both
the linear channel and white noise.

The use of the affine transform has been shown to dramati-
cally improve the performance of text-dependent speaker
recognition systems [41]. The composite effect of channel
and noise has been studied.

Summary

This article has presented a review of some of the techniques
used in robust speaker recognition with an emphasis on
feature extraction and enhancement steps. Most of the fea-
tures described are based on the LP model of speech. The
classical autocorrelation method for finding the LP coeffi-
cients is not by itself very robust to a very wide variety of
environmental conditions. However, a better model that is
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robust and computationally tractable has yet to be realized.
The LP coefficients are converted into different types of
cepstral features. In particular, the ACW cepstrum and the
PFL cepstrum are robust to channel and noise effects. But,
more effort is needed in finding features for achieving very
high recognition performance (especially under severe chan-
nel conditions and very low signal-to-noise ratios). The affine
transform is a very recent and promising technique for map-
ping the feature space from one region to another to correct
for deviations caused by the corruption of the speech signal
by channel and noise. With the affine transform, relatively
better performance at low signal-to-noise ratios is achieved,
and further research on the affine transform is encouraged.

Richard J. Mammone is a professor and Ravi P. Ramachan-
dran is a research assistant professor at Rutgers University’s
Center for Computer Aids for Industrial Productivity in Pis-
cataway, NJ. Xiaoyu Zhang is a former graduate student who
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