84

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 1, JANUARY 1997

TABLE IV [4] J. A. Cadzow, “Spectral estimation: An overdetermined rational model
RECOGNITION RATES FOR THE OSALPC-II TECHNIQUE FOR equation approach,Proc. IEEE,vol. 70, pp. 907-939, 1982.
SeVERAL PREDICTION ORDER VALUES AND CEPSTRAL LIFTERS [5] J. Hernando and C. Nadeu, “Speech recognition in noisy car environ-
ment based on OSALPC representation and robust similarity measuring
ORDER LIFTERING / SNR(dB) CLEAN 20 10 0 techniques,” inProc. ICASSP’94Adelaide, Apr. 1994, pp. 69-72.
BANDPASS 973 95 5 %2.6 4.2 [6] M. A. Lagunas and M. Amengual, “Non-linear spectral estimation,” in
< \SD 970 6.4 564 s25 Proc. ICASSP'87Dallas, Apr. 1987, pp. 2035-2038.
Lors 976 010 91 5 o0 [7] D. _P. Mch_n and D. H. thnson, “Reduct_lon of all-pole parameter
——— - - - - estimation bias by successive autocorrelation,”Proc. ICASSP’83,
BANDPASS 98.8 97.2 94.1 71.1 Boston, Apr. 1983, pp. 1088-1091.
12 181> 98.8 98.3 93.3 68.4 [8] S. L. Marple, Jr., Ed.,Digital Spectral Analysis with Applications.
SLOPE 99.4 98.4 94.7 72.2 Englewood Cliffs, NJ: Prentice-Hall, 1987.
BANDPASS 99.3 98.7 94.4 76.% [9] C. Nadeu, J. Pascual, and J. Hernando, “Pitch determination using
To ISD 99.1 05 1 9 4 727 the cepstrum of the one-sided autocorrelation sequence,Proc.
SLOPE 09,1 081 907 8.3 ICASSP’91,Toronto, Canada, May 1991_, pp. 3677-3680.
— - - - - [10] B. H. Juang, L. R. Rabiner, and J. G. Wilpon, “On the use of band-pass
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algorithms. 12]
The OSALPC and SMC representations clearly outdo the coh-
ventional LPC technique in severe noisy conditions: OSALPC-I and
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OSALPC-II rates are better than LPC ones at 10 and 0 dB, and SMC
outperforms LPC at 0 dB. Moreover, OSALPC-I and OSALPC-II
representations outperform the SMC technique in all noisy conditions.
For the OSALPC representation, the use of the conventional biased
autocorrelation estimator for computing the OSA sequence (versi
OSALPC-) is convenient in severe noisy conditions, i.e., for an SN
of 10 or O dB.
However, in noise-free conditions, there is a loss of recognitign., _. oo . .
performance in the OSALPC and SMC approaches with resgpect 0|ha|Io S. Zilovic, Ravi P. Ramachandran, and Richard J. Mammone
the conventional LPC technique due to the imperfect deconvolution of
the speech signal performed by those techniques. This effect SeeMihstract—In speaker recognition systems, the adaptive component
to be minimized by using the coherence estimator to compute theighted (ACW) cepstrum has been shown to be more robust than the
OSA sequence, as in the case of OSALPC-Il and SMC. conventional linear predictive (LP) cepstrum. The ACW cepstrum is
Finally, Table IV shows the recognition rates corresponding @?gi‘éfgerr?_”; aoﬁ’or"i‘églo H?Z”)Sfe_rrhfeunnc&i%’;r;"tgfsies ‘;e%?mingtt%rcjrsdé?e
OSALPC-II for the nge model orders and F:epst.ral lifters as. lynomial thaFt) isy up to now found as follows. The roots of A(z) are
Table I. It can be noticed that the new technique is less sensitivgmputed, and the corresponding residues obtained by a partial fraction
to changes in both the model order and the type of cepstral liftexpansion of 1/A(z) are set to unity. Therefore, the numerator is the

than the conventional LPC approach, provided that the model or@gf of all the (» — 1)th-order cofactors of A(z). In this correspondence,
is not too low. we shqw that the numerator polynomlal is merely the derivative qf the
denominator polynomial A(z). This greatly speeds up the computation of
the numerator polynomial coefficients since it involves a simple scaling
of the denominator polynomial coefficients. Root finding is completely
eliminated. Since the denominator is guaranteed to be minimum phase
In this correspondence, several LPC-based techniques that wank the numerator can be proven to be minimum phase, two separate
in the autocorrelation domain are presented and compared in nd‘g(gprsions involving the polynomial coefficients establishes the ACW cep-

. . . . um. This new method, which avoids root finding, reduces the computer
speech recognition. The OSALPC technique, which is based ﬁhe significantly and imposes negligible overhead when compared with

the application of the (windowed) autocorrelation method of linegfe approach of finding the LP cepstrum.
prediction to the one-sided autocorrelation sequence, yields the best
results among all the compared LPC-based techniques in severe noisy
conditions.

;& Fast Algorithm for Finding the Adaptive Component
Weighted Cepstrum for Speaker Recognition

IV. CONCLUSIONS

I. INTRODUCTION

Speaker recognition is the task of identifying a speaker by his or her
voice [1]. A common problem in realizing robust speaker recognition
systems is that a mismatch in training and testing conditions seriously
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keep the performance high is to make the features used for spedakerunit circle. This implies that the ACW cepstrum is causal [4] and

recognition more robust in that these features would show relativediven by cacw (0) =

less variation for different conditions. Recently, the use of an adaptive
component weighted (ACW) cepstrum has been shown to be less
susceptible to channel effects than the conventionally used linear

log p, and

®)

Cacw (N) = cp(n) = cun(n)

predictive (LP) cepstrum [3]. Unlike the LP cepstrum, the ACWor n >0, wherec,,(n) is the cepstrum corresponding 1¢V (z).
cepstrum involves polynomial root finding, which demands a mudWote thatc..(n) can be found by a recursion [4] involving the
greater computational burden and can be numerically difficult if twepefficientsh, just as in (2).

or more roots are close together. In this correspondence, we sholf must be noted that the present method of finding, () from

that the ACW cepstrum can be efficiently computed without anst(*)

root finding. This much faster algorithm is based on an important 1)
mathematical result concerning the derivative of the LP polynomial. 2)

involves the following steps [3]:
Find ¢, (n) from ag.
Determine the roots ofi(z).

3) Find all the cofactors ofA(z) of orderp — 1, and add them
Il. CONCEPT OFACW up to getN(z).
A pth-order LP analysis of speech leads to an LP polynonial) g; E:zg Z""(ZL)) f?”; b&) en ()
acw \ —_— Ip — bnn .

and an all-pole model (z) = 1/A(z) of the speech spectrum. The
polynomial A(z) is expressed as

P
f= Tl -
k=1

which in turn can be guaranteed to be minimum phase by the

autocorrelation method of LP analysis. The conventional LP cepstrum !ll. M ATHEMATICAL DEFINITION OF NUMERATOR POLYNOMIAL
cp(n) is defined form > 0 and can be found by a recursion involving  Theorem: Every single coefficient, of N(z) in (6) is of the form
the coefficientsu;, as given by [4]

Steps 2 and 3 are mainly responsible for the increase in computational
burden over merely finding, (n). As we shall see later, this increase

is by a factor of 1.4. With the fast algorithm, we propose, the increase
in computation is a very small factor of 1.02.

P

A(z)=1-— Zakz_

k=1

@)

p—k
by =2

n—1
(‘[p(ﬂ =an + Z < )plp ]‘)an k- (2) o
Vk,1 < k < p — 1, wherea;, is the kth coefficient of the LP
The approach in [3] is to first perform a partial fraction expansiopolynomial A(z) (see (1)).
of H(z) to get Proof: Let us rewriteA(z) in terms of positive powers of as

ar

)

P . . —1
lim.—y, [(1 = fiz™ ) /A(2)] » »
H(z)= B » o
(2) ,; 1— frz— A(z) = 2" — Zakz‘ = H(z — ). (10)
k=1 k=1
Z 1— qu« ®) Then,log A(z) can be expressed as

The experiments in [3] reveal that the residugshow considerable o L ‘
variations, especially for nonformant poles when the speech is log A(z) = Zl(’g( = fr) a1
degraded by a channel. Therefore, the variations.iwere removed k=
by forcingr,. to be equal to 1 for every. Hence, we get a pole-zero Differentiating both sides of the equation gives
system function of the form

Fntsy= 3 3~ @ -3 a2

acwl\~) =— A(Z) - P 1— szfl (/‘) Ee1 ('4 - fk)
where whereAd’(z) is the derivative ofd( =) with respect ta:. By comparing
P P (4) and (12), we see thaV(z), when written in terms of positive
N(z)= Z H (1— fiz"™ (5) powers ofz, is equal toA’(z), which can be written as
k=1i=1,
. p—1
which can be further written as N(z)=pt~ ' = Z(p — B)agP !
p—] k=1
.[V(Z) =p <1 - Zbk5k> (6) p—1
k=1 =pl|! apz?"' 7R (13)

Note thatV (z) is the sum of all thép— 1)th-order cofactors ofi(z).

Let cacw(n) be the ACW cepstrum (corresponding Mo.c«(2)) and - herefore, the coefficients, in (6) are given as in the theorem.
Clacw (z) be thez-transform ofcacw (n). From (4), we get
Cacw(z) = log Haew (2) =log N (Zk) =log LI log ,1 IV. MINIMUM -PHASE PROPERTY OFNUMERATOR POLYNOMIAL
: A(z) A(z) N(z) ) . .
@ In order to define a causal ACW cepstrum as in (8), it is necessary

and sufficient thafV(z) be minimum phase [4]. The minimum phase
wherelog refers to the natural logarithm throughout this correspoiproperty of V(=) is clearly established by quoting the theorem below.
dence. It will be justified later in this correspondence that:) is Theorem [5]: Any circle that encloses all the zeros of a polyno-
minimum phase. Thereford..... (=) has all its poles and zeros insidemial also encloses all the zeros of its derivative.
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From the theorem, the minimum-phase property4gt) ensures VI. SUMMARY AND CONCLUSIONS

the minimum-phase nature of (z). The contribution of this correspondence is in achieving a fast

procedure to calculate the ACW cepstrum from the LP coefficients.

V. |IMPROVED ALGORITHM AND COMPUTER TIME The ACW cepstrum is found from a pole-zero transfer function in
which the denominator is the LP polynomial, and the numerator
is what we show to be the derivative of the LP polynomial. The
numerator polynomial is found by a simple scaling of the denominator
polynomial coefficients and does not necessitate any root-finding
' method. In addition, the numerator polynomial is guaranteed to be

3) Find cnn(n) from by. , minimum phase. The ACW cepstrum is computed by two separate

4) Find cacw(n) = cip(n) = can(n). recursions based on the polynomial coefficients. In fact, these recur-

Speech sampled at 8 kHz served as input to a system that doessldns are independent and can be implemented in parallel. Simulations
analysis and converts the LP coefficients to either the conventiosilbw that the additional computer time needed for finding the ACW
LP cepstrum or the ACW cepstrum. An optimized software cod=epstrum as compared with the LP cepstrum is negligible. A more
that implements the above system was run on a SPARC10. Threbust feature is obtained with very little extra computation.
different scenarios were compared in terms of CPU time. In scenario
1, the LP coefficients were transformed intg(n) via the well-
known recursion. In scenario 2, the LP coefficients were transformefd] G. R. Doddington, “Speaker recognition—Identifying people by their
into cacw (1) by the method offered in this correspondence for finding ~ voices,” Proc. IEEE vol. 73, pp. 1651-1664, Nov. 1985.

N() and emploving two separate recursions®hz) and A(+) to [2] A.E. Rosenberg and F. K. Soong, “Recent research in automatic speaker
N(z) P _y 9 P . 0z) _(_ ) recognition,” inAdvances in Speech Signal ProcessiBgFurui and M.
get the respective cepstra. In scenario 3, the LP coefficients were ;. Sondhi, Eds. New York: Marcel Dekker, 1991, pp. 701-738.

again transformed int@..w (n), but unlike scenario 2N(z) was [3] K. T. Assaleh and R. J. Mammone, “New LP-derived features for
found (as suggested in [3]) by a standard polynomial root-finding speaékBeor ggg“fc';?it'ol”é;iEE Trans. Speech Audio Processingl. 2,

. . . . pp. —638, Oct. .
program [6]. The ratio of the required Com.puter time for _gomg fr0m[4] L. R. Rabiner and B.-H. Juandsundamentals of Speech Recognition
speech to cepstral features through scenarios 1, 2, and 3 is 1:1.02:1.40. englewood Cliffs, NJ: Prentice-Hall, 1993.
This shows that our proposed method is much faster than doingl M. Marden, Geometry of Polynomials New York: Amer. Math. Soc.,

: I i 1966.
polynomial rqot finding. In ad.d?tlon, the more robust ACW cepgtrum[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
can be obtained by a negligible overhead, as compared with the' nymerical Recipes in C Cambridge, UK: Cambridge Univ. Press,

conventional LP cepstrum. 1992.

For the improved fast method of finding...(n), the following
steps are involved:

1) Find c¢p(n) from ay.
2) Find by from ag. This givesN(z).
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