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Abstract—Vehicle reidentification is the process of matching ve-
hicles from one point on the roadway (one field of view) to the next.
By performing vehicle reidentification, important traffic parame-
ters including travel time, travel time variability, section density,
and partial dynamic origin/destination demands can be obtained.
Field traffic data were collected in Alton Parkway in Southern Cal-
ifornia for training and testing of the multidetector vehicle reiden-
tification algorithm. These data consisted of inductive loop signa-
tures of vehicles that traversed two detector stations spanning a
section of an arterial and the corresponding video of these signa-
tures. Even though the video collected was not optimized for pat-
tern-recognition purposes, an investigation into the feasibility of
fusing inductive vehicle signatures with video for anonymous ve-
hicle reidentification was conducted. The resulting reidentification
rate of over 90% shows that this approach merits further investiga-
tion. The results also show that the use of detector fusion provides
system redundancy and yields slightly better results than the use
of a single detector.

Index Terms—Detectors, fusion, image sensors, surveillance,
transportation.

I. INTRODUCTION

EVEN WITH the tremendous increases in computation
power since the advent of digital computers and the

incredible advances in surveillance technology, the world
of traffic surveillance and control has yet to feel their full
effect. The field of intelligent transportation systems (ITS)
seeks to improve the current state of our transportation system
by harnessing our increased communications, processing,
and detection capabilities. There is great need for advanced
surveillance capabilities to complement the rapid deployment
of ITS strategies. This paper presents the results of an initial
investigation into the potential of multidetector fusion for in-
telligent surveillance. Specifically, the focus is to study vehicle
reidentification, which is the task of matching a vehicle signal
detected at one location (upstream) with the signal generated
by the same vehicle detected at a downstream location at some
later time. To perform the task at hand, different features that
can distinguish one vehicle from another are derived from the
detected signals. Identification is performed using a nearest
neighbor classifier and a linear fusion strategy. The fusion of
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multiple detector signals is shown to improve vehicle-reidenti-
fication accuracy slightly and provides system redundancy.

In this investigation into the feasibility of using multidetector
fusion for traffic surveillance, a feature based on color informa-
tion from video cameras is used to augment the inductive sig-
nature feature obtained from inductive loop detectors. Inductive
signatures are unique deviations in the inductance of a loop de-
tector caused by the passage of a vehicle. Inductive loop detec-
tors are prevalent in many cities all over the world. This inves-
tigation using color from video is performed for the following
reasons:

• video cameras and video detection are becoming increas-
ingly more popular;

• color information is not correlated with inductive signa-
ture information;

• color can be extracted from imperfect video images while
more detailed characteristics are more difficult to derive;

• color can be verified visually;
• color can be used with signature information to increase

reidentification accuracy.

Since this investigation is performed using video footage that
is not optimized for vehicle reidentification and noncalibrated
loops, better results can be expected in the future with the use
of improved video imaging and loop detection.

One motivation for performing vehicle reidentification is to
address the need for section measures of traffic performance.
The state-of-the-practice in traffic surveillance involves the
measurement of point traffic parameters only. Point measures
are those obtained at a particular point on the roadway, while
section measures are those obtained for a section of the
roadway. Point parameters such as flow and occupancy are
measured over the distance of a traffic detector’s field of view
(FoV), which is usually around 2 m (6.6 ft). Traffic engineers
and travelers, on the other hand, require information about
entire sections of roadways. For further discussions on the
differences between point and section measures, see [1]–[5].

The practical traffic applications of vehicle reidentification
are many. The derivation of section travel times (time taken by
a vehicle to go from one point to another) is useful to trans-
portation engineers for traffic operations, planning, and control.
The method of floating car studies is comparatively more labor
intensive and only produces mean or median travel times in-
stead of travel time distributions, which are useful in studying
safety and travel time variability. Accurate travel times and den-
sities can be instrumental in travel reliability, feedback con-
trol, vehicle routing, traffic assignment, origin/destination de-
mand estimation, and traveler information systems. If vehicles
are tracked along consecutive points, then partial origin/desti-
nation demands can even be measured instead of estimated.
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The potential benefits of multidetector fusion are many even
when cost and complexity are considered. Some of the potential
benefits presented by Waltz and Llinas [6] are robustness, exten-
sion of temporal and spatial coverage, increased statistical con-
fidence, reduced ambiguity, improved accuracy, increased reso-
lution, and enlarged measurement space.

The improvements related to measurement performance are
especially critical for the purpose of vehicle reidentification,
since extreme accuracy is desirable (i.e., close to 100% reiden-
tification rate). This is of interest for the derivation of partial
origin-destination demands, since vehicles are reidentified over
multiple sections of roadway and errors can have a cumulative
effect. Also, for closed sections of roadways, the derivation of
section density (number of vehicles on a section of roadway at a
particular instance of time) requires a high reidentification rate
to measure the initial density, which cannot be obtained by using
input and output flow differentials.

The miniaturization of detection hardware is also making the
packaging of multiple detectors possible. The cost of detectors
has decreased significantly, especially if off-the-shelf versions
of the detectors are used for eventual implementation. If multi-
detector fusion systems receive wider acceptance, then the price
will decrease further because of increased production volumes.
With the doubling of computation power every two years [7], the
processing requirements for signal processing and communica-
tions should be feasible even for large transportation networks.

II. LITERATURE REVIEW

The technologies for detection of native vehicles (i.e., without
additional in-vehicle instrumentation) include inductive loop,
video, infrared, ultrasonic, microwave, acoustic, magnetic, road
tube, and piezoelectric [8]–[12]. Most of these technologies are
made to output point measures that are commonly used by trans-
portation engineers such as volume or counts, point speed, pres-
ence, or occupancy. However, there are no technological reasons
why these detectors cannot output more information or even
raw images of vehicles for the purpose of deriving section mea-
sures. One class of techniques that yield section measures uses
point measures and stochastic traffic-flow modeling. One such
example is Dailey’s use of cross-correlation for measuring the
propagation time of traffic [13]. Another is Petty’s use of the
assumption of equal probability distribution [14].

Another class of techniques for obtaining section measures
involves vehicle reidentification or the matching of vehicle sig-
natures that come from locations along road sections. Vehicle
reidentification can be accomplished by matching individual
vehicles or platoons (groups) of vehicles. Some algorithms
match individual inductive loop signatures from vehicles by
correlating such signatures from two contiguous sites [4], [15].
One traditional method of vehicle reidentification is license
plate matching [16].

It also is important to mention that there are systems for ob-
taining section measures that do not require vehicle detector
feature extraction and analysis. Such systems employ in-ve-
hicle beacons that allow system-wide tracking of such vehicles.
Such system can include global positioning system (GPS)/cel-
lular modem, toll tags, or other tracking beacons in vehicles
and the associated infrastructure for collecting the position of

the vehicles. There have been significant efforts in Asia, Eu-
rope, and North America, both academic and commercial, in
the area of video image processing for deriving traffic infor-
mation. Many of these efforts involve either tripwire systems
or tracking vehicles within a camera’s FoV. Since these sys-
tems do not focus on vehicle reidentification, the methods in
[17]–[21] are given as few examples out of a vast array of pro-
ductive video image-processing research. Some of these efforts
were part of the FHWA Traffic Surveillance and Detection Tech-
nology Development (TSDTD) Program that was managed by
the Jet Propulsion Laboratory, Pasadena, CA [22].

Directly related to our efforts in vehicle reidentification is
work on matching color from vehicle images conducted by
Massachusetts Institute of Technology (MIT)/Northeastern
University [23]. The aforementioned Autocolor system uses
vehicle color samples modeled as a color histogram, road color
samples (for illumination compensation), time of detection,
and time windows based on mean and variance of travel time
for vehicle reidentification. Our system uses similar color
information, but augments the system with inductive loop
signatures. Another video reidentification system is SAT
[24], which uses video signature vectors (VSV) composed of
physical lengths delineated by abrupt intensity and chromatic
changes along a vehicle’s centerline. This system requires an
overhead (down-looking) camera placement above individual
lanes, which is different from our side/rear angle camera
configuration.

In addition to inductive loops and video, there also are other
detector technologies that have been used for vehicle reiden-
tification, including laser profiles [25] and weigh-in-motion
(WIM) axle profiles [26]. In contrast to individual vehicle
reidentification, there are systems for matching platoons or
groups of vehicles. Some examples of platoon matching are
Coifman’s matching of sequences of vehicle lengths derived
from loop detectors [27] and Yokota et al.’s platoon matching
of ultrasonic large vehicles in free-flowing and congested
traffic [28].

An important motivation of this paper is to overcome the
limitation of using only information from one kind of detector.
When inductive loop signatures are used, vehicles of the same
model or even different models on the same body frame (metal
composition) can be mismatched. The color information from
video images can be sensitive to changes in illumination. To im-
prove upon the vehicle reidentification system, fusion of induc-
tive and video data is investigated in this paper.

The literature on multisensor fusion is extensive since it
covers so many applications ranging from military to med-
ical. Two helpful and frequently referenced sources on this
subject are Waltz and Llinas [6] and Hall [29]. Some recent
applications of multisensor data fusion are listed here to
show the diversity of this field. These applications include
image fusion [30]–[32], cyberspace intrusion detection [33],
tracking and target recognition [34], [35], machine monitoring
[36], medical [37], traffic management [38], handwriting
recognition [39]–[41], and speaker recognition [42]–[44].
A good reference on data fusion in the area of ITS is [45].
There are several important societies that actively promote
research in multisensor data fusion, including the Institute of
Electrical and Electronics Engineers (IEEE), the International
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Society for Optical Engineering (SPIE), Military Operations
Research Society (MORS), and societies with a division on

MIS (command, control, communications, and management
information systems).

In terms of multisensor algorithms for identity estimation,
Waltz and Llinas [6] provide a good overview of three types of
algorithms; namely, physical models, cognitive-based models,
and parametric classification. Physical models seek to model the
observed data and can involve estimation using Kalman filtering
or least squares or the use of syntactic components to describe
objects. The cognitive-based models seek to replicate human
processing. Such models can utilize logical templates, expert
systems, or fuzzy set theory. Parametric methods are generally
divided into two camps: statistical or information theoretic. Sta-
tistical algorithms include Bayesian, classical, and Dempster–
Shafer. Decision theoretic algorithms include parametric tem-
plates, clustering, neural networks, voting, and entropy.

In terms of decision theoretic approaches, fusion is the com-
bination of different sources of information with the aim of ar-
riving at a decision. Within the context of this paper, fusion
comprises the combination of distances obtained using a set of
features. Each distance is usually calculated as either the accu-
mulated L1 or L2 distortion from a particular feature (vector
or scalar) of a downstream vehicle platoon to that of a candi-
date upstream vehicle platoon. A set of distances are obtained
from an ensemble of features. Feature fusion is the combination
of these distances to obtain an overall distance. The decision is
based on the platoon that achieves the smallest overall distance
(nearest neighbor classifier). Classifier fusion comprises a com-
bination of scores (such as distortions, class labels, or probabil-
ities) using one feature and different classifiers. For fusion to be
successful, it is desired that the errors made due to one feature
(in feature fusion) or made by one classifier (in classifier fusion)
are corrected by using other features or classifiers. If all the fea-
tures or classifiers are in agreement in making an error, then no
combination will rectify the error. However, as long as there is
some degree of uncorrelation among the features or classifiers,
performance can be improved with the proper combination. This
motivates the use of color and inductive signatures, which in-
deed are uncorrelated. The selection of data fusion techniques
can be subdivided based on the type of information that will be
combined. For example, if the outputs are distances or proba-
bilities, then methods such as linear or log-opinion pools can be
used [39]. If classifier fusion is used and the outputs are actu-
ally class labels, then methods such as voting [40] or ranking
[41] can be used. For fuzzy decisions, Dempster–Shafer theory
can be used for score combination [40]. In this paper, experi-
mental results based on only linear feature fusion are presented.

The linear opinion pool is a commonly used fusion technique
that is convenient due to its simplicity. The linear opinion pool is
evaluated as either a weighted sum of distances (feature fusion)
or scores (classifier fusion). The equation is given by

(1)

where is the number of features or classifiers, is the weight
assigned to the th feature or classifier, is the score for the th

Fig. 1. Examples of vehicle signatures of a sports utility vehicle, a pickup
truck, and a Ford Mustang (a car).

classifier or distance for the th feature, and is the com-
bined classifier score or overall feature distance due to linear
fusion. The sum of the weights is normalized to 1.

The linear opinion pool has been evaluated with several ap-
plications, such as speaker recognition [42]–[44]. We use the
linear opinion pool for vehicle reidentification. The coefficients

are determined by searching an -dimensional grid of real
numbers and finding the optimum combination that gives the
best performance on the training data alone. The resolution used
for this 1/200. This optimum weight combination is used for the
test data.

III. FEATURE EXTRACTION

In this section, a description of six features that are used is
given. The first feature is the vehicle signature itself (denoted
as ). For both the upstream and downstream locations, there
are two inductive loops, each recording a signature. Since the
two signatures are almost identical, only one is used for vehicle
reidentification. The chosen vehicle signature vector is trans-
formed to be speed invariant and is reinterpolated as equally
spaced samples of the original acquired signature. The second
feature is the magnitude of the vehicle velocity (a scalar fea-
ture) and is computed as the distance between the two inductive
loops divided by the turn on times of the two loops. The third
feature is the platoon traversal time (a scalar). The quantity

is the difference between the time the last vehicle in the pla-
toon crosses an inductive loop and the time the first vehicle in
the platoon crosses the inductive loop. Another scalar feature
denotes the maximum inductive amplitude of the vehicle signa-
ture before it is normalized. This variable is inversely propor-
tional to the cube of the distance of the vehicle undercarriage
to the ground. Therefore, is correlated with the height of the
vehicle suspension. The scalar feature l stands for the electronic
length of the vehicle. This value differs from the physical length
of the vehicle because it includes the length of the magnetic
field generated by the loop and also because it only measures
the length of the metallic components of the vehicle that would
disturb the magnetic field. Fig. 1 shows examples of the vehicle
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signatures of three different types of vehicles; namely, a sports
utility vehicle, a pickup truck, and a Ford Mustang (a car). The
differences in the signatures allows for reidentification.

Instead of using every possible red–green–blue (RGB) triplet,
the colors are quantized or grouped into subsets as a color vector.
Pixels with colors that are in the neighborhood of each other are
grouped into a single triplet. This process helps to improve rei-
dentification accuracy, since the aggregated space is more tol-
erant to noise. Quantization of the RGB values to a level of 5
(i.e., each pixel ranged in value from 0 to 4) gave the best rei-
dentification accuracy. Quantization levels up to 30 were tested.

IV. FUSION AND CLASSIFICATION APPROACH

This section gives an overview of the multidetector fusion
vehicle reidentification algorithm. The algorithm starts by
selecting a platoon detected at the downstream site. A list
of upstream candidate platoons are generated subject to a
time window constraint that eliminates platoons that are not
within a reasonable time frame. Each upstream platoon is then
compared with the downstream platoon. A linear minimum
L1 (absolute distance) nearest neighbor classifier is used in
determining the “best match.” In other words, the upstream
platoon candidate that most closely resembles the downstream
platoon is selected. The classifier uses the feature vectors
described in the previous section and a linear fusion strategy.
Because there is a one-to-one correspondence between the
individual vehicles of the upstream and downstream platoons,
the results from this minimization yield individual vehicle
reidentifications. Therefore, individual vehicle are tracked from
point to point and vehicle travel times are measured.

The L1 distance measure between an upstream feature and
downstream feature is given by

(2)

where denotes the th component of the feature vector and
is the vector dimension. From Fig. 1, it is observed that the
number of components of the signatures may be different for
different vehicles. In this case, the vector with fewer compo-
nents is padded with zeroes before taking the L1 distance. If
the size of the platoon is denoted as , the L1 distance for the
overall platoon is

(3)

where and are the upstream and downstream features
for vehicle . Fusion of the six features is performed to get an
overall fusion distance given by

(4)

where is the fusion weight applied to the vehicle signature
distance, is the fusion weight applied to the color informa-
tion feature distance, is the fusion weight applied to the ve-

locity feature distance, is the fusion weight applied to the
maximum inductive amplitude feature distance, is the fusion
weight applied to the electronic length feature distance, and
is the fusion weight applied to the platoon traversal time feature
distance. As before, the subscripts and refer to upstream and
downstream, respectively. Also, the superscript refers to the
th vehicle in the platoon. Note that the platoon traversal time

feature applies to the entire platoon and not for any individual
vehicle. The fusion weights add up to one and are determined
during training by searching an -dimensional grid of real num-
bers and finding the optimum combination that gives the best
performance on the training data alone (as described at the end
of Section II). This fusion strategy is known as linear fusion.
The distance between each candidate upstream platoon and
a detected downstream platoon is computed. The upstream pla-
toon that achieves the smallest is matched to the downstream
platoon.

Given a downstream platoon, the time window constraint to
determine the candidate upstream platoons is described as fol-
lows. The time window constraint is applied to each individual
vehicle and is used to eliminate upstream vehicles with unrea-
sonable travel times. The upper and lower bounds of the time
window constraint, namely, and , are defined as

(5)

and

(6)

where and are the minimum and maximum vehicle
traversal times based on the training set, is the travel time
for the last vehicle from the downstream platoon, and is
the travel time of the first vehicle from the downstream platoon.
Each feasible upstream vehicle will need to have a travel time
that is greater than and less than . If the number of feasible
upstream vehicles is defined as and is defined as the
number of feasible upstream platoons, then .
For example, if and , then there would be
eight consecutive upstream platoons of three vehicles that need
to be examined. Then, the distance described in (4) needs to
be computed eight times to find the upstream platoon that best
matches the downstream platoon.

In this initial development of the platoon reidentification al-
gorithm, the two lanes of traffic were treated separately. This is
due to several reasons. First, this is a simpler case upon which
more complicated scenarios such as overtaking can be added.
Second, if vehicles are not required to be sequential in a pla-
toon, then the problem becomes a combinatorial problem and
the solution becomes more computationally intensive. Third, on
certain short stretches of roadway, lane changes are infrequent.
The test data used is from such a site and the number of lane
changes amounted to only 2% of the traffic.

V. DESCRIPTION OF DATA COLLECTION

AND IMAGE PROCESSING

The traffic data used for this experiment were collected on
June 30, 1998, in Irvine, CA. Fig. 2 shows a diagram of the
arterial data collection site. This site consisted of two detector
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Fig. 2. Data collection site in Alton Parkway, CA.

Fig. 3. Background subtraction and image thresholding: (a) background; (b) vehicle image; (c) threshold =20; (d) threshold =60; (e) threshold =80; and
(f) threshold =100.

stations bounding a two-lane section of Alton Parkway within
the intersections of Telemetry and Jenner Streets. Each detector
station had double inductive loops in a speed trap configura-
tion. The distance between the two detector stations was 130 m
(425 ft). The inductive loops were standard 1.83 m 1.83 m
(6 ft by 6 ft) rectangular loops that were commonly used by
many transportation agencies. The original goal of this data col-
lection was to detect vehicles using inductive loop detectors and
video footage of the traffic was recorded for ground truth pur-
poses only. Therefore, video detection issues such as lighting,
angles, and centering the frame of vision were not considered a
priority.

A complete ground truthing of the data was performed in
order to validate the results obtained from the automated rei-
dentification system. Every vehicle image from the downstream
point was manually matched with the corresponding upstream
image and a unique identification number was assigned to each
vehicle. It took several research assistants several weeks to per-
form this ground truthing; however, this was necessary in order
to validate algorithm results.

The data was collected during the morning peak between ap-
proximately 8:00 AM and 9:30 AM at the downstream station.
This data set contained 581 vehicle signature pairs, or 1162 ve-
hicles. The first 200 vehicle pairs were used for training. The

average flow over that time period was 612 vehicles/h for two
lanes. Due to arterial signalization and varying traffic demand,
different speeds, acceleration profiles, and traffic flow levels
were observed during the 1.5-h period. The maximum observed
speed was 30.66 m/s (68.68 m/h). The minimum speed was
5.47 m/s (12.25 m/h). The arithmetic mean speed was 20.77 m/s
(46.52 m/h). The standard deviation of the speed was 4.11 m/s.
The longest electronic length (length of detector and vehicle)
observed was 20.31 m. The shortest electronic length observed
was 3.89 m. The mean electronic length was 4.83 m.

The video-collection setup consists of four video cameras
recording two lanes of traffic in each of the upstream and down-
stream locations. From this continuous video footage, one can
visually identify many of the vehicles by type and color. The
first step in the data-reduction process is to capture the video
data into the computer. A video-capturing board is used to dig-
itize the video footage into still images stored in jpeg format
(ISO 10 918-1). The processing algorithm reads each of the still
image files and stores the image as a variable of “C++” image
class. This image class contains the RGB values of the vehicle
image and other information, such as the vehicle record number,
lane, and time of arrival. The vehicle record number is a unique
identification number used to match the video image to the in-
ductive signatures. The RGB color space is used because of its
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Fig. 4. Adjustment of threshold.

simplicity in representing images. The image class is created
with the ability to manipulate the RGB values of each pixel in
an image. Each pixel has RGB values ranging from 0 to 255
(8 b).

Processing the vehicle images involves five main steps;
namely, contrast stretching, background subtraction, quanti-
zation, normalization, and obtaining the color feature vector

. The distribution of light and dark pixels is the contrast of
an image. Ideally, an image containing a wide distribution of
intensities utilizes the full dynamic range. However, if an image
is either too light or too dark, some intensities are not utilized
and are wasted. During the acquisition of vehicle images,
contrast stretching was applied to enhance images.

Subtraction is the process of determining the differences be-
tween two images. If one image contains a background of the
roadway without any vehicles and the other image contains a ve-
hicle, then the background subtraction will produce the image
of the vehicle without the surrounding roadway. Fig. 3 shows
the background image in (a), the original image of the vehicle
in (b), and various subtracted images in (c)–(f). The time stamp
on the upper right-hand corner of the images is automatically
set to null and is not used by the reidentification algorithm.

In order to determine the optimum threshold value for back-
ground subtraction, threshold curves and graphical images are
used together. After the reidentification algorithm is developed,
the threshold value is reoptimized using training data and the
new optimum value is explained in the results section. The ini-
tial threshold curves are formed by varying the threshold value
and noting the percentage of null pixels that results from back-
ground subtraction. Fig. 3 shows various background subtracted
images for different thresholds and Fig. 4 shows the results of
comparing the percentage of blacked out pixels with the com-
parison thresholds for various vehicles. Under threshold values
of 30, a great portion of the image that is not part of the ve-
hicle is present. Around values of about 60, the shape of the
vehicle is the most pronounced, as most of the background has
been removed. Finally, values around 80 or higher are best for
identifying colors present in the vehicle. Fig. 4 shows that after
reaching a threshold value of around 40, the rate at which the
percentage of pixels becomes null is reduced significantly.

The next step is to perform quantization of the background
image. The use of true color information yields 256 or 16.8 mil-

TABLE I
SAMPLE VEHICLE COLOR INFORMATION

lion RGB values (colors). However, each distinct RGB value ap-
pears in only a few pixels. For example, Table I is the top portion
of a chart of the RGB values and corresponding colors present
in an image. In this particular case, there are only 4600 dis-
tinct RGB values present in the 5400 pixels that are not blacked
out. The RGB values present mostly correspond to a shade of
the vehicle color in question. The fact that there are so many
RGB values pertaining to the same color in the image makes
the process of reidentification difficult.

Instead of using every shade of color in the RGB three-di-
mensional cube, the RGB values are quantized or grouped into
subsets as discussed in the feature extraction section. Fig. 5(a)
shows the RGB space of all 16.8 million RGB values and
Fig. 5(b) shows the same space quantized into eight different
cubes, each specifying an overall color that includes different
shades.

Histogram decomposition is a method commonly used for
processing images. The goal is to reduce the size of the color
vector by eliminating the colors that occur less frequently. How-
ever, after investigating this method and its effects on reidentifi-
cation, it was found that the full color vector of dimension 125
yielded better results.

VI. RESULTS

In this section, the results of training the image-processing
parameters, training the reidentification algorithm, and testing
the algorithm will be presented. All training results are obtained
by using the training set of 400 vehicle signatures. The testing
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Fig. 5. Graphical illustration of the quantization process. (a) RGB space and (b) quantized RGB space.

Fig. 6. Reidentification accuracy versus platoon size.

results are obtained using the remaining 381 vehicle pairs (or
762 vehicle signatures) that are not part of the training set. Con-
cerning the image-processing parameters, sensitivity analysis
is performed on the background subtraction threshold and the
color quantization level. First, the optimum number of vehicles
in a platoon is determined by varying the platoon size from one
to six and observing what platoon size maximizes the reidenti-
fication accuracy. This is done using linear fusion of three fea-
tures, namely, the vehicle signature vector, the vehicle velocity,
and the platoon traversal time. The reidentification accuracy is
found using the training data only. The fusion weights are deter-
mined using an exhaustive search such that the reidentification
accuracy is maximized. As shown in Fig. 6, the best platoon size
consists of three vehicles.

Fig. 7 shows the results of reoptimizing the threshold value
for background subtraction based on reidentification results
using the training data only. Also, the reidentification accuracy
is computed using only the color feature vector. Fig. 7 shows
that threshold values from 70 to 85 will give the best reidentifi-
cation performance. Visual inspections of the individual images
were helpful in confirming the numerical results obtained by
using the ground truth data set. Low threshold values allow
some of the background image to leak into the picture, while
high threshold values eliminate portions of the vehicle image.

Fig. 7. Sensitivity analysis of image threshold.

Fig. 8. Effect of quantization level on reidentification accuracy.

An investigation into the sensitivity of the reidentification al-
gorithm to changes in quantization level (again using the color
feature and the training data only) is made and the results are
shown in Fig. 8. This figure shows that a quantization level of 5
is the optimum value for the reidentification of the training set.
Quantization levels of up to 30 are tested and not shown because
the storage requirements become significant with no improve-
ment in performance.

Table II gives the results of the multidetector fusion algo-
rithm using linear fusion. As was previously mentioned, the
fusion weights are determined by searching an -dimensional
grid of real numbers and finding the optimum combination that
gives the best performance on the training data alone. This op-
timum weight combination is used for the test data. The results
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TABLE II
VEHICLE REIDENTIFICATION ACCURACY FOR FEATURES AND FUSION COMBINATIONS

in Table II show fusion weights for four features instead of the
six that we describe, because the weights pertaining to the max-
imum inductive amplitude feature and the electronic length fea-
ture had values of zero on the training set we used. These two
features are kept in the general formulation in Section IV, be-
cause based on previous experience they could contribute sig-
nificantly if another data set were used (see [4]).

Table II shows several valuable results. First, the last row
shows the best overall vehicle reidentification accuracy of
91.36% for the test data. The corresponding training set
accuracy is 97.5%. This result shows that there is potential in
using the multidetector fusion algorithm for deriving traffic
parameters that require high reidentification accuracy or a
large reidentification sample. For example, the tracking of
traffic patterns (origin/destination demands) requires a high
reidentification accuracy and the analysis of travel time re-
liability with the use of travel time distributions requires a
large reidentification sample. Second, Table II shows how
the multidetector fusion system produces better results than
single detector system. Row 3 shows an accuracy of 75.82%
when only the color information is used for reidentification.
Row 5 shows an accuracy of 87.39% when only the inductive
signature information of vehicle signature and velocity are
used. It is important to note that the even though the fusion

weights add to one, the magnitude of the fractional weights of
different features cannot be compared directly with each other,
since features use different units of measure.

Even though the improvement in accuracy of the multide-
tector over the single detector was not very large, it is impor-
tant to remember that the advantages of multidetector fusion
include reliability and robustness in addition to increased ac-
curacy. Table II shows the feature weight for color is 0.955 for
the best multidetector case, which points to the fact that the in-
cremental gain in accuracy of 4% was not just due to a small
addition of the color feature, but a significant contribution of
the color or video feature. This fact shows that there is signifi-
cant redundancy in the system and, hence, robustness since both
0 and 0.955 feature weight contribution from the color feature
can produce around 90% accuracy.

VII. SUMMARY AND CONCLUSION

The results of an initial investigation into the use of multide-
tector fusion for vehicle reidentification show that fusion yields
better results than the use of a single detector. The results are
especially promising because the video image used for this in-
vestigation is not optimized for the purpose of color extraction.
The vehicle images are rear views of vehicles, while side or top
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views seem to be intuitively better for color extraction. Also,
the multiple cameras used in data collection are not calibrated
to each other. Neither the angle of vision nor the lighting condi-
tion is kept the same from one site to the other. It is highly likely
that video images of better quality can improve the results of ve-
hicle reidentification.

This initial investigation into fusing color information uses
the RGB color space. However, it is worthwhile to investigate
other representations of color space such as HSI or . HSI
represents color using hue, saturation, and intensity and
separates chrominance from luminance. These other represen-
tations might be more robust and less sensitive to changes in
lighting or other field conditions. Also, transformations of the
color information into other bases might highlight features that
will improve reidentification or compress data, or do both.

Vehicle reidentification is valuable in deriving section mea-
sures of traffic performance such as travel time, travel time vari-
ability, density, and dynamic origin/destination demands. Ve-
hicle reidentification is especially useful on sections of arterials,
because of the element of signal timing. It is difficult to compute
arterial travel times accurately using point measures, since lost
times associated with starting up and stopping are not measured
directly. Therefore, more accurate travel times have the poten-
tial for improving arterial performance assessment and adaptive
signal timing. It would be even better if the vehicle reidentifi-
cation system could be tied into the signal control system. This
tie-in will improve the accuracy and possibly yield real-time es-
timates of startup delays and saturation flow rates.

There are various tradeoffs associated with the implemen-
tation of this system on arterials as opposed to freeways. In
general, there tends to be more “turn over” in traffic on arte-
rials than on freeways. This will require detection on every im-
portant segment if a large sample is desired. A large sample
is desirable if travel time variability and travel time distribu-
tions are important, whereas a smaller sample is adequate for
measuring average conditions. The hardware configuration that
was used in this paper is not the most common configuration
of using only approach detection. There are adaptive control
systems that use a similar departure configuration,, but they are
less common. Because the traffic on freeways tend to travel for
longer distances and are not disrupted by signalization, wider
spacing can be used in the freeway case. However, because of
the wider spacing, the platoon feature will be less important
with increasing distances. Table II shows an accuracy of around
90% in the test data without the use of the platoon traversal time
feature.

Video images were chosen based on convenience. However,
there are many other detectors that might be suitable for use in
vehicle reidentification. Some of these detectors output similar
information, while others output information that are uncorre-
lated with each other. In either case, the use of multidetector
fusion can possibly improve the accuracy and robustness of ve-
hicle reidentification systems. As the cost of detectors and com-
putation become increasingly more affordable, the deployment
of such multidetector systems becomes possible.

This investigation used a limited data set obtained from one
section of roadway during a particular time of the day. However,
over a longer period of time and over different types of roadways

many other conditions could affect the performance of the rei-
dentification system. This includes issues dealing with lighting,
weather conditions, day transitions, traffic volumes, traffic be-
havior, etc. The authors hope to investigate other field conditions
in the future. The feasibility of multidetector fusion for vehicle
reidentification has been demonstrated, especially with the use
of color information and inductive signature.
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