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Abstract

Cochannel interference of speech signals is a common practical problem particularly in tactical communications.
Ideally, separation of the individual speech signals is desired. However, it is known that when two equal bandwidth
signals are added, such a separation is not possible. We examine the problem of identifying temporal regions or frames as
being either one-speaker or two-speaker speech. This identification is important in making automatic speaker and speech
recognition systems more robust and is based on feature extraction and subsequent classification as is done in pattern
recognition. The research has looked into both the closed-set problem where the identity of the tow interfering speakers
are known a priori and the more difficult open-set problem where the identities are not known (speaker independent). For
the feature extraction step, we propose a new pitch prediction feature (PPF) which is compared with the linear Predictive
cepstral coefficients (LPCC) and the mel frequency cepstral coefficients (MFCC). The features are computed and
classified on a frame-by-frame basis. We compare the performance of two classifiers, namely, the neural tree network
(NTN) and vector quantizer (VQ). The results show that in both the closed-and open-set cases, (1) the VQ is the better
classifier and (2) the PPF outperforms both the MFCC and LPCC features. The superiority of the PFF comes with the
added benefits of using a scalar feature as opposed to the 12-dimensional vectorial LPCC and MFCC features and
alower VQ codebook size. © 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Cochannel interference; Speaker count; Pitch prediction; Linear prediction; Cepstrum; Pattern recognition; Vector quan-
tizer; Neural network

1. Introduction also possible that interference may be introduced at the

transmission site itself. This is often the case if the micro-

Cochannel interference is a situation that develops
when a speech signal is corrupted by the voices of other
speakers. In applications that call for remote access by
users, cochannel interference is often the cause of dimin-
ished performance. The interference may be introduced
in the communication channels, at some point during the
transmitting and receiving end. In tactical communica-
tion systems, where there are multiple signals transmitted
over a signal channel, this problem is also common. It is
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phone at the transmitting end is not acoustically isolated,
in which case all background noises, including voices
would be transmitted along with the primary speaker.
This scenario is often exemplified in speakerphones and
other hands-free communication devices. No matter where
the interference has occurred, the end result is a corrupted
signal of multiple voices that creates major problems for
automatic speaker/speech recognition systems.

In this paper, we address the problem of identifying
temporal regions of a cochannel signal as being either
one- or two-speaker speech. This is known as the speaker
count labelling problem in that given a temporal region
or frame of speech, the label corresponds to a count of
either 1 or 2. Solving the speaker count labelling problem
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is very important in making automatic speaker and
speech recognition systems more robust. Suppose that
a speaker identification system is trained on one-speaker
speech only and a cochannel signal is encountered during
testing. There is a mismatch between the training and
testing conditions which causes serious performance
degradation. If it is possible to label the regions of the
cochannel signal that have count of 1, only the feature
vectors from those regions can be used for speaker identi-
fication. Similarly, for speech recognition, regions having
a count of more than 1 can be further processed to
remove the interference. In fact, if the objective is speaker
interference suppression, speaker count labelling can be
used in conjunction with a knowledge of the pitch tracks
of both speakers to diminish the effect of the interfering
speaker.

In Ref. [1], a similar problem known as automatic
talker activity labelling has been addressed. In this work,
cochannel speech was used as input where frames were
labelled either target (primary speaker), jammer (interfer-
ing speaker) or talker-jammer (cochannel speech). A clas-
sifier was then used to train front-end feature vectors for
the ‘target’ speaker, the jammer’ speaker and the combi-
nation of both speakers. During the recognition, the
detector was presented with speech from the target, jam-
mer and combination of target-jammer. The detector’s
task was to use the stored references to identify which of
the three possible sources produced the input and report
that result. The detectors were then evaluated on their
ability to label the test input correctly. With the use of the
mel frequency cepstral coefficient (MFCC) feature and
a vector quantizer (VQ) classifier, a 80% correct detec-
tion rate was recorded.

The speaker count algorithm we propose is based on
a common pattern recognition approach involving fea-
ture extraction and classification. We attempt to find
features that can discriminate between one- and two-
speaker speech on a frame by frame basis. Experiments
are conducted with the MFCC feature and the linear
predictive cepstral coefficients (LPCC). We also propose
a new feature based on the concept of pitch prediction
which is commonly used in speech coding [2]. For the
classifier, we compare the VQ [3,5] and the neural tree
network (NTN) [6,7]. Two distinctive scenarios are
examined, namely, the closed-set case where the identity
of the speakers is known a priori and the open-set case,
where the identity of the speakers is not known. Note
that in Ref. [1], the closed-set case is mostly examined.
The speech is assumed to be text independent in that
there is no restriction on what phonemes are uttered.

Another assumption in this work is that only one
cochannel signal is available for analysis. Moreover, this
signal is a linear superposition (or mixture) of the two
constituent speech signals. In contrast with our assump-
tion, much work on signal separation has dealt with the
case when two signal mixtures are available. This is the

area of blind signal processing for which a survey of
adaptive learning algorithms are given in Ref. [8]. Other
techniques which use two signal mixtures for separation
include decorrelation based on the least mean-squares
algorithm [9], eigendecomposition of the autocorrela-
tion matrix [10], polyspectral analysis [11]. A further
examination of the decorrelation method for accelerated
adaptive filtering is given in Ref. [12] along with an
application of speech recognition.

The outline of this paper is as follows. Section 2 dis-
cusses the various features we use for speaker count. In
Section 3, we describe the VQ and NTN classifiers that
we use along with the features to do speaker count
determination as a pattern recognition task. Section 4
gives the experimental protocol and Section 5 discusses
the results. In Section 6, we present the conclusions.

2. Features for speaker count determination

In this section, we discuss the various features that are
considered to determine the speaker count.

2.1. Linear predictive cepstral coefficients (LPCC)

Speech consists of two major correlations, namely, the
near- and distant-sample redundancies. The near-sample
correlations leads to a linear prediction (LP) model for
the speech as given by

P

sm)= Y as(n—k) +r(n), (1)
k=1

where s (n) is the speech signal, r (n) is the error or LP
residual, @, are the LP weights applied to the previous
speech samples in estimating the current sample and p
is the LP order. The residual signal r (n) is obtained by
applying a nonrecursive filter 4 (z) to the speech as given
by

A@Q=1-F@=1-Y sz 2)

The filter 4 (z) removes the near-sample correlations in
the speech and is known as the prediction error filter.
From Eq. (2), we see that F(z) is a formant or linear
predictor that forms an estimate of s (n) as a weighted
linear combination of p previous samples. The coeffi-
cients a; are computed by the autocorrelation method
which minimizes the mean-square value of the residual
r(n) [13,14]. With the autocorrelation method, all the
roots of A (z) are within the unit circle [13,14]. The
spectrum of 1/A4 (z) represents the spectral envelope of the
speech signal which in turn specifies the vocal tract res-
onances or formants. The distant sample correlation is
due to the inherent periodicity or pitch and is discussed
later.
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Based on the LP coefficients a,, it is possible to derive
a host of equivalent representations. These are the reflec-
tion coefficients, log-area ratios, linear prediction cep-
stral coefficients (LPCC) and the line spectral frequencies
(LSF) [15]. We use the LPCC feature for speaker count
which, for a minimum phase A4 (z), can be recursively
computed from the LP coefficients by the relationship

n—1 k
G =y + Y <—>ckank, 1<n<p, 3)
k=1 \1

where ¢, are the cepstral coefficients. The LPCC feature
is commonly used in speaker recognition systems [16]
and it is our intention to examine it for speaker count.

2.2. Pitch prediction feature (PPF)

Once the speech signal s (n) has been filtered by A4 (z)
(see Egs. (1) and (2)), a residual signal, r (n) that is free of
near-sample correlations is produced. This residual sig-
nal contains only the distant sample or pitch informa-
tion. The pitch prediction filter removes the pitch in-
formation. In speech coding, pitch prediction is used to
parameterize the pitch information which is transmitted
along with the LP parameters [2]. The simplest form of
the pitch prediction filter has one tap whose transfer
function is given by

P@)=piz ", )

where the integral delay M represents the pitch period.
Since the sampling frequency is unrelated to the pitch
period, the individual samples do not show a high peri-
od-to-period distant sample correlation. Therefore, a
3 tap predictor serves like an interpolation filter and
provides for interpolated estimates that show higher peri-
od to period correlation. The transfer function is

Pz)=prz M+ BozM 4 faz 7ML ©)

In computing the predictor coefficients and M, con-
sider the situation of a signal that is passed through the
prediction error filter 1 — P(z) to generate the residual
e (n). Assuming a given value of M, the coefficients of P(z)
are chosen to minimize the mean-squared residual

Fe = Y €00, (©)

where
em=rm—pir(n—M+1)— Br(n—M)
—Par(n—M—1) (M

and N is the number of samples in one frame. The
minimization of E. leads to a system of equations
which can be written in matrix form as Ac =d. For

a 3 tap predictor, the entries of the matrix A are

A, j) =dM +i, M +))
S = M- M —)) ®)

for —1 <i,j < 1. The vector

c=[f1 f2 B3] )
and the vector

d="[¢0, M —1) ¢O0, M) $O,M + 1)]". (10)

Specifically, for the one tap case, f; = ¢(0, M)/p(M M).
In order to determine the optimum lag value M, the
mean-squared error is minimized by solving the above
equations. The resulting error E, . is

Eres = ¢(0> O) - ch (11)

in which the second term in the above equation is a func-
tion of M. The optimal value of M is that which maxi-
mized ¢'d. The procedure is to do an exhaustive search of
all integral values of M within an allowable range (we
used 20-147 for the 8 kHz sampling rate) to find the
optimal value. Assuming that the off-diagonal terms of A,
which represent the near-sample redundancies, can be
neglected, the function ¢'d can be approximately given
by [2]

a5 20m

m=M-1 ¢(m’ m)

(12)

Based on these pitch prediction concepts, a new feature
for speaker count has been developed. The pitch predic-
tion feature (PPF) is defined as the standard deviation of
the differences between the local peaks of the quantity
¢'d as determined by the pitch prediction method. The
local peaks are those peaks of ¢'d that are above a given
threshold. Based on our observations, peaks that are
greater than 50% of the global maximum have been
chosen as possible pitch peaks. If a frame of a cochannel
speech signal has one speaker, strong peaks will occur at
multiples of the pitch period. Therefore, the standard
deviation of the differences of the peaks will be very
small. In Fig. 1(a) and (b), a plot of ¢*d is given for a frame
of speech of two different speakers, one with pitch period
35 samples and the other with period 55 samples. When
the speech of these two speakers are mixed as a cochannel
signal, there will be a considerably larger number of
strong peaks of ¢'d. This is due to the strong cross-
correlation values between the pitch pulses of the two
speakers. For this reason, the standard deviation of the
differences of the peaks will be much higher. Fig. 1(c)
shows the plot of ¢'d for a frame of cochannel speech.
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Fig. 1. Plot of ¢"d for a frame of (a) speaker 1 with PPF value of
0.5, (b) speaker 2 with PPF value of 0.0 and (c) cochannel signal
with PPF value of 14.18.

In Fig. 1(a), the peaks of ¢'d that are above the 50%
threshold correspond to 35, 70, 105 and 139 samples
(multiples of the pitch period of 35 samples). The differ-
ences in the peaks are 35, 35, 35 and 34 samples. The
standard deviation of these differences is 0.5 which turn
in the PPF value. In Fig. 1(b), the peaks of ¢'d are 55 and
110. The differences are 55 and 55 which in turn give rise
to a PPF value of 0.0. Fig. 1(c) represents the peaks of ¢"d
for cochannel speech. The peaks are at 35, 78, 105, 110
and 139 samples. The differences are 35, 43, 27, 5 and 29.
The PPF value is 14.18.

2.3. Mel frequency cepstral coefficients (MFCC)

The perception of sound by humans of either pure
tones or for speech signals have been shown to follow
a nonlinear scale. This has led to the definition of what is
known as subjective pure tones. Thus for every pure tone
defined by actual frequency measured in Hz, a subjective
pitch is measured on a scale called the mel or bark scale.
As a standard reference, a pitch of a 1 kHz tone, 40 dB
above the hearing threshold, is defined as 1000 mels.
Mathematically, it has been shown that the subjective
pitch in mels increases less and less rapidly as the stimu-
lus frequency is increased linearly [14,17].

These perceptual nonlinearities have led to modeling
the peripheral auditory system by critical-band filters.
The model postulates that sounds are preprocessed by
a band of triangular bandpass filters, with center fre-
quency spacings and bandwidths increasing with fre-
quency (equivalently increasing by a constant mel fre-
quency interval) [14]. In fact, these filters are designed
similar in spacing as the auditory neurons located on the
basilar membrane in the inner ear. The modified spec-
trum of the speech signal S (w) thus consists of the output

power of these filters when S () is the input. If the power
coefficients are denoted by S, k =1,2,..., K, we can cal-
culated what is called the mel-frequency cepstral coefficients
(MFCC) [18] denoted by ¢,, which can be expressed as

T

X ~ 1
¢, = 1 k—=)— =12,...,L
Cn kgl 0og (Sk) Cos |:n< 2>K:|a n 5 & 5 Loy
(13)

where L is the number of cepstral coefficients. The
MFCC has been used for closed set speaker count deter-
mination [ 1] and we compare it to the LPCC and PPF in
both the closed and open set situations.

3. Classifiers

In speaker recognition systems, vector quantizers (VQ)
and neural tree network (NTN) classifiers have been used
successfully to render decisions about the identity of a
speaker [5,7] among a group of M speakers. Each
speaker is represented by a VQ codebook or NTN model
that is configured during training. During testing, the
feature vectors are obtained from one utterance consist-
ing of many frames. These feature vectors are applied to
each of the VQ codebook or NTN models (depending on
which classifier is used) to get M distinct scores. The
model with the best score identifies the speaker. The
speaker count determination problem is slightly different
in that a model is needed to represent a speaker count of
1 and 2. Also, in contrast to speaker recognition, a deci-
sion is taken for each individual frame rather than for an
entire utterance. The speaker count is determined for
each frame and hence, the decision is taken using only
one feature vector. In speaker recognition, an entire ut-
terance is processed and hence, the decision is taken
using an ensemble of feature vectors. The general scheme
for speaker count is shown in Fig. 2.

3.1. Vector quantizer

In this paper, two scenarios are investigated for the
speaker count determination problem. The first looks at
the closed-set case, where the speakers are known a
priori. In this instance, three codebooks are developed

Model for
— Speaker Count ™
of 1
pECision  [—oeaker
Feature Vectors Count
Model for
Speaker Count  —
of 2

Fig. 2. Speaker count determination system.
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from the training feature vectors, each dedicated to one
of the three types of possible speech conditions encoun-
tered. The three conditions are (1) one-speaker speech
from the first speaker, (2) one-speaker speech from the
second speaker and (3) two-speaker or cochannel speech
from both speakers. The codebook for each condition is
designed by the Linde-Buzo—Gray (LBG) algorithm [4]
from training data for that particular condition only.
This is known as unsupervised learning in that training
data pertaining to another condition does not influence
the codebook for a particular condition. Each of the
codebooks will have the same size or number of codevec-
tors. We evaluate the performance for various codebook
sizes. During testing, consider a test feature vector from
a particular frame. It is quantized by each of the three
codebooks. The quantized vector is that which is closest
according to some distance measure to the test feature
vector. We use the squared Euclidean of L, distance in
our work. Hence, three different distances are recorded,
one for each codebook. The codebook which renders the
smallest distance identifies the speech condition. If condi-
tion (1) or (2) results, we have a speaker count of 1. If
condition (3) results, the speaker count is 2. The perfor-
mance is the number of frames identified correctly
divided by the total number of frames tested. The next
section gives details on how the training data, test data
and correct speaker count are obtained.

In the open set case, the speakers are not known
a priori. Two codebooks are designed by the LBG
method, one for one-speaker speech and the other for
two-speaker or cochannel speech. The testing is done as
in the closed-set case but only two distances are recorded.
The codebook which renders the smaller distance identi-
fies the speaker count.

3.2. Neural tree network

The NTN classifier is a hierarchical classifier that
combines the properties of decision trees and feedfor-
ward neural networks [7]. The NTN uses a tree architec-
ture to implement a sequential linear decision strategy
[19]. The architecture of the NTN is determined during
training. Thus, it is self-organizing. Also, NTN training is
supervised in that training data pertaining to different
conditions (each having a distinct label) is used. There-
fore, each training feature vector has a label indicating
the condition it emanates from. Each node at every level
of the NTN divides the input training vectors into a num-
ber of exclusive subsets of the training data. If a set of
training data at a particular node is of the same class or
condition (has the same label), then that node becomes
a leaf. Otherwise, the data is split into several subsets,
which became children of this node. This procedure
is repeated until all the data is completely uniform at the
leaf nodes. The leaf nodes of the NTN partition the
feature space into homogeneous subsets, meaning

0N

Fig. 3. Concept of neural tree network. The circles represent
nodes and the squares represent leaves.

a single class at each leaf node. An illustration of this
concept is given in Fig. 3. In Fig. 3, training data come
from two classes labelled as 0 and 1. The circles represent
nodes and the squares represent leaves. The nodes can be
thought of as being hyperplanes that partition the space
into exclusive subspaces. These subspaces are further
partitioned until a leaf is reached.

The NTN will give a 100% performance on the train-
ing set. Since test data are always different from the
training data, an optimal performance is not necessarily
reached for a fully grown NTN due to overtraining [7].
Therefore, we use the strategy of forward pruning (has
been used for speaker identification) [7] to avoid over-
training. When implementing forward pruning, the NTN
is grown only to a specified number of levels and the
nodes at the lowest level are said to be leaves. In this case,
the training data for a leaf are not necessarily from the
same class. A majority vote is taken and the leaf is
assigned the label of the majority. We study the speaker
count performance with varying number of levels.

For the speaker count determination closed set prob-
lem, an NTN is grown from training data consisting of
three labels. The three labels are for the three conditions
which as before are (1) one-speaker speech from the first
speaker, (2) one-speaker speech from the second speaker
and (3) two-speaker or cochannel speech from both
speakers. Given a frame of test speech, the feature vector
is found and passed through the NTN so that is reaches
a particular leaf. The label assigned to the leaf classifies
the speech frame. For the open-set case, an NTN is
grown from training data consisting of two labels, name-
ly, one- and two-speaker speech. The classification of
a test feature vector is similarly done in that a match is
made to the label of the leaf reached.

4. Experimental protocol
In the following section, the experimental protocols

for the closed- and open-set schemes are discussed. In
general, the experimental protocols are quite similar.
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However, there are some slight variations. A key point to
note, is that, in the closed-set experiment, particular
attention is paid to the speakers’ identity. In the open-set
case, however, the identity of the speakers is not relevant.
We will first describe the feature computation and then
look into the training and testing phases. The New Eng-
land portion of the TIMIT database is used in which the
speech is downsampled to 8 kHz.

4.1. Feature computation

The computation of the features applies to both the
training and testing phases. For the LPCC feature, the
autocorrelation method of LP analysis is used to get the
LP coefficients a; [13]. The speech signal is first preem-
phasized by passing it through a nonrecursive filter
1-0.95z7%. A 30 ms long Hamming window is then ap-
plied with a 20 ms overlap thereby providing a frame size
of 10 ms. A 12th-order LP analysis is done and the LP
coefficients a; are converted into a 12th-order LPCC
feature vector using the recursion in Eq. (3). A 12 dimen-
sional MFCC feature is also calculated. As for the LPCC
feature, preemphasis followed by a 30 ms Hamming win-
dow with a 20 ms overlap is applied.

Consider the PPF feature. In this case, no preemphasis
is applied. A 12th-order LP analysis by the autocorrela-
tion method using a 30 ms Hamming window with
a 20 ms overlap gives us the LP coefficients a,. Using the
ay, the speech is filtered to generate the LP residual as in
Eq. (1). Prior to extracting the PPF, the LP residual is
passed through a Gaussian-shaped filter whose impulse
response f (x/c) whose impulse response can be expressed as

) -5)

The impulse response has a Gaussian shape and o refers
to the standard deviation of the Gaussian function. This
type of filter has been used in image processing, parti-
cularly for edge detection [20,21]. The utilization of this
filter is motivated by our observation that it acts so as to
smooth the LP residual thereby enhancing the perfor-
mance of the peak picking algorithm (to pick the peaks of
¢'d as described earlier) used when generating the PPF.
Different values of ¢ were tried and the best performance
was achieved with a ¢ = 0.32. The number of the filter
taps is equal to an odd integer closest to 16 (8¢ + 1).
From the Gaussian filtered LP residual, the pitch predic-
tion algorithm was applied to get a 3 tap pitch filter P(z)
and the quantity ¢'d for M = 20 to 147. For the pitch
prediction algorithm, a framesize of 10 ms was used (per-
formance given later) and there was no overlap between
frames. After finding the global maximum of ¢d, a thre-
shold equal to 50% of this maximum was set. Again,
different thresholds were tried before a decision was
taken. The local peaks of ¢'d are those above the

threshold from which the candidate values of M are
taken. From these candidate values of M, the PPF scalar
feature is found by taking the standard deviation of the
differences as described earlier.

4.2. Training phase

During the training phase for all the experiments, the
general aim is to derive features that represent one- and
two-speaker or cochannel speech. The first five sentences
for each of the 38 speakers in the New England portion of
the TIMIT database represent the training speech. Six
speakers (three male and three female) are selected and all
possible sentence combinations are used to derive the
training cochannel speech. With this exhaustive combin-
ing method, a total of 375 cochannel sentences are used
for training. In generating the cochannel sentences, the
individual sentences are first normalized by their max-
imum absolute sample value before being added. In ex-
plaining both the closed- and open-set cases, let the
individual speech signals pertaining to speaker A and
speaker B be s4(n) and sg(n), respectively. The cochannel
signal is denoted as s,g(n) = ss(n) + sg(n).

Consider the closed-set scenario. The signal sa(n) is
divided into frames and energy thresholding is used to
distinguish between speech frames (not silent) and silent
frames. The same procedure is repeated for sz(n) to get
the speech frames of speaker B. For the cochannel signal
sag(n), the cochannel frames are those for which a speech
frame of speaker A and a speech frame of speaker B are
added. The frames of sag(n) for which a speech frame
of speaker A and a silent frame of speaker B are added
correspond to a speech frame of speaker A only. Sim-
ilarly, when a speech frame of speaker B and a silent
frame of speaker A are added, we get a speech frame
speaker B only. We now gather speech frames of speaker
A from s,(n) and s,p(n), speech frames of speaker B from
sg(n) and s,p(n) and cochannel frames of both speakers
from sap(n). The features are computed for these three
cases and the VQ and NTN classifiers designed.

Consider the open-set scenario. As in the closed-set
case, energy thresholding in performed on s, (n) and sg(n)
to get the speech frames. These speech frames are one-
speaker frames. For the cochannel signal s,g(n), the two-
speaker or cochannel frames are those for which a speech
frame of speaker A and a speech frame of speaker B are
added. From s,g(n), we also extract one-speaker frames
when a speech frame of one of the speakers is added with
a silent frame of the other speaker. The features are
computed for the one- and two-speaker cases and the VQ
and NTN classifiers designed.

4.3. Testing phase

In the testing phase, energy thresholding is performed
on the cochannel signal s g(n). For the frames which are
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declared to be speech frames, the feature is computed and
classified by either the VQ or NTN classifier as described
above. For the closed-set case, the decision is one-
speaker speech from speaker A, one-speaker speech from
speaker B or two-speaker speech. For the open-set case,
the decision is either one- or two-speaker speech. To do
the testing, six speakers from the TIMIT database that
are different from those used for training are chosen.
Three of the speakers are male and three are female.
There are five testing sentences for each speaker that are
different from the sentences used for training. All possible
sentence combinations are used to derive the 375 cochan-
nel speech sentences used for testing.

In measuring the performance, the decision must be
compared to some notion of a correct answer which is
not as obvious as in the case of assessing speaker identi-
fication systems. We formulate one simple method to get
a correct answer as follows. Given a cochannel signal
sag(n), energy thresholding is performed on the constitu-
ent signals s, (1) and sg(n) as is done during training. The
rest of the training procedure is essentially repeated to
label the cochannel frames. The performance is the num-
ber of times a frame is classified correctly divided by the
total number of frames tested (82, 174 in our experiments).
There are two sources of error given a particular cochan-
nel frame. The first is when a decision is taken but does not
correspond to the correct frame label. The second is when
a decision is taken (since the cochannel frame is declared
to be a speech frame) but there is no frame label (since
neither the corresponding frame of s,(n) and sg(n) are
declared to be a speech frame). This second source of error
is very rare and occurs less than 0.1% of the time.

5. Results and discussion

In this section, the performance of the new PPF and
cepstral features are compared. In the first set of results,
the performance of the VQ and NTN classifiers are
compared in the closed-set case. In the second set of
results, the experiments are repeated for the open-set
case. The vector quantizer codebook sizes range from 16
to 256 for the LPCC and MFCC features. Lower code-
book sizes of 1-16 were used in the case of the PPF. This
is due to the fact that the PPF is a scalar feature as
compared to the 12-dimensional LPCC and MFCC fea-
tures. Therefore, the use of the higher codebook sizes for
a scalar feature is not necessary and actually diminishes
the performance. For the NTN classifiers tree levels of
2-10 were grown for all the features.

5.1. Closed-set case
Tables 1-3 depict all the closed-set results. The VQ

classifier outperforms the NTN for all the features. We
concentrate on the results obtained using VQ. The LPCC

Table 1
Closed-set results for the cepstral features using the VQ classifier

Codebook size Cepstral feature

LPCC MFCC
16 83.1 75.6
32 83.2 759
64 83.1 76.1
128 83.1 76.2
256 83.1 75.5

Table 2
Closed-set results for the PPF feature using VQ classifier

Codebook size PPF feature

1 83.2
2 83.3
4 83.3

8 83.3
16 83.5
Table 3

Closed-set results for the cepstral and PPF features using the
NTN classifier

Number of levels Feature
LPCC MFCC PPF
2 65.9 63.9 65.2
4 64.8 65.6 66.6
6 64.6 65.2 66.6
8 64.7 64.8 66.9
10 64.5 64.6 65.6

features outperforms the MFCC for all the VQ codebook
sizes. The performance of the PPF is essentially equal to
that of the LPCC. The PPF still maintains an advantage
in that the feature dimension is substantially lower.
Moreover, the smallest codebook size of 1 can be used as
negligible performance gain is achieved by a larger code-
book size.

5.2. Open-set case

Tables 4-6 depict all the open-set results. Since the
open-set case is a harder problem than the closed-set
case, the performance is less for the open-set case. The
VQ classifier again essentially outperforms the NTN.

We concentrate on the results obtained using VQ. The
LPCC an MFCC show a similar performance. The PPF
shows the best performance for the smallest codebook
size of 1 and outperforms the cepstral features.
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Table 4
Open-set results for the cepstral coefficients using the VQ classi-
fier

Codebook size Cepstral feature

LPCC MFCC
16 56.8 58.8
32 56.7 589
64 56.7 57.7
128 56.7 57.5
256 56.8 57.3

Table 5
Open-set results for the PPF feature using the VQ classifier

Codbook size PPF feature

1 64.4

2 63.0

4 50.2

8 55.0
16 61.1
Table 6

Open-set results for the cepstral and PPF features using the
NTN classifier

Number of levels Feature
LPCC MFCC PPF
2 55.8 49.0 50.5
4 54.4 60.2 48.8
6 52.7 55.8 47.0
8 51.6 475 51.2
10 48.4 50.7 51.2

6. Summary and conclusions

We examine the problem of identifying temporal re-
gions or frames of cochannel speech as being either one-
or two-speaker speech. Ideally, separation of the indi-
vidual speech signals that form a cochannel signal is
desired. However, it is known that when two equal band-
width signals are added, such a separation is not possible.
Identifying frames as being one- or two-speaker speech is
done using a pattern recognition framework based on
feature extraction and subsequent classification. We de-
velop a new feature called the pitch prediction feature
(PPF) based on the concept of pitch prediction that is
used in speech coding. The PPF is a scalar feature that

outperforms the linear predictive cepstrum (LPCC) and
the mel-wrapped cepstrum (MPCC) both of which are
12-dimensional vector features. The vector quantizer
(VQ) and neural tree network (NTN) classifiers are com-
pared and the VQ is found to be consistently better. Note
that the superiority of the PPF is not only synergistic
with achieving a lower feature dimension but also with
being able to use a lower VQ codebook size. In fact, the
lowest codebook size of 1 is used for the PPF which
essentially is equivalent to a Bayesian discriminant ap-
proach [19]. Two cochannel scenarios are looked at,
namely, the case when the speaker identities are known
a priori (closed set) and when the identities are not
known (open set). The open-set problem is more difficult
and as expected, the performance for all the feature is less.
For both the open-set and closed-set problems, the PPF
is the best feature.

References

[1] M.A. Zissman, C.J. Weinstein, L.D. Braida, Automatic
talker activity labelling for co-channel talker interference
suppression, IEEE International Conference on Acoustics,
Speech and Signal Processing, Albuquerque, New Mexico,
April 1990, pp. 813-816.

[2] R.P. Ramachandran, P. Kabal, Pitch prediction filters in
speech coding, IEEE Trans. Acoust. Speech Signal Process
37 (1989) 467-478.

[3] J. Makhoul, S. Roucos, H. Gish, Vector quantization in
speech coding, IEEE Proc. 73 (1985) 1551-1588.

[4] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector
quantizer design, IEEE Trans. Commun. COM-28 (1980)
84-95.

[5] A.E.Rosenberg, F.K. Soong, Evaluation of a vector quant-
ization talker recognition system in text independent and
text dependent modes, Comput. Speech Language 22
(1987) 143-157.

[6] A. Sankar, R.J. Mammone, Growing and pruning neural
tree networks, IEEE Trans. Comput. C-42 (1993) 221-229.

[7] K.R. Farrell, R.J. Mammone, K.T. Assaleh, Speaker recog-
nition using neural tree networks and conventional classi-
fiers, IEEE Trans. Speech Audio Proc. 2 (1994) 194-205.

[8] S-C. Amari, A. Cichocki, Adaptive blind signal proces-
sing-neural network approaches, Proc. IEEE 86 (1998)
2026-2048.

[9] E. Weinstein, M. Feder, A.V. Oppenheim, Multichannel
blind signal separation by decorrelation, IEEE Trans.
Speech Audio Proc. 1 (1993) 405-413.

[10] Y. Cao, S. Sridharan, M. Moody, Multichannel speech
separation by eigendecomposition and its application to
co-talker interference removal, IEEE Trans. Speech Audio
Proc. 5 (1997) 209-219.

[11] S.Shamsunder, G.B. Giannakis, Multichannel blind signal
separation and reconstruction, IEEE Trans. Speech Audio
Proc. 5 (1997) 515-528.

[12] K.-C. Yen, Y. Zhao, Adaptive cochannel speech separation
and recognition, IEEE Trans. Speech Audio Proc. 5 (1999)
138-151.



M.A. Lewis, R.P. Ramachandran | Pattern Recognition 34 (2001) 499-507 507

[13] L.R. Rabiner, R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[14] L.R. Rabiner, B.H. Juang, Fundamentals of Speech Recog-
nition, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[15] F.K. Soong, B.H. Juang, Line spectrum pair (LSP) and
speech data compression, IEEE International Conference
on Acoustics, Speech and Signal Processing, San Diego,
CA, March 1984, pp. 1.10.1-1.10.4.

[16] B.S. Atal, Effectiveness of linear prediction characteristics

[18] S.B. Davis, P. Mermelstein, Comparison of parametric
representations of monosyllabic word recognition in con-
tinuously spoken sentences, IEEE Trans. Acoust. Speech
Signal Proc. ASSP- 28 (1980) 357-366.

[19] R.O. Duda, P.E. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[20] RJ. Schalkoff, Digital Image Processing and Computer
Vision, Wiley, New York, 1989.

[21] G.Deng, L.W. Cahill, An adaptive Gaussian filter for noise

reduction and edge detection, IEEE Nuclear Science
Symposium and Medical Imaging Conference 1994, pp.
1615-1619.

of the speech wave for automatic speaker identification
and verification, J. Acoust. Soc. Am. 55 (1974) 1304-1312.

[17] S.S. Stevens, Critical bandwidth in loudness summation,
J. Acoust. Soc. Am. 29 (1957) 548-557.

About the Author—MICHAEL A. LEWIS received his B.E, M.E and Ph.D degrees in Electrical Engineering from the City University of
New York in 1991, 1993 and 1998 respectively. His research interests include speech processing, adaptive signal processing and modeling
and neural networks.

About the Author—RAVI P. RAMACHANDRAN was born in Bangalore, India on July 12th, 1963. He received the B.Eng. degree (with
great distinction) from Concordia University, Montreal, P.Q., Canada in 1984 and the M.Eng. and Ph.D. degrees from McGill
University, Montreal, P.Q., Canada in 1986 and 1990, respectively. From January to June 1988, he was a Visiting Postgraduate
Researcher at the University of California, Santa Barbara. From October 1990 to December 1992, he worked in the Speech Research
Department at AT&T Bell Laboratories, Murray Hill, NJ. From January 1993 to August 1997, he was a Research Assistant Professor at
the Caip Center, Department of Electrical Engineering, Rutgers University, Piscataway, NJ. Also, from July 1996 to August 1997, he was
a Senior Speech Scientist at T-NETIX Inc., Piscataway, NJ. Since september 1997, he is an Associate Professor in the Department of
Electrical Engineering, Rowan University, Glassboro, NJ. His main research interests are in speech processing, data communications
and digitial signal processing.



