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Vehicle Reidentification as Method for
Deriving Travel Time and
Travel Time Distributions

Investigation

Carlos Sun, Glenn Arr, and Ravi P. Ramachandran

Vehicle reidentification was investigated as a method for deriving travel
time and travel time distributions with loop and video detectors. Vehicle
reidentification is the process of tracking vehicles anonymously from
site to site to produce individual vehicle travel times and overall travel
time distribution. Travel time and travel time distribution are measures
of the performance and reliability of the transportation system and are
useful in many transportation applications such as planning, operations,
and control. Findings from the investigation included (a) results from a
platoon reidentification algorithm that improved upon a previous indi-
vidual vehicle reidentification algorithm, (b) sensitivity analysis on the
effect of time windows in deriving travel times, and (c) derivation and
goodness of fit of travel time distributions using vehicle reidentification.
Arterial data from Southern California were used in testing the algo-
rithm’s performance. Test results showed that the algorithm can reiden-
tify vehicles with an accuracy of greater than 95.9% with 92.4% of total
vehicles; can calculate individual travel times with approximately 1%
mean error with the most effective time window; and can derive travel
time distributions that fit actual distributions at a 99% confidence level.

One motivation for performing vehicle reidentification is to address
the need for section measures, as opposed to point measures, of traf-
fic performance. As the names imply, point measures are obtained
at a particular point on the roadway, while section measures are
obtained for an entire roadway section. Point measures such as
speed, flow, and occupancy are measured over the distance of a traf-
fic detector’s field of view, which is around 2 m (6.6 ft) in the case
of an octagonal loop. Traffic engineers and travelers, on the other
hand, require information about entire roadway sections. It is true
that under certain traffic conditions, point measures can approximate
section measures. However, in general, point measures as surrogates
for section measures can lead to inaccuracies. Direct measurement
of section travel times can avoid the inaccuracies associated with
estimating section travel times from point speeds.

The practical traffic applications of vehicle reidentification are
many. The derivation of section travel times is useful to transporta-
tion engineers for the purposes of traffic operations, planning, and
control. The method of floating car studies is comparatively more
labor-intensive and produces only mean or median travel times
instead of travel time distributions. Accurate travel times can be
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instrumental in feedback control, vehicle routing, traffic assign-
ment, estimation of dynamic origin—destination demand, and traveler
information systems.

The usefulness of travel time distributions has been discussed
by many for different applications in transportation. Travel time
distribution or variability has been used in measuring performance
of transportation systems. For example, in the Minnesota ramp-
metering study, travel time reliability was a performance criterion
in addition to travel time and traffic volume (7). Rickman et al. (2)
point to the use of travel time distribution for quantifying traffic sig-
nalization service. Bates et al. (3) mention that median and travel
time distribution are better measures than the mean. From the trav-
eler’s perspective, because it decreases anxiety or stress caused by
uncertainty, a reduction in variability is often just as valuable as a
reduction in mean travel time. Bates et al. point to the notion of dis-
utility of arriving at a destination earlier or later than desired. Place-
ment of confidence intervals around mean travel times improves the
information for travelers (4). Travel time distributions are also valu-
able in simulation and modeling of networks (5). Hellinga and Fu (6)
highlight the difference between minimum travel time paths and
paths of optimal reliability of travel time in simulation. Dandy and
McBean (7) mention that studies on travel time distribution can help
improve discrete choice modeling in route selection, since travelers
are more concerned with maximum likelihood of travel time than
with the average travel time. Wakabayashi and Iida (8) discuss the
application of travel time variability in road network management
and construction. Cohen and Southworth (9) note the importance of
considering travel time variability in the derivation of traveler cost
functions.

RELEVANT LITERATURE

Although few surveillance systems highlight their ability to produce
travel time distributions, a number of existing technologies have the
potential to produce accurate travel time distributions. One class of
techniques uses point measures and stochastic traffic flow model-
ing. An example is Dailey’s use of cross-correlation for measuring
the propagation time of traffic (10). Another is Peity’s use of the
assumption that upstream and downstream travel times have the
same probability distribution (11). Another class of techniques for
obtaining travel times involves vehicle reidentification or the match-
ing of vehicle signatures that come from locations along road sec-
tions. In other words, detector signatures from an upstream station
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are compared for a match with signatures from a downstream sta-
tion. Some algorithms match individual inductive loop signatures or
lengths from vehicles by correlating such signatures from two con-
tiguous sites (12—14). One traditional method of vehicle reidentifi-
cation is the matching of license plates (/5). Examples of video re-
identification include the use of color (I6) and video signature
vectors (I7). Other detector technologies used for vehicle reidentifi-
cation include laser profiles (18), weigh-in-motion axle profiles (19),
and ultrasonic detectors (20).

Some in-vehicle technologies could also be employed to derive
travel time distributions (2/-23). So-called toll tags or advanced vehi-
cle identification is one example. This system requires that vehicles
have a toll tag or transceiver to communicate with the readers at points
on the transportation network. A drawback of this system is that toll
tags currently have a limited market share; thus, only a subset of vehi-
cles is detected. An advantage of this system is that the accuracy in
identification is high, since each toll tag transmits a unique identifi-
cation number. Another system is the use of probe vehicles often
equipped with the Geographic Positioning System (GPS) or with cel-
lular telephones. This system is also accurate and allows almost a
continuous tracking of vehicles, but it is also dependent upon con-
sumer acceptance. These two systems in use in the private sector can
augment the information obtained from the public sector.

DATA

The traffic data used for this experiment were collected on June 30,
1998, in Irvine, California. The data site consisted of two detector
stations bounding a two-lane section of Alton Parkway within the
intersections of Telemetry and Jenner Streets. Each detector station
had double inductive loops in a speed-trap configuration, 3M
Canoga detector cards, and video detectors. The data collected from
the loops and video were time-synchronized so that the inductive
signature and the video image from the same vehicle could be iden-
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tified. Figure 1 shows an example of the field data that was collected,
including the inductive signature, original video image, background
subtracted image, and the extracted color feature. The distance
between the two detector stations was 130 m (425 ft). The inductive
loops were standard 1.83- X 1.83-m (6- x 6-ft) rectangular loops
commonly used by many transportation agencies. The video cam-
era was a consumer-grade Hi-8mm camcorder. The data were col-
lected during the morning peak between approximately 8:00 and
9:30 a.m. at the downstream station. This data set contained 581 ve-
hicle pairs or 1,162 vehicles. The time-consuming nature of ground
truthing (verification) makes the formation of large data sets very
difficult. Ground truthing requires that a researcher identify an up-
stream vehicle on a monitor, search and find the corresponding
downstream vehicle on another monitor, and record the time stamp
of the vehicles at both locations to obtain travel times. The set of
more than 500 samples seems to be large compared with floating car
runs of 20 samples, but this is necessary because the goal is to
derive travel time distributions and not only mean travel time. The
first 200 vehicle pairs were used for training and the rest for testing.

Table 1 shows the characteristics of the actual travel time and
speed distributions of the field data. A high skewness value implies
that the distribution is not symmetrical. The kurtosis value repre-
sents the “fatness” of the tails of the distribution. The information in
Table 1 explains the reasons for using both travel time and speed
time windows, as presented in the results section. The table shows
that the travel time distribution is relatively skewed, while the speed
distribution is not. The right tail of the travel time distribution, which
corresponds to the slower travel times, is relatively fat, with a large
kurtosis value. The mean and the median travel times are not the
same for the travel time or the speed distributions, which shows that
neither distribution is normal. This is consistent with data from other
research that show significant positive skewness for travel time dis-
tribution (7). Other research also points to normal distributions as
inappropriate, but suggests that log-normal or gamma distributions
might be better for characterizing travel time distributions.
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TABLE 1 Comparison of Travel Time and Speed Distributions
Distribution Mean Median Variance | Skewness | Kurtosis | Range
Travel time 6.73s 6.94s Lig]s 259 14.17 11.02s
19.72 m/s | 18.67 m/s 17.99 m/s
64.72fps | 61.26 fps 59.05 fps
Speed 44.13 mph | 41.77 mph 647 -019 1.03 | 40.26 mph |
METHODOLOGY 2. LO progressively reduces the feasible set from level to level,

Instead of treating vehicles as individual images, traffic flow con-
siderations can be used to further constrain the vehicle reidentifica-
tion problem. The proposed platoon algorithm takes as an assump-
tion the fact that vehicles tend to travel in groups or platoons.
Platoon in this context refers to a group of vehicles in chronological
sequence in close proximity to each other. This is a more general
formulation than the previous individual reidentification, since the
size limits of vehicle platoons are individual vehicles in the least
congested case and all existing vehicles in the extremely congested
case. By comparing multiple vehicles instead of individual vehicles,
the algorithm performance should be improved while individual
vehicle matches are still maintained.

An intrinsic step in the algorithm formulation of the vehicle re-
identification problem is the process of feature extraction. Tradi-
tionally, vehicle reidentification, or more generally system identi~
fication, is split into two separate components: feature extraction
and classification. Feature extraction encompasses so-called direct
methods and parametric methods. Since the reidentification sys-
tem must be implemented in the field, many real-life constraints
limit the algorithm. The trade-offs between accuracy, compu-
tational intensity, and information bandwidth must be carefully
weighed.

Feature extraction seeks to extract those salient components of
vehicle images that would sufficiently differentiate vehicles. To
avoid redundancy, features obtained from the vehicle images must
contain different information. This is similar to the process of
deriving a basis in linear algebra or finding the principal compo-
nents in data analysis. In a likewise fashion, the goal here is to find
an orthogonal set of vectors that would span the space of possible
vehicle images. Direct feature extraction methods were employed
for this research, since parametric estimation involves the assump-
tion of a specific model structure and requires more computation.
The features used in the algorithm include inductive signature,
color, velocity, inductive amplitude (proportional to the suspen-
sion height), electronic length (similar to physical length), and pla-
toon travel time or the headway between the first and last vehicles
of the platoon.

Once the salient features from various detectors’ images are ex-
tracted, they are combined in the platoon vehicle reidentification
algorithm, which performs the identification or classification. In
other words, the algorithm performs the vehicle reidentification
and matches the images produced by the same vehicle along vari-
ous points on the roadway. A multiobjective optimization approach
was used in the platoon vehicle reidentification algorithm, be-
cause it allows incorporation of objectives associated with differ-
ent features. A sequential multiobjective optimization approach,
called lexicographical optimization (LO), was used for the following
reasons (24):

1. LO enables objectives with different units to be placed at
different priority levels.

thus improving computational efficiency.

The separation into multiple optimization levels allows sensitivity
analysis to be conducted at every level. The multiobjective approach
has the notion of Pareto optimality, which is defined as “a certain
position when it is impossible to find a way of moving from that posi-
tion very slightly in such a manner that the ophelimity enjoyed by
each of the individuals of the collectivity increases or decreases” (25).

An overview of the platoon vehicle reidentification algorithm fol-
Jows. The algorithm starts by selecting a platoon detected at the
downstream site. A list of upstream candidate platoons is generated
subject to a time window objective that eliminates platoons that do
not pass within a reasonable time frame. In other words, candidate
vehicles that travel at excessive or unreasonably low speeds are
eliminated from candidate platoons. Each upstream platoon is then
compared with the downstream platoon. A minimum absolute dis-
tance (L1) classifier is used as the objective in determining the best
match. The classifier uses the feature vectors described previously.
An individual vehicle time window objective is used in the end to
exclude vehicles with unreasonable travel times. This effectively
eliminates outliers in the data set. The trade-off in this final objec-
tive involves an improvement in the fit in the majority of the travel
time distributions at the cost of the edges of the distribution. Be-
cause there is a one-to-one correspondence between the individual
vehicles of the upstream and downstream platoons, the results from
this algorithm yield individual vehicle reidentifications. Therefore,
individual vehicles are tracked from point to point, and vehicle travel
times are measured.

The minimum absolute distance measure (L1) between an upstream
feature, f,, and downstream feature, f;, is given by

dfe £ = DU - £

iwl

where i denotes the ith component of the feature vector, and ¢ is the
vector dimension. If the number of components of the signatures is
different for different vehicles, then the feature vector with fewer
components is padded before taking the L1 distance. If the size of
the platoon is denoted as N, the L1 for the overall platoon, D, is

DL £) = Y, d(f. £2)

where f? is the downstream feature and f} is the downstream feature
for vehicle j. The optimum number of vehicles in a platoon is deter-
mined by the platoon size that achieves the highest reidentification
accuracy using the training set. For this data set, the optimal platoon
size is three.

The first level of the LO is formulated as a time window objective
in the fashion of a goal criterion. Goal programming is useful in
establishing target or threshold values. Stated verbally, this objective
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has the goal of retaining vehicles whose upstream and downstream
travel times are >L, (the lower bounds) and <U, (the upper bounds).
The time window objective is
ﬁ = gOﬂl{D{f“, fd) = Z|]' (zl € [Lh Ur ])

The goal value, z;, is defined by U, and L, as

U =ty = tua
and

I—; =ty — by
where

fin = minimum vehicle traversal time based on the training set,

t,,0 = Maximum vehicle traversal times based on the training set,

ta = travel time for the last vehicle from the downstream platoon,
and

;2 = travel time of the first vehicle from the downstream platoon.

Each feasible upstream vehicle will need to have a travel time >L,
and <U,. If N, is the number of feasible upstream vehicles and Ny is
the number of feasible upstream platoons, then Ny=N, — N+ 1. For
example, if N,=10and N, = 3, then 8 consecutive upstream platoons
of 3 vehicles need to be examined. Then, the platoon comparison
must be performed eight times to find the upstream platoon that best
matches the downstream platoon.

The second-level objective involves the comparison of feasible
candidate upstream platoons with the downstream platoon. How
closely two platoons are matched to each other is defined by a linear
program, which is a weighted average of feature distances. If two
images are produced from the same vehicle, then the features from
the images should not differ significantly, which results in small fea-
ture distances. As the platoon is composed of individual vehicles, the
feature distances are summed to obtain an overall platoon distance.
The second-level objective is formulated as

f, = min{w, D(s,, 8;) + w.D(c., €4) + W, D(v,,vy)

ot me[.mm md) + W D(lnv ld) + wpd(Pm pd')}

where

w, = weight applied to the vehicle signature distance D(s,, sa)»

w, = weight applied to the color information feature distance
D(C,,, Cd)s

w, = weight applied to velocity feature distance D, va),

w,, = weight applied to the maximum inductive amplitude feature
distance D(m,, m.),

w, = weight applied to the electronic length feature distance

D(Im !d)s
w, = weight applied to the platoon traversal time feature distance
d( Pw P d)v
. = upstream,

.+ = downstream, and
; = the jth vehicle in the platoon.

Note that the platoon traversal time feature applies to the entire pla-
toon and not to any individual vehicle. The linear weights add up to
1 and are determined during training by searching an n-dimensional
grid of real numbers and finding the optimum combination that
gives the best performance on the training data alone. The upstream
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platoon that achieves the objective f or the smallest distance is
matched to the downstream platoon.

The last-level objective involves an individual vehicle time win-
dow. This objective is used to eliminate vehicles that travel at un-
reasonable speeds for the segment in question. For example, if the
vehicle had a travel time of the mean travel time minus four stan-
dard deviations, then the vehicle would be traveling at approxi-
mately 212 ft/s (144 mph). Effectively, this objective helps to elim-
inate some vehicles that were erroneously reidentified as a travel
time sample. The individual time window objective is
£ = goal{d(tl, 1)) = 22} (& €[lu)

The goal value z, is defined by lower and upper bounds /, and u,
and defined in two ways. One way is to use the mean travel time,
7, and form the limits of the time window by adding and subtract-
ing multiples of the sample standard deviation of the travel time,
5. For example, if a four standard deviation range is desired, then
I, =7 —2s and u, =7 + 2s5. Because the travel time distribution is
skewed compared with the speed distribution (see Table 1), the
second way of using the mean and standard deviation of speed is,
in this case for example,

L=5-25 wu=5+2s
where 5 is the mean speed and s is the sample standard deviation of
speed.

In this initial development of the platoon reidentification algo-
rithm, the two lanes of traffic were treated separately for several rea-
sons. First, this is a simpler case upon which more complicated sce-
narios, such as overtaking, can be added. Second, if vehicles are not
required to be sequential in a platoon, then the problem becomes
combinatorial and the solution becomes more computationally inten-
sive. Third, on certain short stretches of roadway, lane changes are
infrequent. The test data used are from such a site, and the number
of lane changes amounted to only 2% of the traffic.

RESULTS

One goal of this research was to improve upon a previous algorithm
for vehicle reidentification that used individual vehicle reidentifica-
tion (14). Table 2 compares the results of the new platoon algorithm
with those of the previous algorithm. Column 1 lists the different
time windows used for extracting a subset of the total number of
vehicles for reidentification. The details of the time window were
discussed in the section on methodology. The first four time win-
dows, Rows 1 through 4, use the standard deviation, s, of travel
times. For example, the time window in Row 1 has the lower limit
of mean travel time minus two standard deviations and the higher
Timit of mean travel time plus two standard deviations. The next four
time windows, Rows 5 through 8, use the standard deviation of
speeds translated into equivalent travel times. Because of the inverse
relationship between speed and travel time, the time windows using
speed are skewed toward the right of the mean when translated into
equivalent travel times. Columns 2 and 6 show the reidentification
accuracy (rate) for the two algorithms. Columns 3 and 7 show the
percentage of vehicles that are excluded by the time window. Col-
umns 4 and 5 and 8 and 9 show values related to the accuracy of the
travel time derived with the reidentification algorithms. Columns 5
and 9 show the variance of the percent travel time error. The vari-
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TABLE 2 Individual Versus Platoon Algorithm Results

Indmdual Platoon
Time RelD Mean % | Var % RelD Mean % | Var %
Window | Rate % Veh’s | Error Error Rate % Veh’s | Error Error
r+2s 80.04 98.63 0.0311 0.0104 94.23 95.85 0.0155 0.0054
f+3s 87.39 99.31 0.0394 0.0142 93.11 97.75 0.0212 0.0082
r+3.5s 86.53 99.31 0.0430 0.0159 93.49 98.10 0.0186 0.0069
i+4s 85.03 99.66 0.0580 0.0282 92.31 98.79 0.0277 0.0145
vt2s 90.65 97.26 0.0258 0.0086 95.89 92.40 0.0104 0.0036
vi3s 87.80 98.46 0.0495 0.0290 94.12 96.89 0.0204 0.0116
v+3.55 86.23 99.66 0.0567 0.0329- 93.71 98.79 0.0227 0.0143
vids 85.57 99.83 0.0750 0.0598 93.06 99.48 0.0356 0.0334

ance is important to examine, because it indicates the consistency of
the derived travel times over a range of values. The results in Col-
umn 9 show that the travel time errors do not fluctuate widely but
are consistent among the derived travel times of individual vehicles.

The results show that the reidentification algorithm with the pla-
toon reidentification algorithm is superior in all aspects to the indi-
vidual vehicle reidentification algorithm. This is true in the reiden-
tification accuracy, the mean percent error for travel time, and the
variance of the percentage of error. Table 2 also shows encouraging
results for deriving travel times with the platoon reidentification
algorithm. In the best case, the reidentification accuracy is close to
96%, the mean travel time error is approximately 1%, and the vari-
ance in the travel time error is 0.36%, while more than 90% of the
vehicles are still used in deriving travel times.

The trade-off in the use of individual vehicle time windows is
between accuracy and the percentage of vehicles used in reidentifi-
cation. In three of the four sets of cases, as the time window narrows
and the percentage of vehicles used decreases, the reidentification
accuracy increases. The exception is the platoon reidentification
with a time window using travel time. In this case, the reidentifica-
tion accuracy decreases as the time window is decreased from +3.5
standard deviations to 3 standard deviations before the accuracy
increases again with a time window of +2 standard deviations. To
summarize, the narrowing of the time window can exclude outliers
that are most often erroneous reidentifications; however, this is not
universal, as shown in one of the four cases.

Another goal of this research was to investigate the capability of
the reidentification algorithm in deriving travel time distributions.
This can be accomplished qualitatively by visually comparing the
plots of the derived and actual travel time distributions. Figure 2
shows an example of travel time distribution plots with a time win-
dow of mean speed +2 standard deviations. From the plot the two
distributions look very similar.

Two quantitative ways of evaluating the performance of the re-
identification in deriving travel time distributions are by the chi-
square test and the Kolmogorov—Smirnov (K) test (26). These
tests measure the goodness of fit between observed distributions
and expected distributions, The two tests operate on slightly dif-
ferent principles. The chi-square test assesses how closely the
derived frequency distribution represents the actual distribution by
classifying data into / distinct intervals and summing the results of
comparison between each travel time interval. The chi-square test
statistic is

! 2
wo=y e i)
=1 ﬁ

where

Jo = observed or derived frequency,
Jf: = theoretical or actual fréquency, and
I = number of travel time intervals.

The statistic has / - 1 degrees of freedom (DF). The Kolmogorov—
Smirnov is a statistic based on the maximum deviation between two
cumulative relative frequencies over the entire range of the variable
and depends on the sample size N. It is expressed as

D(N) = max|E(x) — O(x)|

where E(x) is the expected (actual) cumulative frequency distribu-
tion and O(x) is the observed (derived). Briefly, some trade-offs
between the chi-square test and the K test include the K test’s more
moderate assumptions about random sampling and sample size, use
of ungrouped data, and efficiency; while chi-square does not re-
quire that the hypothesized population be specified in advance, its
values can be meaningfully added, and it can be easily applied to
discrete populations. See Bradley (27) for more discussions on the
relative merits of chi-square and K tests and on other maximum
deviation tests such as the Cramer—von Mises test.

The following hypothesis is tested using the aforementioned
statistics:

H,: the frequency distribution of the derived and actual travel
times are the same.
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FIGURE 2 Example of derived and actual travel time
distributions.
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TABLE 3 GBoodness-of-Fit Test for Derived Travel Time Distribution

Time % Veh Calc. Chi- guare

Window | Used Square DF 99% Calc. K N K 99%
f+2s 95.85 5.01 8 20.1 0.0216 555 0.0680
i+3s 97.74 11.72 10 23.2 0.0177 566 0.0677
r+3.55 98.10 14.31 11 24.7 0.0229 568 0.0677
rt4s 98.79 18.34 9 21.7 0.0297 572 0.0676
vi2s 92.40 2.61 6 16.8 0.0187 535 0.0685
v3s 96.89 21.67 10 23.2 0.0321 561 0.0680
- vi3.55 98.79 18.61 10 23.2 0.0332 572 0.0676
vids 99.48 271.79 11 24.7 0.0436 576 0.0676

The results from testing the frequency distribution generated by the
platoon reidentification algorithm at 99% confidence level are shown
in Table 3. Similar to Table 2, values for eight cases are shown related
to the different time windows employed. For the chi-square test,
the results from Rows 1 to 7 show that the null hypothesis cannot be
rejected, which indicates a good fit. Even in the case of Row 8, where
the null hypothesis is rejected, the test statistic is very close to the chi-
square value at a 99% confidence level. The number of intervals cho-
sen in the chi-square test is a function of the number of 0.5-s intervals
that resulted after application of the time window. For the K test, the
null hypothesis is rejected in none of the cases, which indicates a good
fit for all cases. Even though there are some differences in the results
from the chi-square and K tests, the results show statistically that,
with platoon reidentification, it is possible to derive travel time dis-
tributions that fit actual distributions well.

CONCLUSIONS

The platoon reidentification algorithm is shown to be superior to the
individual vehicle reidentification algorithm. However, the optimal
static size of the platoon or a criterion for establishing dynamic
platoon sizes should be further investigated for different traffic-
flow conditions and facilities. The platoon behavior between free-
ways and arterials should necessitate different platoon sizes in the
algorithm.

Although all time windows produced promising results of >90%

- reidentification accuracy and travel time error of <4%, the narrower
time windows such as ¥ £ 2s produced the best results while still
retaining a significant percentage of vehicles used (95.85%). The
narrower time windows also produced travel time distributions that
best fit the actual distribution.

The length of the test segment was too short for collecting useful
trip time, and it did not span an intersection to allow for the deriva-
tion of intersection control delays. However, the section was useful
in proving the feasibility of vehicle reidentification and derivation
of travel time distribution, which are precursors to the derivation of
trip travel times and trip reliability. To validate the capability of the
algorithm to accurately reidentify vehicles, a closed segment was
investigated to control for vehicles that do not appear at both up-
stream and downstream stations. In the future, data should be col-
lected from longer segments, such as freeway corridors and arterial
segments that span intersections.

Many research issues related to the development of platoon
reidentification are yet unresolved. The current algorithm should
be generalized for the case in which lane changing is considered.

The ability to transfer the algorithm to different sites should also be
assessed. This will necessitate data collection from more traffic
sites. However, such an effort is a long-term process, since imple-
menting field instrumentation takes time and developing ground
truth data is extremely labor-intensive. It will also be desirable to
collect incident trave] times because the variability in travel time
under incidents is of great interest to drivers and public agencies.

Further examination of the application of travel time distributions
in different transportation areas would also be useful. One such area
is performance evaluation of transportation systems. This can in-
volve not only variability of travel time but also assessment of the
shapes of the distributions. For example, a peaked distribution seems
to be more desirable than a relatively uniform distribution. Travel
time distributions can be used in safety applications as speed differ-
ence is used. Also, there are many opportunities to use travel time
distributions to improve modeling and simulation of traffic route
choice, travel cost functions, and driver behavior.
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