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Abstract

Speaker recognition refers to the concept of recognizing a speaker by his=her voice or speech samples. Some of the important
applications of speaker recognition include customer veri cation for bank transactions, access to bank accounts through
telephones, control on the use of credit cards, and for security purposes in the army, navy and airforce. This paper is purely a
tutorial that presents a review of the classi er based methods used for speaker recognition. Both unsupervised and supervised
classi ers are described. In addition, practical approaches that utilize diversity, redundancy and fusion strategies are discussed
with the aim of improving performance. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Speaker recognition refers to the concept of recogniz-
ing a speaker by his=her voice or speech samples. In auto-
matic speech recognition, an algorithm takes the listener’s
role in deciphering speech waves into the underlying tex-
tual message. In automatic speaker recognition, an algorithm
generates a hypothesis concerning the speaker’s identity or
authenticity. When the task is to identify the person talk-
ing rather than what the person is saying, the speech signal
must be processed to extract measures of speaker variability
instead of segmental features. Some of the important appli-
cations of speaker recognition include customer veri cation
for bank transactions, access to bank accounts through tele-
phones, control on the use of credit cards, and for security
purposes in the army, navy and airforce. Speaker recogni-
tion is described in detail in [1–5].
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The two main tasks within speaker recognition are
speaker identi1cation (ID) and speaker veri1cation.
Speaker identi cation deals with a situation where the
person has to be identi ed as being one among a set of
persons by using his=her voice samples. The objective of
speaker veri cation is to verify the claimed identity of that
speaker based on the voice samples of that speaker alone.
For speaker recognition, the acoustic aspects of what char-
acterizes the diDerences between voices are obscure and
diEcult to separate from signal aspects that reFect segment
recognition. There are three sources of variation among
speakers. They are

• DiDerences in vocal cords and vocal tract shape,
• DiDerences in speaking style (including accent),
• DiDerences in how speakers express themselves (words
or phrases used) to convey a particular message [6,7].

Automatic speaker recognizers exploit only the  rst two
variation sources, examining low-level acoustic features of
speech, since a speaker’s tendency to use certain words and
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Fig. 1. A general diagram of a recognition system.

syntactic structures (the third source) is diEcult to quantify
or control in an experiment.
Speaker recognition consists of two stages, namely, Fea-

ture extraction and Classi1cation as shown in Fig. 1. Fea-
ture extraction is associated with obtaining the characteristic
patterns of the signal that are representative of the speaker in
question. The parameters or features used in speaker recog-
nition are a transformation of the speech signal into a com-
pact acoustic representation that contains information useful
for the identi cation of the speaker. This is often done using
short-time linear predictive (LP) [8] analysis. The classi er
uses these features to render a decision as to the speaker
identity or veri es the claimed identity of the speaker. The
speaker ID problem may further be subdivided into closed
set and open set. The closed set speaker ID problem refers to
a case where the speaker is known a priori to belong to a set
of M speakers. In the open set case, the speaker may be out
of the set and hence, a “none of the above” category is nec-
essary. Another distinguishing aspect of speaker ID systems
is that they can either be text-independent or text-dependent
depending on the application. In the text-independent case,
there is no restriction on the sentence or phrase to be spo-
ken, whereas in the text-dependent case, the input sentence
or phrase is  xed for each speaker. A text-dependent sce-
nario is commonly encountered in speaker veri cation sys-
tems in which a person’s password is critical for verifying
his=her identity.
A classi er consists of M speaker models (one for each

speaker) and the decision logic necessary to render a deci-
sion. In the training phase, the feature vectors are used to
create a model for each speaker. During the testing phase,
when the test feature vector comes in, a number will be
associated with each speaker model indicating the degree of
match with that speaker’s model. This is done for a set of
feature vectors and the derived numbers can be used to  nd
a likelihood score for each speaker’s model. For the speaker
ID problem, the feature vectors of the test utterance will
be passed through all the speakers’ models and the scores
are calculated. The model having the best score gives the
speaker’s identity (which is the decision). The output or
score of the models may be a distortion measure or prob-
ability depending on the type of model. The identi cation
success rate of the system is calculated as the ratio of the
number of test cases for which the speaker is identi ed cor-
rectly to the total number of test cases for all the speakers.
In open set problems, a scheme is used wherein a threshold
value is needed in order to  nd out if the speaker is out of

the set ofM speakers. A similar thresholding scheme is also
used for speaker veri cation. In closed set speaker identi -
cation, there is one source of error, namely, when a speaker
is not identi ed correctly. In the open set case, there are two
additional sources of error. First, a speaker not in the set of
M speakers is deemed to be within the set. The second is
the opposite scenario when a speaker in the set is deemed
to be outside the set. In speaker veri cation, there are two
sources of error. The  rst is known as a false accept (FA)
and occurs when the user is accepted as the claimed speaker
but in fact, is not the claimed speaker. This is when an im-
poster breaks in to the system. The second is known as a
false reject (FR) and occurs when the user is rejected as the
claimed speaker but is in fact the claimed speaker.
The recognition task is highly successful if the envi-

ronmental conditions for training and testing are the same
(known as matched conditions). Studies have shown that
recognition performance degrades when the training and
testing conditions are not the same (known as mismatched
conditions) [4]. This occurs if the speaker is trained on one
type of telephone (handset, cordless or speakerphone) and
during the testing phase, a diDerent type of telephone is
used. In this particular case, channel mismatch is encoun-
tered and this contributes to the degradation in the recog-
nition or success rate. Channels have a  ltering eDect on
the speech and tend to alter the overall spectral envelope
of the speech signal. Other examples of mismatched condi-
tions are when training is done on clean speech (recorded in
a sound-proof room with no telephone channel eDects and
no noise background) and testing is done on speech ema-
nating from diDerent noise backgrounds. There is great need
to make the recognition system robust by achieving a high
success rate even for mismatched conditions. Some of the
feature-based methods for robust speaker recognition were
discussed in a previous tutorial paper [9].
The robustness issue in speaker recognition can be ex-

amined from diDerent angles all devoted to mitigating the
eDects of mismatched conditions. When training is done on
clean speech and testing is done on channel corrupted or
noisy speech, robustness can be accomplished at the signal
level by speech enhancement techniques. Speech enhance-
ment algorithms mitigate or even remove channel or noise
artifacts in order to transform test speech into clean speech
thereby providing a closer match to the training condition.
Two well known enhancement techniques for noise eDects
include spectral subtraction [10] and Weiner  ltering [11].
A method for transforming channel corrupted test speech
into clean speech by inverse  ltering the channel eDect is de-
scribed in Refs. [9,12]. Robustness at the feature level refers
to either con guring robust features that show little varia-
tion for diDerent conditions [9] or explicitly mapping the
test feature vectors into the space of training feature vectors.
The aEne transform has been used to map feature vectors
as a means to robustize speaker recognition systems [9,13].
The concept of mapping features for speech recognition has
been considered in [14–16] and for word spotting has been
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considered in [17]. At the classi er level, robustness can be
achieved by integrating a model for the speech signal dis-
tortion into the overall classi er model [47] or mapping the
classi er model obtained during training to better  t the test-
ing condition [15]. Also, robust distortion measures that in-
dicate a small distortion between a feature vector for a train-
ing condition and the corresponding vector obtained for a
diDerent testing condition have been formulated and applied
to speech recognition [18]. Fusion enhances robustness by
taking multiple opinions into account (discussed later). This
tutorial discusses general classi er approaches and data fu-
sion methods.

2. Feature extraction

The emphasis of this tutorial is on classi er based tech-
niques. In this section, we present a brief synopsis of feature
extraction for the purpose of completeness. The composite
transfer function V (z) of the glottal pulse model G(z), the
vocal tract model H (z) and the radiation model R(z) (at the
lips) is usually modeled as an all-pole autoregressive pro-
cess as [8]

V (z) = G(z)H (z)R(z) =
1

A(z)
=

1∑p
k=1 a(k)z

−k

=
1∏p

k=1 (1− vkz−1)
; (1)

where vk are the poles of V (z) and p is the order of the
model. The poles vk that are close to the unit circle specify
the formant frequencies (vocal tract resonances). The au-
toregressive model motivates a diDerence equation for syn-
thesizing the speech signal s(n) as a weighted linear combi-
nation of the p previous speech samples and input e(n) as
given by

s(n) =
p∑

k=1

a(k)s(n− k) + e(n); (2)

where a(k) are the weights. The model also motivates a
linear prediction (LP) point of view in that s(n) can be
predicted as a weighted linear combination of the p previous
samples. In this context, the weights a(k) are known as the
predictor coeEcients and e(n) is the prediction or estimation
error signal.
The computation of a(k) from a given speech signal is

accomplished by minimizing the mean-square value of e(n)
over a frame of N samples. By assuming that the speech is
zero outside the frame of interest, the procedure of minimiz-
ing the mean-square error is known as the autocorrelation
method of linear prediction [8]. This yields a linear system
of equations for obtaining a(k). The autocorrelation method
guarantees that all the poles of V (z) are within the unit cir-
cle. The magnitude spectrum of V (z) represents the spectral
envelope of the speech. The predictor coeEcients a(k) are
computed adaptively on a frame by frame basis due to the

time-varying nature of the vocal tract. The size of the frame
is usually between 20 and 30 ms.
The LP coeEcients are converted into feature vectors.

Ideally, it is desired that feature vectors show much similar-
ity for a particular speaker and simultaneously show much
variability for diDerent speakers. This allows for easy dis-
crimination among diDerent speakers. In addition, the feature
vectors should be robust to a wide variety of environmental
conditions (such as diDerent noise backgrounds and trans-
mission media) by showing little variability as the environ-
mental condition is changed. Examples of diDerent features
include the predictor coeEcients themselves, reFection co-
eEcients, LP cepstrum, line spectral frequencies, log area
ratios, vocal tract area functions and the impulse response of
V (z) [8]. A comparative study of some of the above features
revealed the LP cepstrum is the best for speaker recognition
[19]. However, the LP cepstrum is not robust to channel and
noise eDects. Recently, features such as the Adaptive Com-
ponent Weighted (ACW) cepstrum [20,21] and the Post l-
ter (PFL) cepstrum [21] have been found to be more robust
to channel and noise.

3. General classi�er structure

A general block diagram of a speaker recognition sys-
tem is depicted in Fig. 2. As mentioned earlier, LP analysis
of the speech and subsequent feature extraction leads to a
set of feature vectors. The classi er consists of the various
speaker models and the decision logic. Its operation con-
stitutes two important steps. In the training phase, feature
vectors are used to obtain the M speaker models. For each
speaker, a diDerent model is obtained from his=her speech. In
the testing phase, feature vectors from an unknown speaker
are  rst computed. For speaker identi cation, the feature
vectors are compared with each of the M speaker models
to get the scores Score(1) to Score(M). These scores are
used to render a decision. In a closed set scenario, the best
score, Score(i), identi es the unknown speaker as speaker
i. This means that speaker model i most likely generated
the feature vectors. In an open set scenario, Score(i) is fur-
ther compared against a threshold to decide if there is an
adequate match between the unknown speaker and the best
model i. If the match is deemed to be adequate, the speaker
is identi ed. Otherwise, it is decided that no speaker model
represents the unknown speaker. For speaker veri cation,
the unknown speaker claims a certain identity j. Only Score
(j) is calculated and compared against a threshold to verify
or reject the claimed identity.
There are two main categories of models, namely, those

that are trained with unsupervised training algorithms and
those that are trained with supervised training algorithms.
The term “supervision” means that the data provided to the
model training algorithm contains class information via a la-
bel. Unsupervised algorithms do not require any information
regarding class membership for the training data. In terms of



2804 R.P. Ramachandran et al. / Pattern Recognition 35 (2002) 2801–2821

Speech LP
Analysis

Feature
Extraction

Feature

Vectors

Speaker 

Speaker 

Speaker 

Model

Model

Model

1

M

2

CLASSIFIER

Score(2)

Score(1)

Score(M)

D
E

C
IS

IO
N

 L
O

G
IC

DECISION

Fig. 2. A general block diagram of a speaker recognition system.
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Fig. 3. Clustering approach to classi cation (4 speaker example).

speaker recognition, unsupervised training algorithms only
use data from a speci c speaker to create a model. Exam-
ples of unsupervised modeling approaches include nearest
neighbor (NN), vector quantization (VQ), Gaussian mixture
models (GMM) and hiddenMarkov models (HMM). Super-
vised training algorithms assign diDerent labels to diDerent
speakers in a population. Examples of supervised training
algorithms include multilayer perceptrons (MLP), radial ba-
sis functions (RBF), decision trees and neural tree networks
(NTN). Supervised training algorithms have an advantage
over unsupervised training algorithms in that they can bet-
ter capture the diDerences between a particular speaker and
other speakers in the population. However, the amount of
training data and hence, the computational eDort in deriv-
ing a speaker model can be more than that for unsupervised
training algorithms.
Generally, classi ers use a clustering or discriminator

based approach for rendering a decision. Fig. 3 illustrates
the phenomenon of clustering in which the training data
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Fig. 4. Discriminator based approach to classi cation (4 speaker
example).

for each speaker are grouped into clusters that form the
speaker model. The distance from the test data to the mean
of the clusters indicates the similarity of the test data to each
speaker model. The speaker model closest to the test data
identi es the speaker. Clustering is used for the NN and
VQ approaches. Fig. 4 illustrates the discriminator based
method. Here, the feature space is divided into distinct re-
gions by a series of hyperplanes. Test feature vectors falling
into a speci c region are deemed to have been generated by
the corresponding speaker. The NTN and neural networks
in general use a discriminator based method. In the next two
sections, we describe the various classi ers in more detail.

4. Unsupervised classi�ers

In unsupervised training, the speaker model is con g-
ured from feature data for that speaker only. This has an
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advantage both in terms of computation and in avoiding the
recon guration of all speaker models when a new speaker
is to be enrolled in the system. The nearest neighbor, vector
quantizer and dynamic time warping classi ers use a dis-
tortion or distance measure to determine the score in com-
paring the test feature vectors and a speaker model. The
Bayesian discriminant, Gaussian mixture model and hidden
Markov model employ a probabilistic model for the speaker
[22]. Classi cation decisions are based on probabilities and
likelihoods.

4.1. Bayesian discriminant

Bayesian discriminant methods use probabilistic methods
to model the speakers and then use Bayes theorem when
making decisions. The speaker models correspond to a set of
discriminant functions [23] gi(x) (for i=1 toM) where x is a
feature vector. A feature vector x is most likely to have come
from speaker model i if gi(x)¿gj(x) ∀j �= i. The choice of
discriminant functions is not unique. Given x, the probability
of making an incorrect decision is minimized if speaker i is
chosen to maximize the a posteriori probability p(i|x) [23].
Then, gi(x)=p(i|x). From Bayes theorem which states that

p(i|x) = f(x|i)p(i)∑M
k=1 f(x|k)p(k)

; (3)

we can de ne two equivalent discriminant functions as

gi(x) = f(x|i)p(i); (4)

gi(x) = logf(x|i) + logp(i); (5)

where f() denotes the probability density function. The fea-
ture space is divided into M distinct decision regions Ri

each corresponding to a particular speaker or speaker model.

Therefore, for each speaker model, the decision region con-
tains all the feature vectors most likely emanating from that
model. Fig. 5 shows the decision regions for the case of a
scalar feature and three speaker models. The overall proba-
bility of correct classi cation is given by

p(correct) =
M∑
i=1

∫
Ri

f(x|i)p(i) dx (6)

and is maximized since the regions Ri are chosen such that
the integrands are maximum. In eDect, the probability of
error or incorrect decision p(error) = 1 − p(correct) is
minimized.
In practice, an ensemble of test feature vectors x1; : : : ; xq

are used to recognize the speaker. Given such an ensemble,

Score(i) =
q∑

k=1

gi(xk): (7)

The speaker is identi ed as corresponding to the model
that maximizes Score(i) for 16 i6M . Threshold compar-
isons as described earlier are required for the open set case
and speaker veri cation. Speaker veri cation using discrim-
inants has been accomplished in Ref. [24] in which f(x|i)
are speci ed as multivariate Gaussian probability density
functions.
The usage of discriminant functions relies on an estimate

of f(x|i) given N samples of the feature vectors for speaker
i. These samples are the training data used to obtain the
speaker model for speaker i. The Parzen window approach
[23,25] is eDective for estimating both unimodal and multi-
modal densities f(x) as described below. It is well known
that the probability p of x falling in a region R is given by

p=
∫
R
f(x) dx: (8)
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Fig. 6. Illustrative example comparing Bayesian discriminant and nearest neighbor rules.

If f(x) is continuous and R is small enough such that f(x)
does not vary much within R, an estimate is given by

f(x) =
k=N
V

; (9)

where V is the volume of region R, N is the number of
sample feature vectors and k is the number of sample feature
vectors in R. Suppose a sequence of regions R1; R2; : : : ; Rn is
formed such that Vj is the volume of Rj and kj is the number
of sample feature vectors in Rj . The nth estimate of f(x) is

fn(x) =
kn=N
Vn

: (10)

Convergence of fn(x) to f(x) is assured if the volumes of
the successive regions shrink uniformly. The Parzen window
approach assumes that each region Rn is an m dimensional
hypercube with volume Vn = hm

n where hn is the length of
an edge of the hypercube. The uniform shrinkage of the
regions is assured by taking hn=h1=

√
n. Consider a vector u

with components u1; u2; : : : ; um and a window function  (u)
given by

 (u) =

{
1 for |uj|6 1=2; j = 1; 2; : : : ; m;

0 otherwise:
(11)

Note that  (u) de nes a unit hypercube centered at the ori-
gin. Given feature vector samples x1; : : : ; xn, it follows that
 ((x− xi)=hn) equals 1 if the sample vector xi falls within
the hypercube of volume Vn centered at x. Therefore, the
number of samples in the hypercube is

kn =
n∑

i=1

 
(
x− xi

hn

)
(12)

and hence, the density estimate is

fn(x) =
1
n

n∑
i=1

1
Vn

 
(
x− xi

hn

)
: (13)

Finally, note that other window functions  (u) can be used
as long as fn(x) is a legitimate density function. For this to
be so, it is required that

 (u)¿ 0; (14)

∫
 (u) du = 1: (15)

4.2. Nearest neighbor

The nearest neighbor (NN) approach bypasses the step of
explicitly estimatingf(x|i). The speaker model i is the set of
training feature vectors for speaker i which would otherwise
be used to estimate the underlying density function f(x|i).
This would in turn be used to get the discriminant function
for the Bayesian classi cation approach as described above.
Given a test feature vector x, its closeness or similarity to
model i is the distance to the closest training feature vector
comprising model i (denoted as di). From the M distances
d1 to dM , x is associated with model i if di ¡dj ∀j �= i. This
is equivalent to  nding the closest training vector among the
training data for all speakers and associating the test vec-
tor with the model containing this closest training vector.
The NN rule is suboptimal in that the probability of error
for the NN rule is lower bounded by the probability of error
for the Bayesian discriminant classi er. The upper bound is
twice the probability of error of the Bayesian discriminant
classi er [23,25]. The suboptimality of the NN rule is illus-
trated by a  gurative example in Fig. 6 (a similar example is
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given in Ref. [26]). In this example, consider an equiproba-
ble two class scalar problem for which the conditional prob-
ability density functions and the decision threshold for the
Bayesian discriminant method are shown in Fig. 6. More-
over, the points marked 1 and 2 are the training data for
classes 1 and 2, respectively. Two test features from class 1
are correctly classi ed by the Bayesian discriminant method
but incorrectly classi ed by the NN rule because they are
closer to a training data sample from class 2. Note that the
class 2 training data samples that force the errors for the NN
rule occur with low probability. It is this phenomenon that
marks the major source of diDerence between the Bayesian
discriminant and the NN approaches. Generally, if the two
classes are well separated (thereby rendering a low proba-
bility of error for the Bayesian discriminant approach), then
the probability of error for the NN rule is also low if the
amount of training data is large [23].
The NN method has been used for classifying individ-

ual pixels of an image of the earth’s surface as being soil
or vegetation [26]. For speaker recognition, we use an en-
semble of test feature vectors x1; : : : ; xq. A feature vector is
associated with a particular speaker model according to the
NN rule. A score of one is recorded for the matching model
with a score of zero for the other models. This process is
repeated for each feature vector in the test ensemble. The
overall score for model i, namely Score(i), is the sum of the
scores obtained for each individual test vector. The speaker
is identi ed as corresponding to the model that maximizes
Score(i) for 16 i6M . Again, appropriate thresholding is
required for the open set case and for speaker veri cation.
A generalization of the NN rule is the k nearest neigh-
bor (kNN) rule. Consider a test feature vector. Among the
training data for all the speakers, the k closest or nearest
neighbors are found. A majority vote among these closest
neighbors associates the test vector with a speaker model.
The scoring is as described earlier for the NN case. Exper-
iments suggest that k should increase as the speaker popu-
lation M becomes larger [27].
Another generalization of the NN rule involves the ex-

plicit incorporation of distances [28,29]. Consider speaker
model i containing the training set Ti = (t1; t2; : : :) and a
set of test feature vectors X =(x1; x2; : : :). The accumulated
distance between X and Ti is Score(i) and is given by

Score(i) =
1

N (X )

∑
xj∈X

min
tk∈Ti

d(xj ; tk) (16)

+
1

N (Ti)

∑
tk∈Ti

min
xj∈X

d(xj ; tk)

− 1
N (X )

∑
xj∈X

min
xk∈X;k �=j

d(xj ; xk)

− 1
N (Ti)

∑
tj∈Ti

min
tk∈Ti ; k �=j

d(tj ; tk); (17)

where N (:) is the number of vectors in the set and d(: ; :)
is the distance between two vectors. The quantity Score(i)
is computed for each speaker model. The speaker is identi-
 ed as corresponding to the model with the minimum score.
The expected value of Score(i) can be shown to be directly
related to the divergence between the underlying probabil-
ity density function of the training set and the test vectors
[28]. The divergence is a measure of the similarity of two
probability density functions. Hence, a low score reveals
a strong match between the training and test data. Finally,
note that the use of NN classi ers requires the storage of a
huge amount of training data and extensive computations to
 nd the closest neighbor. This motivates the use of vector
quantizers as discussed next.

4.3. Vector quantizer

The vector quantizer (VQ) approach, like the NNmethod,
does not involve the step of explicitly estimating f(x|i).
Moreover, the memory and computational complexity of
the NN method is considerably alleviated by establishing
the speaker models to be a compressed version of the set
of training feature vectors. The training vectors are from
an underlying density function f(x|i) and span the feature
space. The feature space is partitioned into a set of mutu-
ally exclusive convex regions, the number of which is much
less than the number of training vectors [30,31]. The re-
gions represent a diDerent cluster of the training data and
have a center of gravity or centroid [30,31]. This collection
of centroids is called the codebook which is a compressed
version of the training data and which also emanates from
the same density function f(x|i). The speaker model is the
codebook derived from the training data and reFects the un-
derlying density f(x|i). The transformation or compression
of the training data to the codebook is known as VQ de-
sign. Algorithms for VQ design that compress the training
data include the Linde–Buzo–Gray (LBG) method [32], the
learning vector quantization (LVQ) method [33] and group
vector quantization (GVQ) [34]. The LBG method is based
on iteratively updating the convex regions and the centroids
or codebook to locally minimize the mean-square quanti-
zation distortion over the set of training data. Minimizing
the quantization distortion does not imply that the identi -
cation success rate is maximized. The LVQ method is an at-
tempt to reduce the number of misclassi ed feature vectors
by considering one training vector at a time to iteratively
re ne the borders between classes. However, the identi ca-
tion success rate for the LVQ method is not guaranteed to
be better than the LBG approach since the score is calcu-
lated over a speech utterance comprised of a group or set of
feature vectors (elaborated on in the next paragraph). The
GVQ method iteratively updates the codebooks by consid-
ering a group of training vectors. The speaker identi cation
performance for the GVQ is shown to be better than the
LBG and LVQ methods [34].
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Fig. 7. VQ codebooks and test data for 4 speakers.

Given a test feature vector x, its closeness or similarity to
model i is the distance to the centroid vector or codevector
comprising model i (denoted as di). A total of M distances
d1 to dM are found to get a similarity measure between x and
each speaker model. This process is repeated for each fea-
ture vector in the test ensemble. The overall score for model
i, namely Score(i), is the sum of the distances obtained for
each individual test vector [27,35,36]. The speaker is identi-
 ed as corresponding to the model that minimizes Score(i)
for 16 i6M . This, like the NN method, is equivalent to
 nding the best match between the underlying probability
density of the test data and the underlying density functions
of the training data for each speaker. Fig. 7 shows the posi-
tioning of the codebook for a closed set system involving 4
speakers. The test data is closest to the codebook of speaker
1 and hence, this speaker is identi ed as most probably gen-
erating the test data.
For the open set case and speaker veri cation, the use

of adaptive thresholding based on the relative accumulated
distances to similar speakers has been investigated. This is
known as cohort normalization and can be applied to VQ
or other unsupervised methods [37,38]. Here, feature vec-
tors from speakers other than the target speaker (known as
cohorts) are used to get VQ codebooks. Given a set of test
feature vectors, a score based on the VQ codebook for the
target speaker is obtained. Then, a score based on the VQ
codebooks for the other speakers is obtained. The ratio of
these scores (known as a likelihood ratio) is compared to a
threshold to either accept or reject the speaker. In practice,
VQ classi ers are very popular [27,35,36]. Also, a small
codebook size of 64 or 128 codevectors is suEcient [27].
Even if there are 50 speakers enrolled, the memory require-
ment is feasible for real-time applications.

4.4. Gaussian mixture models

When creating a speaker model using a Gaussian mixture
model (GMM) approach, we start with a discriminant func-
tion of the form gi(x) = logf(x|i). The density f(x|i) is
a linear combination or mixture of L multivariate Gaussian
densities as given by [39–41].

f(x|i) =
L∑

j=1

wjbj(x); (18)

where wj are the scalar weights applied to each Gaussian
multivariate probability density function bj(x) which is in
turn completely speci ed by its mean vector and covariance
matrix. The sum of the weights wj equals 1. The GMM
classi er is essentially a Bayesian discriminant with speaker
models gi(x) being a Gaussian mixture density that is mul-
timodal. A unimodal Gaussian density can be thought of
as modeling an acoustic class representing a phonetic event
(like vowels, nasals or fricatives) and hence, reFecting a
speaker dependent vocal tract con guration [40]. A mixture
density models a set of acoustic classes that are speaker de-
pendent. A multimodal density consisting of a linear com-
bination of Gaussian basis functions can also approximate
arbitrary continuous density functions [40]. A GMM can
be viewed as a hybrid between a simple Bayesian discrim-
inant using only one Gaussian density and a VQ codebook
that can model arbitrary probability densities by a discrete
collection of centroids [40,41] in that a smooth, continuous
overall  t is provided for arbitrary densities.
In con guring a speaker model, training feature vectors

are used to establish the parameters of the mixture density
which are the weights wj and the mean vectors and covari-
ance matrices of the individual Gaussian densities bj(x).
The speaker model represents a match to the underlying
density of the training vectors. The number of mixtures L
is predetermined. Determination of the GMM parameters is
accomplished by a maximum likelihood formulation in turn
achieved by the iterative expectation-maximization (EM)
algorithm [42,43]. For testing, an ensemble of test feature
vectors x1; : : : ; xq are used to recognize the speaker. Given
such an ensemble,

Score(i) =
q∑

k=1

gi(xk)

=
q∑

k=1

logf(xk |i): (19)

The speaker is identi ed as corresponding to the model that
maximizes Score(i) for 16 i6M . Threshold comparisons
are required for the open set case and speaker veri cation.
A hypothesis testing framework based on cohort normaliza-
tion is used to calculate a likelihood ratio for speaker veri-
 cation [41]. Cohorts generally include speakers similar to
the target speaker. This is impractical for portable systems
since a diDerent database must exist for each customer. A
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more practical universal speaker independent background
GMM model is proposed in Ref. [44] which can be adapted
to the target speaker by changing the mean and variance
parameters.
In practice, L = 30 to 50 Gaussian mixtures are used for

each speaker model. Each mixture has a diDerent diagonal
covariance matrix [40,41,45–47]. It has been shown that the
performance using GMM classi ers degrades due to mis-
matched conditions involving telephone channels, noise and
nonlinear distortions due to handset or transducer variabil-
ity [45,46]. One method of enhancing the robustness of the
GMM classi er to noise is to establish a model for noise
that is also a linear combination of Gaussian densities and
integrate this model with the existing speaker models [47].
Substantial performance gains when training is done on
clean speech and testing is done on noisy speech has been
demonstrated with this integrated GMM speaker model [47].

4.5. Dynamic time warping

A pattern matching technique using Dynamic TimeWarp-
ing (DTW) is a simple and eDective nonstatistical tool that
has been successfully used in several text-dependent speaker
recognition tasks [7,48]. The speaker models consist of a ref-
erence “template” (generated during the training phase) that
is a time-ordered series of feature vectors. During the testing
or recognition phase, there is an ensemble of time-ordered
test feature vectors x1; : : : ; xq that are compared to the vari-
ous reference templates. Since the time duration (and there-
fore the number of feature vectors) of the test utterance and
the reference template may not be the same, it is neces-
sary to normalize these timing diDerences. This is achieved
by “warping” the time axis of the ensemble of test fea-
ture vectors to maximize the coincidence with the refer-
ence template using a dynamic programming based tech-
nique called Dynamic Time Warping (DTW) [49,50]. An
example [7] of this nonlinear time alignment is illustrated
in Fig. 8. After performing the DTW operation to register
the training and testing patterns in time, a time-normalized
distance is calculated as the minimized residual distance
between the patterns. For speaker model i, this distance is
Score(i). In speaker identi cation, the speaker model that
yields the smallest time-normalized distance corresponds
to the identi ed speaker. In the case of speaker veri ca-
tion, the time-normalized distance is compared against the
threshold of the claimed identity’s model to determine the
accept=reject decision.
The reference template can be generated by using

one training utterance or by averaging several training
utterances. The time variations in the feature vectors of the
multiple training utterances are normalized either by using
linear warping functions or a nonlinear warping function us-
ing DTW. Sometimes, for enhancing robustness, a speaker
model consists of multiple reference templates [51]. In this
case, the kNN rule can be used to render a decision as
follows. For a test pattern, the k closest reference templates

REFERENCE
PATTERN

TEST
PATTERN

MAPS  TEST  INTO  REFERENCE
WARPING  FUNCTION

Fig. 8. Nonlinear time alignment of two patterns.

among the templates for all speakers are found. A majority
vote among these selected templates identi es the speaker.
Recently, discriminative training based algorithms have
also been proposed that can be used to generate reference
templates which will minimize the recognition errors [52].
The strengths of the DTW-based template matching sys-

tem are its easy implementation and low complexity. It also
captures very well the temporal variations typical of a speech
signal. The distance from a DTW reference template can be
viewed as a distance from a set of mean vectors. A reference
model that incorporates both the mean and covariance statis-
tics of a speaker may be more robust to variability in the test-
ing conditions. The success of DTW is for text-dependent
tasks due to the phonetic dependence between the training
and testing speech which in turn allows for capture of tem-
poral variation. For text-independent tasks, VQ is preferred.

4.6. Hidden Markov models

In a  rst order Markov process, the state at a particular
time t depends only on the state at time t− 1. The output of
the process (observations) is the set of states at each instant
of time which in turn are physically observable events. In a
hiddenMarkov model (HMM), the states are not directly ob-
servable and the observations are probabilistic functions of
the state [53–55]. Again, transition to a particular state only
depends on the state at the previous time instant. An HMM
is a doubly embedded stochastic process with an underlying
stochastic process that is not observable (hidden) but can
only be observed through another set of processes that pro-
duce the sequence of observations [54]. The elements of an
HMM are the number of states, number of distinct observa-
tion symbols, the state transition probability distribution (the
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probabilities of going from one state to another), the obser-
vation symbol probability distribution (probabilities of an
observation symbol given a particular state) and the initial
state distribution (probability of being in a particular state
initially). At each time instant, the system goes from one
state to another and produces an observation symbol based
on the state transition and observation symbol probability
distributions. Given an HMM, one of the basic problems is
to determine the most likely state sequence given the obser-
vations.
The HMMs used for speaker recognition are either dis-

crete or continuous in that the observation symbols are ei-
ther VQ codebook labels (discrete case) or continuous prob-
ability measures from a GMM (continuous case). For each
speaker, the training feature vectors are converted into code-
book labels or probability measures which are in turn used
to train or con gure the HMM speaker model. Con guring
an HMM speaker model is equivalent to  nding the state
transition, observation symbol and initial state probability
distributions to maximize the probability of the observation
symbols obtained from the training feature vectors. An iter-
ative algorithm known as the Baum-Welch method is used
for this purpose [53,54]. For closed set speaker identi cation
[56], the test feature vectors are converted into codebook
labels or probability measures. For each speaker model, the
score is calculated as the probability of the observation se-
quence (see Refs. [53,54] for a full description of how the
computation is done). The HMM speaker model that ren-
ders the highest probability or highest score identi es the
speaker. For speaker veri cation [57,58], threshold compar-
isons are required. A universal cohort background model
based on simple modi cations of the HMM model of the
target speaker is proposed in [59]. For certain applications,
HMMs have been found to yield performance improvements
over DTW based systems [60].

5. Supervised classi�ers

Supervised training algorithms have recently come under
investigation for speaker recognition applications. Super-
vised training methods diDer from unsupervised methods
in that the data used to generate a model is comprised
of that from numerous speakers. Unsupervised training
methods only use training data from the target speaker. The
supervision during training is attributed to a label that is
associated to each feature vector. This label determines the
class membership of that vector, i.e., the speaker to which it
belongs. One application of supervised training could be to
use M labels for M classes. A classi er can then be trained
to determine which of these M classes a feature vector be-
longs. Many supervised training algorithms are capable of
generating a model that can distinguish one of M classes.
However, in practice, typically a model is generated so that it
can distinguish between one of two classes, namely whether
or not the feature vector belongs to the target speaker. Such
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Fig. 9. Supervised training data partitioning.

a model is then developed for each speaker in the pop-
ulation. This partitioning of training data is illustrated in
Fig. 9. We have found that typically higher performance can
be achieved by using a system with M binary classi cation
systems as opposed to one M -ary classi cation system.
Several supervised training algorithms have been inves-

tigated for speaker recognition. These include multilayer
perceptrons [61,62], radial basis function networks [63],
time-delay neural networks [64], and decision trees=neural
tree networks [27]. Many of the initial speaker recognition
applications of supervised training algorithms were done
for closed set speaker identi cation [61,62,64]. Typically,
the performance was compared to a benchmark obtained us-
ing vector quantization (VQ) techniques. The performance
obtained with the supervised training algorithms was typi-
cally comparable to VQ techniques. However, the extensive
training times necessary for most supervised algorithms was
an undesirable feature. More recently, supervised training
algorithms were evaluated extensively for speaker veri -
cation [27,63,65,66]. For tasks that require rejection capa-
bilities, such as speaker veri cation and open set speaker
identi cation, it was found that using the data from ad-
ditional speakers during training greatly enhanced perfor-
mance. The methods based on supervised training algo-
rithms were found to consistently outperform the more
traditional unsupervised algorithms, such as VQ [27], dy-
namic time warping (DTW) [65], and hidden Markov
models (HMMs) [66].
This section describes some of the supervised training

algorithms that have been applied to speaker recognition.
These include multilayer perceptrons, radial basis functions,
time-delay neural networks, decision trees, and neural tree
networks. A summary of their implementation is provided
in addition to a synopsis of the research  ndings regarding
the speci c approach.
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5.1. Multilayer perceptron

The multilayer perceptron (MLP) is a popular form of
neural network that has been considered for various speech
processing tasks [67,68]. The structure of a MLP is illus-
trated in Fig. 10. The weights for MLPs are trained with the
backpropagation algorithm [69] such that they can associate
a high output response with particular input patterns.
For speaker recognition, the MLP has been evaluated us-

ing a collection of binary-labeled training data sets [61] as
described in the overview for supervised training algorithms.
Ideally, test vectors for a speci c speaker should have a
“one” response for that speaker’s MLP, whereas test vec-
tors from diDerent speakers should have a “zero” response.
For speaker identi cation, all test vectors are applied to each
MLP and the outputs of each are accumulated. The speaker
is selected as corresponding to the MLP with the maximum
accumulated output. For speaker veri cation, the test vec-
tors are applied to the model of the speaker to be veri ed.
The output is accumulated and normalized by the number
of test vectors. If the normalized output exceeds a threshold,
the speaker is veri ed, else rejected.
The MLP-based classi er has been reported to perform

comparable to VQ for speaker identi cation [61,64]. A
MLP-based classi er for speaker identi cation has been
presented in [61], where each speaker is represented by a
MLP. The training data consisted of 10 LP-derived cep-
stral coeEcients. A MLP with one hidden layer and 128
hidden nodes achieved a 92% identi cation rate for this
experiment, which was just slightly worse than the per-
formance obtained with a VQ classi er with 64 codebook
entries per speaker. The performance improved as the
number of hidden nodes increased. However, it was ob-
served that increasing the number of hidden layers did not
improve generalization. It was also noted that the perfor-
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Fig. 11. Radial basis function network.

mance of MLPs degrades rapidly as the speaker population
increases.

5.2. Radial basis functions

Radial basis function (RBF) networks [70] can be viewed
as clustering followed by a perceptron. Consider the RBF
in Fig. 11. The training phase consists of  rst clustering
the training data into M clusters. The centroids of these M
clusters are used within the kernel functions, which are typ-
ically Gaussian kernels or sigmoids. The outputs of the ker-
nel functions are used to train a single layer perceptron. For
the proper choice of kernel function and perceptron weights,
the RBF network becomes equivalent to the GMM with the
exception that supervision is available here.
Radial basis function networks have been considered for

text-independent speaker veri cation [63]. The experiment
was performed for a population of 40 speakers, for which
10 speakers were used as the enrolled speakers, and the
remaining 30 were used as imposters. The experiments
showed the RBFs to outperform both MLPs and VQ for
speaker veri cation.

5.3. Time delay neural networks

Time delay neural networks (TDNNs) [71] are layered
feed-forward neural networks that incorporate delayed ver-
sions of the inputs, so as to learn the temporal correlations of
the input data. TDNNs are the supervised counterpart to the
HMM in that they attempt to capitalize on the temporal infor-
mation. TDNNs have been considered for text-independent
speaker identi cation [64]. Here, TDNNs were evaluated for
a population of 20 speakers (10 males and 10 females) and
demonstrated a 98% identi cation rate.
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5.4. Decision trees

A decision tree is a collection of rules, organized in a hi-
erarchical fashion, that implement a decision structure [72].
The traditional algorithms for decision trees, such as ID3
[73] and C4 [74], will analyze the training feature vectors
to determine the element of that vector most related to the
class entropy. A decision rule is then generated which only
considers that feature element. After the data is divided with
this decision rule, the same concept will be applied to each
subset of data resulting from the previous split. This pro-
cess will continue until some stopping criteria is satis ed,
else until the set of data only contains feature vectors from
one class. Decision trees are useful in that they provide
knowledge as to which elements of the feature vector are
most pertinent for the recognition task. However, in terms
of classi cation performance, this can be a drawback in pat-
tern recognition tasks since the discriminant boundaries are
constrained to being perpendicular to the feature axes. This
was found to be the case in a vowel recognition task where
MLPs were found to outperform decision trees [75].
A decision tree can be used for speaker recognition as

follows. First, the feature vectors are obtained from the train-
ing data for all speakers. The data is then labeled as de-
scribed earlier in this section. A binary decision tree is then
trained for each speaker. The leaves of the binary decision
tree contain the class label, where a one corresponds to the

speaker and a zero corresponds to “not the speaker”, or “an-
tispeaker”. For speaker identi cation, all feature vectors for
the test utterance are applied to each decision tree. The labels
are scored and the speaker is selected as having the decision
tree with the maximum accumulated score. Decision trees
were evaluated for closed set speaker identi cation [27].
They were found to perform slightly worse than MLPs.

5.5. Neural tree network

The neural tree network (NTN) [76] is a hierarchical clas-
si er that combines the properties of feed-forward neural
networks and decision trees. The neural tree network imple-
ments the sequential decision strategy used by decision trees.
However, instead of determining the discriminant boundary
from a feature element, a single layer perceptron is used to
partition the data. The discriminant boundaries obtainable
with the single layer perceptron are far more Fexible than
that of traditional decision trees and attribute to higher per-
formance for classi cation tasks.
The NTN can be used for speaker recognition [27] in

a similar fashion to the method described above for stan-
dard decision trees. Each speaker is associated with a binary
NTN that is trained with feature vectors extracted from their
enrollment session. Performance improvements can also be
obtained by pruning the NTN during training. This prevents
the NTN from growing too deep in order to partition a few
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outliers. A simple method for pruning the NTN is to trun-
cate the growth of the tree beyond a certain level and use
relative frequency methods to compute the class probabili-
ties at the leaves [27]. This concept is illustrated in Fig. 12.
Here, it is seen that a probability can be computed as the
ratio of the number of vectors for the target speaker to the
total number of vectors.
The assignment of probabilities at the leaves allows one

to deemphasize the contribution of vectors that fall within
confusable regions of feature space. This is one of the fun-
damental diDerences between the NTN and other super-
vised modeling approaches. For example, multilayer percep-
trons output a number that can be interpreted as a probabil-
ity. However, this probability is obtained as an output of a
sigmoidal activation function and is based on the position of
the input vector with respect to the hyperplanes constructed
by the MLP.

6. Diversity and redundancy

Diversity can be used as a means for improving system
performance through the incorporation of diDerent infor-
mation. Similarly, redundancy can achieve the same goals
through the re-use of data. One example where diversity
has been investigated is for communications and, in partic-
ular, communications over fading channels. Several diver-
sity based schemes have been used to decrease the bit error
rates in such systems. One such scheme can be viewed as
transmitting a signal twice in sequence. The hope here is
that a channel distortion occurring at one instant in time is
unlikely to occur during the second transmission and vice
versa. This is a form of time diversity. Another scheme is to
simultaneously transmit the information over two separate
channels. Here, it is assumed that a distortion at one fre-
quencymay not occur at that frequency for the other channel.
This is known as frequency diversity. Yet another method
is based on space diversity. Here, the signal is received si-
multaneously by two antennas. The concept of redundancy
has also been investigated in communications systems. One
such application is error correction codes where redundant
information is added to the binary signal to allow for error
correction at the receiving end.
By applying diversity and redundancy techniques, a sys-

tem will obtain several pieces of information that must then
be combined. The combination of such information is typ-
ically referred to as data fusion, which will be discussed
in the following section. In order for diversity techniques
to provide some bene t to a system, the errors must have
some level of uncorrelation. If two systems make the same
errors on a task, then no combination of these systems will
result in one that remedies these errors. On the other hand,
if the two systems make diDerent errors on a task, then the
bene ts of both can be capitalized by the proper combina-
tion. Uncorrelation of errors is a necessary condition for the
success of diversity-based systems. A suEcient condition

is that the errors be separable in a generalization map. As
an example, consider the combination of GMM and NTN
scores for speaker veri cation. A scatter plot of the scores
for true speakers and imposters is shown in Fig. 13. A proper
combination of the scores would eliminate errors that would
otherwise occur if only one of the scores was used. It is
seen that if a decision is based only on a GMM score and
a threshold between 0.7 and 0.8 is used, there will be con-
fusion between a true speaker and an imposter. The same
applies to the NTN where a threshold between 0.35 and 0.5
will always have either a false reject or a false accept. Even
though these individual models both have errors, the data in
Fig. 13 is clearly separable. A simple method of combining
the scores is to project them onto the diagonal. This leads to
a set of one dimensional scores whose histogram is depicted
in Fig. 14. These one dimensional scores are separable.
Several diversity schemes are applicable for speaker

recognition. These are data diversity, feature diversity, and
model diversity. These diDerent forms of diversity may be
combined to improve overall performance as long as they
meet the criteria that the errors are uncorrelated. However,
one must accept a tradeoD in memory and speed when us-
ing diversity. Each form of diversity that is used will result
in an additional model, or models, which will require addi-
tional memory to store and processing time to evaluate. The
merits of the performance gains must be weighed against
these considerations. The following sections provide more
detail on these forms of diversity for speaker recognition.

6.1. Data diversity

Data diversity refers to diDerent training exemplars that
can be applied to a speaker recognition algorithm. For ex-
ample, if a person were to enroll in a system with eight rep-
etitions of a password, then one example of data diversity
would be to create two separate systems where one system
is trained with the  rst four repetitions and the second sys-
tem is trained with the last four. This would be in contrast
to just training one model with all eight repetitions. Redun-
dancy can also be applied to this situation in the form of
a leave-one-out approach. The leave-one-out method [78]
was originally proposed for estimating a statistic when only
a small number of observations were available. The speaker
recognition application is analogous in that the goal is to de-
sign a speaker model with a limited number of repetitions.
In the above example with eight repetitions, eight models
can be generated as opposed to one by using a diDerent set
of seven repetitions for each training session. Note that the
leave-one-out method can be extended to a leave-M -out ap-
proach which would result in fewer models for M ¿ 1. In
either case, since there is a substantial amount of overlap in
the training data for each model, this would be viewed as
more of a redundancy application as opposed to a diversity
application.
One motivation for training separate models in speaker

recognition is that the unused enrollment data can be used
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for cross-validation tasks or threshold estimation. For exam-
ple, in the speaker veri cation system discussed in Ref. [65],
only four repetitions of a password were available for model
generation and threshold estimation. Here, the leave-one-out
method was evaluated for accommodating this limitation
in enrollment data. Three of the four utterances were used
to train a model and the fourth utterance was used to ob-
tain an independent speaker score for the model. By leaving
out a diDerent utterance each time, four models were gen-
erated and correspondingly four scores were available for
estimating a mean speaker score to help in determining the
threshold.

6.2. Feature diversity

Feature diversity refers to extracting diDerent sets of fea-
tures from the same speech signal(s). These diDerent feature
sets would then be used to build and test separate models.
Again, the hope is that each feature set will capture some
aspect of the speech signal that may be missed by the other
feature set. In particular, if this attribute results in uncor-
related sets of errors for each feature set, then a perfor-
mance improvement can be achieved. One example of fea-
ture diversity was investigated in which the cepstrum and
delta cepstrum were used to train separate models whose
test scores were subsequently combined [79]. Here, bene ts
were achieved from the instantaneous spectral information
provided by the cepstrum and the transitional information
provided by the delta cepstrum.

6.3. Model diversity

Model diversity refers to the use of diDerent modeling
techniques from the same feature sets. DiDerent modeling
approaches are known to capture diDerent aspects of the fea-
tures. For example, Gaussian mixture models and hidden
Markov models will capture the statistics of the probability
distributions for the feature vectors. Distortion based meth-
ods, such as vector quantization and dynamic time warping,
will provide similarity measurements for the feature vectors
observed during training and testing. Discriminant trained
classi ers, such as neural networks, will capture diDerences
between the feature vectors for a target speaker and those
of non-target speakers. These diDerent classes of modeling
approaches each capture diDerent characteristics of the fea-
ture vectors for a given speaker. When these approaches are
evaluated on identical tasks, the errors tend to be uncorre-
lated [80]. Hence, model diversity can be a powerful method
for enhancing speaker recognition systems.
Several model diversity approaches have been applied to

speaker recognition applications in recent years. The com-
bination of neural tree networks and vector quantization
was evaluated for text-independent speaker identi cation
[81]. Here, the distortion scores from the vector quantization
models were converted to probabilities and then combined
with the neural tree network scores to improve identi ca-

tion rates. Later, the combination of neural tree networks
and dynamic time warping was evaluated for text-dependent
speaker veri cation [65]. Here, the overall distortion score
of the DTW approach was converted to a probability and
combined with the output probability of the NTN. Error rates
were cut in half as a result of this combination. Advantages
were also found by combining a DTW score with a cohort
normalized VQ score for speaker veri cation [82]. Another
text-dependent speaker veri cation application used model
diversity on a subword basis [83]. Here, a neural tree net-
work and Gaussian mixture model was trained for each sub-
word within a password. A further reduction in the error rate
was obtained by combining three models, namely, the NTN,
DTW and HMM [86] to a subword based text-dependent
speaker veri cation system.

7. Data fusion

The combination of diDerent sources of information has
been explored within  elds known as data fusion, consensus
building, team decision theory, combination of multiple ex-
perts, along with numerous other titles. Here, we will refer
to the combination of data from various sources as data fu-
sion. Within the context of speaker recognition, data fusion
comprises the combination of scores from diDerent models
trained for a speaker. These models may be trained with dif-
ferent speech data, diDerent feature data, or diDerent mod-
eling techniques. Ultimately, it is desired that the errors of
one model are corrected by the others and vice versa. If all
models are in agreement upon an error, i.e., they all make
the same mistake, then no combination will rectify the error.
However, as long as there is some degree of uncorrelation
among the errors, performance can be improved with the
proper combination.
The selection of data fusion techniques can be subdivided

based on the type of information that will be combined. For
example, if the model outputs are probabilities, then methods
such as linear or log opinion pools can be used [85]. If the
model outputs are actually class labels, then methods such as
voting [86] or ranking [87] can be used. For fuzzy decisions,
Dempster–Shafer theory can be used for score combination
[86]. The fuzzy integral method is also described.

7.1. Linear opinion pool

The linear opinion pool is a commonly used data fusion
technique that is convenient due to its simplicity. The linear
opinion pool is evaluated as a weighted sum of the outputs
for each model:

Plinear(x) =
n∑

i=1

)ipi(x); (20)

where Plinear(x) is the probability of the combined system,
)i are weights, pi(x) is the probability output by the ith
model, and n is the number of models. The parameters )i
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are generally chosen such that )i is between zero and one
and the sum of the )i’s is equal to one.
The linear opinion pool is appealing in that the output is

a probability distribution and the weights )i provide a rough
measure for the contribution of the ith model. However, it
is noted that the probability distribution of the combiner
output, namely Plinear(x), may be multimodal. This may
impose a more complicated decision strategy. The linear
opinion pool has been evaluated with several scenarios
within speaker recognition. These include the combination
of VQ codebooks trained with cepstrum and delta cep-
strum features [79], DTW templates with NTN [65], NTN
and GMM [77,80] and VQ codebooks with dynamic time
warping templates [82].

7.2. Log opinion pool

An alternative to the linear opinion pool is the log opinion
pool. If the )i weights are constrained to lie between zero
and one and sum up to one, then the log opinion pool also
outputs a probability distribution. However, as opposed to
the linear opinion pool, the output distribution of the log
opinion pool is unimodal [85].
The log opinion pool consists of a weighted product of

the model outputs:

Plog(x) =
n∏

i=1

p)i
i (x): (21)

Note that with this formulation, if any model assigns a prob-
ability of zero, then the combined probability will also be
zero. Hence, an individual model has the capability of a
“veto”, whereas in the linear opinion pool the zero proba-
bility would be averaged in with the other probabilities. The
log opinion pool has also been evaluated for speaker veri -
cation, particularly for the combination of NTN=DTW [65]
and NTN=GMM [80]. Here, the log opinion pool method
was found to provide performance similar to the linear opin-
ion pool method.

7.3. Voting=ranking methods

Another simple method for combining the results of mul-
tiple models is to use a voting procedure. In this case, each
model must output a decision instead of a score. Typically,
an odd number of models is used, to avoid ties, and the  nal
decision is based on a majority rule. The voting method has
been applied to handwriting recognition [86] and speaker
veri cation [65,80]. In Refs. [65,80], the voting method was
compared to the linear and log opinion pool methods. Here,
the voting method performed slightly worse than the linear
and log opinion pool methods, but still showed improve-
ments over the individual model performances.
Ranking methods are appropriate for problems that in-

volve numerous classes. Rankings do not use class labels or
numerical scores, but instead utilize the order of the classes
as estimated by the model(s). Ranking methods use class

set reduction to reduce the number of class candidates with-
out losing the true class. By reducing the number of classes
and reordering the remaining classes, the true class should
surface to the top of the ranking. The ranking method has
been evaluated for printed character recognition [87].

7.4. Dempster–Shafer approach

The Dempster–Shafer approach has been used to combine
the outputs of multiple classi ers for handwriting recogni-
tion [86] and is also analyzed in comparison with Bayesian
methods and fuzzy set theory in [88]. The following consti-
tutes a brief description. Consider a set of outcomes of an
experiment to be denoted by +. For example, in a coin toss,
if H represents heads and T represents tails,+=(H; T ). The
set + has 2n(+) subsets (including the null set and + itself)
where n(+) is the number of elements in +. These subsets
are known as propositions and the set of propositions is de-
noted as P. A proposition consisting of only one element is
called a singleton. For example, if the experiment involves
rolling a die, a singleton is the element 2 while the proposi-
tion that the number is even is (2; 4; 6). A basic probability
assignment (BPA) is assigned to each proposition or sub-
set of + as opposed to each individual element of + as in
conventional probability theory. If A∈P is a subset of +,
then BPA(A) represents the impact of the evidence (output
of classi er) on A [86]. From the BPA, a numeric value in
the range [0; 1] that indicates the belief in proposition A (de-
noted by bel(A)) is computed. The belief in A, bel(A), in-
dicates the degree to which the evidence or classi er output
supports A and is given by

bel(A) =
∑
B⊆A

BPA(B): (22)

Given + and P, the evidence (output) provided by the
classi er induces a set of BPAs from which the beliefs are
calculated. With multiple classi ers, each piece of evidence
induces a diDerent set of BPAs which must be combined or
fused. If A∈P is a subset of + which is not the null set,
BPA1(A) is the BPA for one classi er and BPA2(A) is the
BPA for the other classi er, the combining rule is given by
Refs. [86,88]

BPA(A) =

∑
C∩D=A BPA1(C)BPA2(D)

1− k
; (23)

where BPA(A) is the overall BPA after fusion, C ∈P,D∈P
and k is given by

k =
∑

C∩D=null

BPA1(C)BPA2(D): (24)

Note that the classi er outputs are assumed to be indepen-
dent. The BPAs for all A∈P are found and the beliefs
bel(A) computed before proceeding to invoke the decision
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rule based on the beliefs. Note that if k=1, the two evidences
are in complete conFict and BPA(A) does not exist. Also, the
above formulation can easily be extended to include more
than two classi ers [86,88].
It has been pointed out that there is no theoretical jus-

ti cation for the combining rule and hence, the potentially
exponential complexity is hard to justify [88]. Similarly, the
linear and log opinion pools have no theoretical justi cation
but oDer good results. The Dempster–Shafer method is in-
tuitively pleasing in that it considers subsets as opposed to
just singletons. However, the result can sometimes be coun-
terintuitive in that high disbeliefs can be combined to render
a high belief [88]. This counterintuitive phenomenon can be
bene cial [88].

7.5. Fuzzy integral method

Fuzzy integrals use objective evidence supplied by var-
ious sources and the expected worth of subsets of these
sources in the fusion process [89]. It can also be interpreted
to be a maximum degree of belief for a class obtained from
the fusion of several objective evidences [91]. The fuzzy
integral approach has been used in handwritten word recog-
nition [89–94] and computer vision [95]. It is included in
this paper to provide completeness to this section on data
fusion.
Let X = (x1; x2; : : : ; xn) be an arbitrary set. A function g

de ned on any Borel  eld of X is a fuzzy measure if (1)
g(∅)=0, (2) g(X )=1, (3) g(A)6 g(B) if A ⊂ B and both A
and B belong to the Borel  eld and (4) lim g(Ai)=g(lim Ai)
where Ai is an increasing sequence of measurable sets in
the Borel  eld. A g/ fuzzy measure satis es an additional
condition

g(A ∪ B) = g(A) + g(B) + /g(A)g(B); (25)

where A; B ⊂ X , A∩B= ∅ and /¿− 1. The fuzzy density
of the g/ fuzzy measure is denoted by g/(xi) whose range
is the closed interval [0; 1]. The quantity / can be obtained
by solving the equation

/ + 1 =
n∏

i=1

(1 + /g/(xi)): (26)

If f is a measurable function whose range is the closed inter-
val [0; 1] and such that 06f(x1)6f(x2) · · ·6f(xn)6 1,
then the Choquet (fuzzy) integral of f with respect to the
fuzzy measure g is de ned as∫

A
f(x)dg(:) =

n∑
i=1

[(f(xi)− f(xi−1))g/(Ai)]; (27)

where f(x0) = 0.
In implementing the fuzzy integral approach, the  rst step

is to determine the fuzzy densities for the classi ers ei-
ther subjectively or from the training data [91]. The fuzzy

densities give a measure of the importance of the classi er
for recognition of a certain class. Given the fuzzy densities,
the second step is to calculate the g/ fuzzy measure for each
class from the diDerent classi ers by the equation

g/(Ai) =
1
/

[ ∏
xi∈Ai

(1 + /g/(xi))− 1

]
: (28)

From g/(Ai), the fuzzy integral is computed where the func-
tion f is a membership function mapped from the actual
output of the test data. The  nal output class ( nal decision)
is that which maximizes the value of the fuzzy integral.

8. System description: techniques and methodologies

In this section, we will concentrate on describing the tech-
niques, methodologies and issues in developing a speaker
veri cation system. Most of the techniques described here
have been implemented in a real system called the T-NETIX
SpeakEZ Voice Print SM system [77]. This system is
text-dependent, allows for user selectable passwords, and
uses linear fusion to combine the scores of classi er models.
Moreover, the system is based on segmenting each word in
the password into sub-words.
The  rst issue to resolve is the choice between a

text-dependent and text-independent system. Text-dependent
speaker veri cation systems use the same password for
training and testing. This method of veri cation has two
important advantages, namely, (1) the password is  xed
thereby making it diEcult for an imposter to get in as the
correct password must be known and (2) the system yields
a better performance when compared to text-independent
speaker veri cation systems. The second issue is to de-
cide whether scoring and a decision is made on the entire
password or by dividing the password into sub-words. The
use of sub-words is better since (1) a method known as
blind segmentation of a whole word into sub-words exists
and automatically determines the number of phonemes and
phonemic boundaries in which no apriori knowledge of
what phonemes are present exists [96] and (2) allows for a
user-selectable password that makes the system more con-
sumer friendly. Also, the use of multiple sub-word level
classi er models allows for scoring based on what would
be a (1) phonemic match for a true speaker’s utterance
and (2) a glaring phonemic mismatch for an imposter’s
utterance. This allows for a larger disparity in the scores
for true speakers and imposters which is in turn desired for
getting better performance. The third issue is on selection
of a robust feature(s). The Adaptive Component Weighted
(ACW) cepstrum [20,21], the Post lter (PFL) cepstrum
[21] and pole  ltered cepstral mean subtraction (PFCMS)
[12] are individually robust but do not achieve any perfor-
mance improvement when fused since the errors are not
necessarily uncorrelated. Moreover, experiments reveal that
transforming channel corrupted speech into clean speech by
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inverse  ltering the channel eDect (as described in [9,12])
and using the LP cepstrum as the feature is preferred over
directly using the ACW, PFL or PFCMS features. The use
of inverse  ltering and the LP cepstrum is the method of
choice.
There are numerous training methods that can be ap-

plied to a speaker veri cation system. One simple case is
when many repetitions of the password are recorded and one
model is trained on all the repetitions. This overall model is
based on all the password repetitions and will be comprised
of various sub-word models (the sub-words are based on
the blind segmentation). Another way is to train two over-
all models, each on half of the repetitions. A leave-one-out
method is used (discussed earlier) to accomplish data diver-
sity with only four repetitions of a password being available.
Each overall model is trained with 3 repetitions with a dif-
ferent repetition “left-out” for each model. The left-out rep-
etition is applied as a test utterance to get an unbiased score
that is used to set the threshold for accepting or rejecting a
claimant speaker. The approach generates 4 multiple over-
all models with each model consisting of the same number
of sub-word models. The training method as above can be
applied to any type of classi er. The mean and diagonal co-
variance matrix of the feature are used to obtain the GMM
parameters. The GMM, VQ, HMM and DTW are trained
only using the speech of the speaker being trained. For the
NTN, both speaker and anti-speaker speech data are used to
obtain the hyperplanes that partition the feature space into
feature and anti-speaker feature vectors. The anti-speaker
data corresponds to the subwords of other speakers enrolled
in the database from which the extracted feature vectors are
close to the feature vectors of the subword of the speaker
being trained.
In the testing phase, the test utterance is  rst segmented

by blind segmentation [96] as is done for training. Consider
one of the overall models obtained during training that have
various sub-word models. The feature vectors from each
sub-word are scored by the corresponding sub-word model.
This score is accumulated across all sub-word models to get
a total score for the overall model. Similarly, a total score is
obtained for each overall model. These scores are averaged
to yield a  nal score for the model. The  nal score is com-
pared to a threshold to render an acceptance or rejection.
There are two kinds of errors, namely, false accept (FA) and
false reject (FR). A false accept arises when an imposter is
accepted as the true speaker. A false reject arises when a
true speaker is rejected or deemed an imposter. Varying the
threshold that the  nal score is compared to accomplishes
a tradeoD between the FA and FR. If we need to decrease
either of these two types of errors, we end up increasing
the other. The equal error rate (EER) of the system is when
the FA and FR are equal and is commonly used to measure
speaker veri cation system performance. A receiver operat-
ing curve (ROC) curve is a plot of FA versus FR for various
thresholds. A user can adjust the threshold to get a desired
FA and FR.

Table 1
Equal error rates (EER) for best single, dual and trio models [84]

Database Best single Best dual Best trio

Landline 1.46% (NTN) 1.15% (HMM-NTN) 0.84%
Cellular 5.99% (DTW) 3.71% (DTW-NTN) 3.71%
Multimedia 2.27% (DTW) 0.12% (DTW-NTN) 0.03%

Table 2
Equal error rates (EER) for diDerent weight selection methods
given a 3 model system [84]

Database Equal weights Fisher Exhaustive

Landline 0.99% 0.95% 0.84%
Cellular 4.27% 3.75% 3.71%
Multimedia 0.10% 0.85% 0.03%

Given the training and testing methods, the next issue is
to choose what types of models to use, see if fusion helps
and if so, what fusion rule to use. Experiments with vari-
ous databases have shown that the NTN, HMM and DTW
models generally show the best performance [80,84]. Clas-
si er fusion is clearly achievable due to model diversity.
The linear and log opinion pools are usually equal in per-
formance and consistently outperform the voting approach
[80]. Of the three considered models, the issue of how many
and which to combine is a signi cant issue. Also, the is-
sue of how to choose the fusion weights must be resolved.
To  rst understand which models to combine, an exhaus-
tive search of fusion weights for a linear opinion pool was
done on three databases [84]. The “landline” database com-
prised of speech collected over a standard landline telephone
[84]. The “cellular” database comprised of speech collected
in a cellular environment [84]. The “multimedia” database
comprised of speech collected over a PC microphone [84].
Table 1 gives the results in terms of the EER for the best
single, dual and trio model systems.
The results in Table 1 encourages the use of all three mod-

els. In selecting the linear fusion weights, two strategies were
considered [84]. The  rst strategy is to assign equal weights
to each model. The second is to use the Fisher discriminant
approach [23,84]. Table 2 shows the corresponding results.

9. Summary

This tutorial has presented a review of the classi er based
methods used for speaker recognition. Both unsupervised
and supervised classi ers are described. In addition, prac-
tical approaches that utilize diversity, redundancy and fu-
sion strategies are discussed with the aim of improving
performance.
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