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TABLE IV
RECOGNITION RATES FOR THE OSALPC-II TECHNIQUE FOR

SEVERAL PREDICTION ORDER VALUES AND CEPSTRAL LIFTERS

a block diagram for the calculation of the LPC, SMC, OSALPC-I,
and OSALPC-II cepstra that permits comparison of their respective
algorithms.

The OSALPC and SMC representations clearly outdo the con-
ventional LPC technique in severe noisy conditions: OSALPC-I and
OSALPC-II rates are better than LPC ones at 10 and 0 dB, and SMC
outperforms LPC at 0 dB. Moreover, OSALPC-I and OSALPC-II
representations outperform the SMC technique in all noisy conditions.
For the OSALPC representation, the use of the conventional biased
autocorrelation estimator for computing the OSA sequence (version
OSALPC-I) is convenient in severe noisy conditions, i.e., for an SNR
of 10 or 0 dB.

However, in noise-free conditions, there is a loss of recognition
performance in the OSALPC and SMC approaches with respect to
the conventional LPC technique due to the imperfect deconvolution of
the speech signal performed by those techniques. This effect seems
to be minimized by using the coherence estimator to compute the
OSA sequence, as in the case of OSALPC-II and SMC.

Finally, Table IV shows the recognition rates corresponding to
OSALPC-II for the same model orders and cepstral lifters as in
Table I. It can be noticed that the new technique is less sensitive
to changes in both the model order and the type of cepstral lifter
than the conventional LPC approach, provided that the model order
is not too low.

IV. CONCLUSIONS

In this correspondence, several LPC-based techniques that work
in the autocorrelation domain are presented and compared in noisy
speech recognition. The OSALPC technique, which is based on
the application of the (windowed) autocorrelation method of linear
prediction to the one-sided autocorrelation sequence, yields the best
results among all the compared LPC-based techniques in severe noisy
conditions.
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A Fast Algorithm for Finding the Adaptive Component
Weighted Cepstrum for Speaker Recognition

Mihailo S. Zilovic, Ravi P. Ramachandran, and Richard J. Mammone

Abstract—In speaker recognition systems, the adaptive component
weighted (ACW) cepstrum has been shown to be more robust than the
conventional linear predictive (LP) cepstrum. The ACW cepstrum is
derived from a pole-zero transfer function whose denominator is the
pth-order LP polynomial A(z). The numerator is a (p � 1)th-order
polynomial that is up to now found as follows. The roots ofA(z) are
computed, and the corresponding residues obtained by a partial fraction
expansion of 1=A(z) are set to unity. Therefore, the numerator is the
sum of all the (p� 1)th-order cofactors of A(z). In this correspondence,
we show that the numerator polynomial is merely the derivative of the
denominator polynomial A(z). This greatly speeds up the computation of
the numerator polynomial coefficients since it involves a simple scaling
of the denominator polynomial coefficients. Root finding is completely
eliminated. Since the denominator is guaranteed to be minimum phase
and the numerator can be proven to be minimum phase, two separate
recursions involving the polynomial coefficients establishes the ACW cep-
strum. This new method, which avoids root finding, reduces the computer
time significantly and imposes negligible overhead when compared with
the approach of finding the LP cepstrum.

I. INTRODUCTION

Speaker recognition is the task of identifying a speaker by his or her
voice [1]. A common problem in realizing robust speaker recognition
systems is that a mismatch in training and testing conditions seriously
degrades the performance [2]. One of the pursued approaches to
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keep the performance high is to make the features used for speaker
recognition more robust in that these features would show relatively
less variation for different conditions. Recently, the use of an adaptive
component weighted (ACW) cepstrum has been shown to be less
susceptible to channel effects than the conventionally used linear
predictive (LP) cepstrum [3]. Unlike the LP cepstrum, the ACW
cepstrum involves polynomial root finding, which demands a much
greater computational burden and can be numerically difficult if two
or more roots are close together. In this correspondence, we show
that the ACW cepstrum can be efficiently computed without any
root finding. This much faster algorithm is based on an important
mathematical result concerning the derivative of the LP polynomial.

II. CONCEPT OF ACW

A pth-order LP analysis of speech leads to an LP polynomialA(z)

and an all-pole modelH(z) = 1=A(z) of the speech spectrum. The
polynomialA(z) is expressed as

A(z) = 1�

p

k=1

akz
�k

=

p

k=1

(1� fkz
�1

) (1)

which in turn can be guaranteed to be minimum phase by the
autocorrelation method of LP analysis. The conventional LP cepstrum
clp(n) is defined forn> 0 and can be found by a recursion involving
the coefficientsak as given by [4]

clp(n) = an +

n�1

k=1

k

n
clp(k)an�k: (2)

The approach in [3] is to first perform a partial fraction expansion
of H(z) to get
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The experiments in [3] reveal that the residuesrk show considerable
variations, especially for nonformant poles when the speech is
degraded by a channel. Therefore, the variations inrk were removed
by forcingrk to be equal to 1 for everyk: Hence, we get a pole-zero
system function of the form

Hacw(z) =
N(z)
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1
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where
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which can be further written as

N(z) = p 1�

p�1

k=1

bkz
�k

: (6)

Note thatN(z) is the sum of all the(p�1)th-order cofactors ofA(z):
Let cacw(n) be the ACW cepstrum (corresponding toHacw(z)) and
Cacw(z) be thez-transform ofcacw(n): From (4), we get

Cacw(z) = logHacw(z)=log
N(z)

A(z)
=log

1

A(z)
� log

1

N(z)

(7)

wherelog refers to the natural logarithm throughout this correspon-
dence. It will be justified later in this correspondence thatN(z) is
minimum phase. Therefore,Hacw(z) has all its poles and zeros inside

the unit circle. This implies that the ACW cepstrum is causal [4] and
given by cacw(0) = log p, and

cacw(n) = clp(n)� cnn(n) (8)

for n> 0, wherecnn(n) is the cepstrum corresponding to1=N(z):

Note that cnn(n) can be found by a recursion [4] involving the
coefficientsbk, just as in (2).

It must be noted that the present method of findingcacw(n) from
A(z) involves the following steps [3]:

1) Find clp(n) from ak.
2) Determine the roots ofA(z).
3) Find all the cofactors ofA(z) of order p � 1, and add them

up to getN(z).
4) Find cnn(n) from bk.
5) Find cacw(n) = clp(n) � cnn(n).

Steps 2 and 3 are mainly responsible for the increase in computational
burden over merely findingclp(n): As we shall see later, this increase
is by a factor of 1.4. With the fast algorithm, we propose, the increase
in computation is a very small factor of 1.02.

III. M ATHEMATICAL DEFINITION OF NUMERATOR POLYNOMIAL

Theorem: Every single coefficientbk of N(z) in (6) is of the form

bk =
p� k

p
ak (9)

8k; 1 � k � p � 1, where ak is the kth coefficient of the LP
polynomialA(z) (see (1)).

Proof: Let us rewriteA(z) in terms of positive powers ofz as

A(z) = z
p
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Then, logA(z) can be expressed as

logA(z) =

p
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Differentiating both sides of the equation gives
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whereA0(z) is the derivative ofA(z) with respect toz: By comparing
(4) and (12), we see thatN(z), when written in terms of positive
powers ofz, is equal toA0(z), which can be written as

N(z) = pz
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Therefore, the coefficientsbk in (6) are given as in the theorem.

IV. M INIMUM -PHASE PROPERTY OFNUMERATOR POLYNOMIAL

In order to define a causal ACW cepstrum as in (8), it is necessary
and sufficient thatN(z) be minimum phase [4]. The minimum phase
property ofN(z) is clearly established by quoting the theorem below.

Theorem [5]: Any circle that encloses all the zeros of a polyno-
mial also encloses all the zeros of its derivative.
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From the theorem, the minimum-phase property ofA(z) ensures
the minimum-phase nature ofN(z):

V. IMPROVED ALGORITHM AND COMPUTER TIME

For the improved fast method of findingcacw(n), the following
steps are involved:

1) Find clp(n) from ak.
2) Find bk from ak: This givesN(z):
3) Find cnn(n) from bk.
4) Find cacw(n) = clp(n) � cnn(n).

Speech sampled at 8 kHz served as input to a system that does LP
analysis and converts the LP coefficients to either the conventional
LP cepstrum or the ACW cepstrum. An optimized software code
that implements the above system was run on a SPARC10. Three
different scenarios were compared in terms of CPU time. In scenario
1, the LP coefficients were transformed intoclp(n) via the well-
known recursion. In scenario 2, the LP coefficients were transformed
into cacw(n) by the method offered in this correspondence for finding
N(z) and employing two separate recursions onN(z) andA(z) to
get the respective cepstra. In scenario 3, the LP coefficients were
again transformed intocacw(n), but unlike scenario 2,N(z) was
found (as suggested in [3]) by a standard polynomial root-finding
program [6]. The ratio of the required computer time for going from
speech to cepstral features through scenarios 1, 2, and 3 is 1:1.02:1.40.
This shows that our proposed method is much faster than doing
polynomial root finding. In addition, the more robust ACW cepstrum
can be obtained by a negligible overhead, as compared with the
conventional LP cepstrum.

VI. SUMMARY AND CONCLUSIONS

The contribution of this correspondence is in achieving a fast
procedure to calculate the ACW cepstrum from the LP coefficients.
The ACW cepstrum is found from a pole-zero transfer function in
which the denominator is the LP polynomial, and the numerator
is what we show to be the derivative of the LP polynomial. The
numerator polynomial is found by a simple scaling of the denominator
polynomial coefficients and does not necessitate any root-finding
method. In addition, the numerator polynomial is guaranteed to be
minimum phase. The ACW cepstrum is computed by two separate
recursions based on the polynomial coefficients. In fact, these recur-
sions are independent and can be implemented in parallel. Simulations
show that the additional computer time needed for finding the ACW
cepstrum as compared with the LP cepstrum is negligible. A more
robust feature is obtained with very little extra computation.
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