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The properties of a 2D discrete transfer function with degree of each variable being
unity are discussed. The coefficients of the denominator polynomial contain a parameter
k (having real values) whose bounds are determined by stability considerations. These
bounds are obtained by testing the overall polynomial at only four points z; = &1 and
zg = 1. Suitable numerator polynomial can be associated to get the overall transfer
function. Such structures can be cascaded so that the overall magnitude response can
be changed by altering the response of one or more sections.

Keywords: 2D digital filters; variable magnitude characteristics.

1. Introduction

There has been much research done on two-dimensional (2D) IIR filter design.! The
classical least-squares minimization technique whose objective function includes
a penalty function term to ensure stability is formulated in Ref. 2. A minimax
criterion that is solved by a linear programming approach is discussed in Ref. 3. The
McClellan transformation can also be applied to the numerator and denominator
of a one-dimensional (1D) filter.! Another method is to design an analog filter
and apply the bilinear transformation.* The singular value decomposition has been
applied in Ref. 5. Obtaining desired magnitude and group delay characteristics are
discussed in Refs. 6-9.
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A popular design method for variable digital filters is based on frequency
transformations.’? A more recent approach is to represent the transfer function as
a polynomial of different frequencies corresponding to the various variables thereby
making the frequency response variable.!! This design technique is time consuming
due to the many coefficients that need to be optimized and no guarantee of stabil-
ity is achieved. The technique in Ref. 12 reduces the design complexity, guarantees
stability and achieves approximately linear phase by decomposing the complex fre-
quency response specifications into the product of two parts. The first part of this
paper corresponds to the frequency responses of constant (not variable) 2D filters
and the second part corresponds to the desired values of 1D polynomials which are
relatively easier to approximate.

In 2D digital filter design, it is highly desirable to be able to adjust a sin-
gle parameter so that the magnitude response characteristics can be changed and
hence the corresponding contour plots can be altered. In this paper, we present
an approach that involves adjustment of a single scalar parameter to achieve this
objective in 2D IIR filters. Stability is guaranteed by deriving bounds on that scalar
parameter.

One of the possible approaches is to use a multiplier k either in the feedback
path or in the feed-forward path.'® This multiplier can be adjusted, subject to the
constraints imposed on it due to the stability considerations. As it has been shown
in Ref. 13, the complexity of the determination of the limits of k increases with the
degree of each of the variables. To a certain extent, this difficulty can be overcome
by employing the graphical technique.'

An effective implementation of both approaches, which is described in this pa-
per, is to design a 2D filter so that the degree of each variable is unity (the over-
all degree being two) and to cascade several such sections. The advantage of this
method is that the stability of each section can be ensured independently. The
overall response is the product of the responses of each individual sections.

2. The Basic Structures

Two basic structures (Structure A and Structure B) will be considered bere, de-
pending on the location of the multiplier k (it should be noted that many other
alternative realizations are possible). In both the structures,

|4 - e Nd(zlsz2)
U Ha(z1,72) = Dg(z1, 22)

and Hy(z1,22) is the transfer function of the generating filter.

1)

Structure A. In this structure, the multiplier k; (positive or negative) is in the
feedback path, as shown in Fig. 1.
Analysis yields
LN Na(z1,22)
X1 Da(z1,22) + k1Na(z1,22)

(2)
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H,(z,2,)

Fig. 1. Structure A: The multiplier k; in the feedback path.

H,(z,2;) <

2
<

Fig. 2. The basic Structure B.

Structure B. In this structure, the multiplier k2 (positive or negative) is in the
forward path, as shown in Fig. 2.
It is required that ks # 0. Analysis yields

Y kaDg(z1, z2) _ kaDy(z1, 22)

Xy Dy(z1,22) + k2Na(21,22) ~  Pa(z1,22)
A comparison of Egs. (2) and (3) reveals the following:

(3)

(a) The denominator polynomial is the same for both the structures. Therefore,
the limits of k; and ko from stability considerations will be the same, except
that kz :;é 0.

(b) The zeroes of Eq. (1) are those of the starting function Hg(z1, 2z2), while the
zeroes of Eq. (2) are the poles of Hy(z1, 22).

3. Stability Considerations

As has been mentioned earlier, the degree of each variable in the proposed 2D
structures is always unity. In order to establish the stability conditions of each
structure, the following two basic theorems are proven first.

Theorem 1. Given

Dgy(z1, 22) = (a112122 + @1021 + @0122 + ao) , (4)
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the stability conditions for 1/Dg4(z1, z2) are given by:

Dy(1,1) > 0, (5a)
Dg4(-1,1) <0, (5b)
DAL =3) 2 0 (5¢)

Dg4(-1,-1) > 0. (gd)

Proof. When the inverse bilinear transformations z; = (1+s;)/(1—s;),% = 1, 2, are
applied to Dg(21,22), the numerator of the corresponding s, s2-domain function
comes out to be

Na(s1,82) = (@11 — @10 — Go1 + a00)s152 + (@11 + @10 — ao1 — aoo)s1
+ (a11 — @10 + @o1 — Goo)S2 + (a11 + @10 + o1 + Goo) - (6)

In order that N,(s1, s2) shall represent a VSHP (Very Strict Hurwitz Polynomial),*®
every coefficient shall be positive. This gives

Dy4(1,1) = a11 + @10 + ao1 + ago > 0, (7a)

(—1)Dg4(—1,1) = a11 — @10 + @01 — ago >0, (7b)

(=1)Dg4(1,-1) = a11 + a10 — a1 — a0 >0, (7¢)

Dg(—1,-1) = a1; — a10 — ao1 + ago > 0. (7d)

Hence, the theorem follows. O

This theorem clearly shows that stability conditions need be tested at the points
corresponding to z; = +1 and 2z = +1 only and no other points need be tested on
the unit bidise.

A similar result has been derived in Ref. 16. However, the present interpretation
helps us to obtain the bounds of any coefficient in either Structure A or Structure
B in an easier fashion.

A set of general relationships involving the two structures is obtained in
Theorem 2.

Theorem 2. Let the generating filter’s transfer function H4(z1,22) be given by:

N(z1,22) _ buzizz + bioz1 + boi22 + boo (8)
D(21,22)  cuizizz + cioz1 +corz2 + oo

Then, the bounds of k (ky or k2) for stability of structures A and B are obtained by:

Hy(z1,22) =

(11 + €10 + o1 + coo) + k(b1 + bro + bor + boo) > 0, (9a)

(c11 + c10 — co1 — coo) + K(b11 + b1o — bo1 — boo) > 0, (9b)
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(c11 — c10 + o1 — co0) + k(b11 — bio + b1 — boo) > 0, (9¢)

(e11 — e10 — o1 + coo) + k(b11 — bro — bo1 + boo) > 0. (9d)

Proof. The proof is omitted for the sake of brevity, as it follows directly from
Theorem 1. 0

It should be noted that the order of each variable z; and z; is unity, whereas
the total order of the denominator is two, given by the z;z, term. The first order
terms are given by c¢;02z; and ¢g;z2. Obviously, the constant term is given by cgo.

4. Classification and Realizations

Depending on where the variable multiplier coefficient k is placed in the overall
denominator, the following classifications of the transfer functions are possible.

Type I. In this type, the quantity k& occurs only in one of the terms. This type
could be further sub-classified as follows:

(a) Type I(a), where k occurs only in the constant term,
(b) Type I(b), where k occurs only in the first-order or (21 + 22) terms,
(c) Type I(c), where k occurs only in the z; 2 term.

Type II. In this type, the quantity k occurs in two of the terms. This type could
be further classified as:

(a) Type II(a), where k occurs in the constant and the first-order terms,
(b) Type II(b), where k occurs in the constant and the z;z, terms,
(c) Type II(c), where k occurs in the first-order and the z;z, terms.

Type III. In this type, the quantity k occurs in all the three terms and hence only
one possibility exists.

It is possible to further subdivide Types I(b), II(a) and II(c) in that k can occur
only either in the z; or 23 term only. This definitely could alter the symmetry of the
response. Therefore, such cases are considered at appropriate places in the paper.

Having obtained the bounds of k (the actual value used may be positive or
negative), it is required to obtain realizations without delay-free loops (this may not
always be guaranteed with the structures considered). However, signal-flow graphs
are given for each type considered above and these lead to possible delay-free loop
implementations. A number of other possibilities may exist. In what follows, only
the transfer functions obtained from Structure A are discussed. Similar treatment
is possible for transfer functions derived from Structure B.

Throughout the paper, it is assumed that the starting filter Hy(z1, 22) is stable
and it does not contain any nonessential singularities of the second kind.
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Type I(a). Before proceeding further in this case, we can consider that, in the
denominator polynomial in Eq. (8), c11 can be taken to be unity without any loss
of generality. Also, we have

b1 =byo=bo1 =0 and bgg=1. (10}
Hence, the bounds of k can be obtained by Eq. (9) and are given by Theorem 3.

Theorem 3. For the denominator of the transfer function of Type I(a), the bounds
of k are obtained as follows:

(i) for k> 0,0 < k < min{|D(1, —1)|,|D(-1,1)[} (11a)
and

(ii) for k< 0,0 < [k < min{|D(L,1)],|D(=1,~1)I} - (11b)
Proof.

(i) When k is non-negative, the inequalities {D(1,1) + k} >0 and {D(-1,-1) +
k} > 0 are always satisfied. It is also noted that D(—1,1) and D(1,—1) are
negative and when k is added to these two quantities, the resulting inequalities
(-=1){D(-1,1) + k} and (-1){D(1,-1) + k} should become positive. Hence
the relationship (11a) follows {in fact, this can be verified by the relationships
(9b) and (9c) also}.

(ii) When k is negative, it is clear that {D(—1,1) + k} and {D(1,-1) + k} al-
ways remain negative. It is required to test only the inequalities {D(1,1) + k}
and {D(—1,—1) + k} and they should be positive. Hence, the inequality (11b)
follows. O

Some simplification results, if we write the corresponding denominator polyno-
mial as follows:

D1a(z1,22) = (71 + a1)(22 + a2) + Kia, (12a)
where
kie = (k + coo — a102) , (12b)
ay = €10, (12¢)
and
az = Co1 - (12d)
From stability considerations, it is required that
la;] <1 and |az| <1, if k1, =0. (13)

The overall transfer function can be written as
o Yla(zls 2.’2} = K
Xla(zl, 22] (21 + aﬂ(za -+ az) + kiq 2

Ha10(21,22) (14)



An Alternative Approach for Obtaining 2D Discrete Filters 1091

Fig. 3. Signal-flow graph for the realization of the transfer function Hg),(21, 22) given in Eq. (14).

It is noted that K is a parameter which multiplies the overall transfer function
and is different from the variable k. This is adopted throughout the paper.

Different signal-flow graphs which lead to realizations can be obtained. It should
be noted that for realizability, these graphs should contain no delay-free loop. One
such signal-flow graph is given in Fig. 3, as an example.

It corresponds to Structure A.

Type I(b). In this case also, c;; in Eq. (8) can be taken to be unity. The denomi-
nator polynomial can be written as:
D(zl ; 22) + klb(blgzl + mez) 5 (15)

It is noted that b;; = bpg = 0. The bounds of k;; can be obtained by Eq. (9).
Simplification of the stability conditions results when we consider byg = bp;. This is
the case normally encountered, because of the symmetry considerations. In such a
case, we can let bjg = bp; = 1, without any loss of generality. Under these conditions,
Eq. (15) is rewritten as

D(z1,22) + k(21 + 22) . (16)
The bounds of k;; are given by Theorem 4.

Theorem 4. For the denominator of the transfer function given by Type I(b) of
Eq. (16), the bounds are obtained as follows:

@ for k20,0 < [kus| < ${D(~1,-1)} (17a)
and
(i) for k< 0,0 < [ku| < 5{D(1,1)} (17b)

Proof. It is readily observed that for the cases z; = 1, 23 = —1 and 2; = —1,
zg = 1, conditions (9b) and (9¢) are always satisfied. Therefore, only the cases
z1 =29 =1 and z; = 29 = —1 need be considered.

(i) When k1 is non-negative, Eq. (9a) is always satisfied. Equation (9d) leads to
Eq. (17a).

(i) When k;p is negative, Eq. (9d) is always satisfied. Equation (9a) leads to
Eq. (17b). o
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S

Fig. 4. A signal-flow graph for the realization of the transfer function Hg1p(z1,22) given in
Eq. (18).

Some simplification in the realizations is possible, if one starts from the product-
separable form for D(z1,22), as in the case of Type I(b). In such a case, the overall
transfer function will be
Yie(1,22) K(z1 + 2z2)

Hap(z1,22) = = > 18
a(z1,22) Xip(21,22) (21 + a1)(22 + ag) + k1s(21 + 22) (kY
From stability considerations, it is required that

iaﬂ <1 and |azl <l ik =108 (19)

A possible signal-flow graph which leads to a realization is given in Fig. 4.

As has been mentioned earlier, the constant k;, may be associated with either
21 or 2 only. Under these circumstances, the transfer functions will have one of the
following forms:

Yie1 (21, 22) Kz
H - o 20a
aib1(21, z2) R (21, zg) (z122 + c1021 + co122 + coo) + k1121 )
or
Yiral(z N Kz
Haipa(z1,22) = llalcben) S = )

Xiz(21,22) (2122 + c1021 + Co122 + coo) + Fiveze :

In both cases, the bounds of stability for kyp1 or k1p2 are obtained by the application
of Eq. (9).

Type I(c). In this case, the multiplier & is associated with the 21z, term. Proceed-
ing as before, the transfer function is obtained as:

Yic(z1,22) _ Kziz2
Xic(z1,22)  D(21,22) + krcz122’

Haye(z1,22) = (21a)

where

D(Zl, zz) = 2122 + €1021 + Co122 + Coo - (21b)

The bounds of k;. which ensure stability of Hgi. are given by Theorem 5. In this
case, we have by; = 1 and byg = bo1 = boo = 0.

Theorem 5. For the denominator of the transfer function given by Type I(c) of
Eq. (21), the bounds of k1. are obtained as follows:

(1) for ki 20,0 < |klc] <0 (22a)
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[e = P> o—P> ‘o]
ch K 1 I Y]c
IRk <
~Coo z1
ek, 2
1
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'(;;0 -1
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Fig. 5. Signal-flow graph for the realization of the transfer function Hg (21, z2) given in Eq. (21).

and

(ii) for kic <0,0 < |kic| < min{|D(1,1)|,|D(1, -1)|,|D(-1,1)|,|D(-1,-1)[}.
(22b)

Proof.

(i) When ki, is non-negative, the inequalities (9) are always satisfied. Hence,
Eq. (22a) follows.

(i) When k;. is negative, all the inequalities need to be satisfied. Hence, Eq. (22b)
follows. A signal-flow graph suitable for realization is given in Fig. 5. O

Type II(a). In this case, the quantity ko, appears in both the constant and the
first-order terms. The transfer function is:

Yoo _ K (b1021 + bo122 + boo)

X2a  D(21,22) + kaa(bro21 + bo122 + boo)

where D(z1, z2) is given by Eq. (21b).

As the quantities b1g, bg; and bgp can be arbitrary, the bounds of ks, to ensure
stability are obtained by Eq. (9).

A signal-flow graph for the realization is given in Fig. 6.

(23)

Hgoa(z1,22) =

Type II(b). In this case, the quantity kop is in both the constant and the z;2o
term. Accordingly, the transfer function is:

Hyop(21,22) = Yo e K (b112122 + boo)
dz2b(21, 22 o D(z1,22) + kap(b112122 + boo)

where D(z1, z2) is given by Eq. (21b).

(24)
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r (cm +bgk,, ) 1 by,

K AZ,
e, - P ¢—p—0
XZa 1 v -1 1 Yﬁa
lr Z, Al
———— P>

~(eyo +b10k2a) Y, by

1

= (cou + bk, ) by

Fig. 6. Signal-flow graphs for the realization of the transfer function Hgag(z1,22) given in
Eq. (23).

= (Cuo o kbeOl})
1+k,.b,;

Fig. 7. A signal-flow graph for the realization of the transfer function Hgpp(21,22) given in
Eq. (24).

As the quantities b;; and bgo can be arbitrary, the bounds of kgp to ensure
stability are obtained by Eq. (9).
A signal-flow graph for the realization is given in Fig. 7.

Type II(c). In this case, the quantity ks appears in z1z2, 21 and zo terms. Ac-
cordingly, the transfer function is:

W K (b112122 + bioz1 + bo122)
Xoe  D(z1,22) + kac(br1z122 + broz1 + bor22) ’

where D(z1, z2) is given by Eq. (21b).

(25)

Haoo(z1,22) =
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<
|| +Kk,.by,
-1 A 4
1+kzcb11 1 bOl

o, P P »p——e—Pp—0C
X K 1 b, 1 Yo
1+k,by, 14 'Z;
r P>
L[ S0 +Kyby b

1+k,.b;, z;l

< é
- Cyo
1+k,.b,

Fig. 8. Signal-flow graphs for the realization of the transfer function Hga.(21,22) given in
Eq. (25)-

As the quantities b11, b1o and bg; could be arbitrary, the bounds of ka. to ensure
stability are obtained by Eq. (9).
A signal-flow graph for the realization is given in Fig. 8.

Type III. In this case, the quantity k3 occurs in the z;zg, 21, 22 and the constant
terms. Accordingly, the transfer function is:
Yo K (b11z122 + bioz1 + bo122 + boo)
X3  D(z1,22) + ks(bu1z122 + broz1 + bo122 + boo) ’
where D(z1, z2) is given by Eq. (21b).

As the quantities b1y, bio, bo1 and bgg are arbitrary, the bounds of k3 to ensure
stability are obtained by Eq. (9).

A signal-flow graph for the realization is given in Fig. 9.

It can also be noted that different cases arise out of Type III by suitably equating
the various constants bll; blg, bo; and b()(] to zero.

(26)

Hgs(z1,22) =

Numerical Example 1. This example shows how the magnitude and the contour
plots vary as the value of k is varied. For purposes of illustration, the transfer
function considered is:
1
= . ) =
Ha(z1, ) (z1 — 0.5)(22 — 0.5) + k )
It is noted that this is Type I(a) filter.
The bounds of k as determined from Theorem 3 are obtained as follows:
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. )
Co +K;3by

O- P ' b— ¢ —Pp—0C
xR 1 e
1+k;by, 14 'Zzl A
—Gf——o—p—o
e Cio +K3by by

1+k3b11 Vzil

<~ >
Coo +k3b00 b00
1+k.b,,

Fig. 9. Signal-flow graph for the realization of the transfer function Hgz.(z1, 2z2) given in Eq. (26).

(2) (b)

Fig. 10. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (27),
when k = 0.

(a) for k > 0, we have 0 < k < 0.75, from Eq. (11a)
(b) for k < 0, we have 0 < |k| < min(]0.25|,|2.25[), or 0 < |k| < 0.25.

Therefore, the bounds of stability will be
—0.25 < k < 0.75. (28)

Figures 10(a) and 10(b), respectively, show the contour and the magnitude
plots of Eq. (27), when k& = 0. When k is made equal to 0.1, the contour and
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(a) (b)

Fig. 11. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (27),
when k = 0.1.

Ipr T
ZJ

(2) (b)

Fig. 12. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (27),
when k = —0.1.

the magnitude plots change and they are shown in Figs. 11(a) and 11(b), respec-
tively. When k is changed to —0.1, the corresponding contour and the magnitude
plots are shown in Figs. 12(a) and 12(b).

5. Bandwidth Considerations

Whenever a filter is designed, generally one would like to obtain information about
the bandwidth of the passband. The cutoff frequencies can be obtained by the
formula :

IHd(zlu 2'2)| |zl=85”61,zg=85“"’02 = (29)

-
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where w,.; and we are the cutoff frequencies in w;-axis and wy-axis, respectively. It
can be shown that, for Type III,

[ (Boo — Buwiws)? + (Biow + Boww)® (30)

1/2
1
(Ago — A11wiwa)? + (Arow: + A01w2)2] - s

where n = number of sections considered, Agg, A0, Ao1 and Aj; are given as in
Eq. (9)

Bgo = b1y + bio + box + boo (31a)
Bio = by +b1o — bo1 — boo, (31b)
Boy = bi1 — b1o + bo1 — boo (31c)
Biy = b1y —bio — bo1 + boo (31d)

with Agy = Boo so that the response at w; = 0 and wp = 0 is unity and § =2 in
order to determine the cut-off frequencies.

As indicated earlier, the other types can be obtained by suitably adjusting the
constants a and b. Different frequency axes can be considered by putting

w; = ows , (32)
where a can be positive, negative or zero. We get
wyle® (4%, — B°Bh)]
- (43, — B*B}) + o*(4%, — BB
2
+ a{2A10401 — 2A11Ago + B%(—2B10Bo1 + 2B11Boo)}
+ (A3, — B°Bg) =0, (33)
from which the required ws and hence w; can be obtained.
For the Numerical Example 1 taken, we have A;; = 2.25 + k, Ao = Ap =
0.75—k, Ago = 0.25+k, B3 =1, Big=Boo =1 and Agg = Bgo- As can be readily
seen, the cutoff contours vary as k is changed. Figure 13 shows the various cutoff

contours as k is changed.
As can be seen, considerable variation in the bandwidth will be possible.

6. Other Types of Filters

In the previous section, it has been observed that the denominators of the transfer
functions of the various filters are derived from either Structure A or Structure B.
The numerators of these transfer functions are derived from either of these two
structures only. Depending on the value of k chosen, a large number of possibilities
exist.

However, it is possible to obtain a transfer function whose denominator is derived
from Structure A or B and whose numerator is different from those of the two
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Fig. 13. The cutoff contours of Numerical Example 1 for different values of k.

1
Kr Dg(ZI’ZZ)

(o0

X

g

S N7 2 e

Fig. 14. Signal-flow graph for the realization of the transfer function Hg(21, 22) given in Eq. (34).

structures. A large number of possibilities exist. A general transfer function of this
type can be written as:

Yy(z1,22) _ KNg(z1,22)
Xg(zla Zz) Dg(zll 752)

where Dy(21, 22) is obtained from the different types considered and can be written,
in general, as:

Hdg(zl; z2) =

(34)

Dy(21,22) = 2122 + d1oz1 + do122 + doo (35)

where the coefficient dig, do1 and doo contain the variable k. Two possible general
configurations are given in Figs. 14(a) and 14(b).
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wz
a

(a) (b)

Fig. 15. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (31),
when k = 0.

(2) (b)

Fig. 16. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (31),
when k = 0.1.

The box containing Ny(z1,22) can be realized using a suitable FIR filter and
Dyg(#1,22) is realized as discussed earlier.

Numerical Example 2. For illustration purposes, we consider a low-pass filter
having a denominator given by Type I(a). The transfer function is:

(a1 +1)(z2+1)
(21 — 0.5)(z2 — 05)+k )

Hi(z1,22) = (36)
Figures 15(a) and 15(b) show, respectively, the magnitude and the contour plots of
Hy(z1,22) when k = 0. When £ = 0.1, the magnitude and the contour plots change
and they are shown in Figs. 16(a) and 16(b), respectively. When k is made equal
to —0.1, the magnitude and the contour plots are as represented in Figs. 17(a)
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(a) (b)

Fig. 17. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (31),
when k = —0.1. :

(a) (b)
Fig. 18. (a) and (b) The contour and the magnitude plots of the transfer function of Eq. (32).

and 17(b), respectively. As has been stated earlier, two realizations can be cas-
caded. Equation (37) shows the overall transfer function when two realizations are
cascaded,
(21 +1)%(z2 + 1)

Ho(21,22) = . 37

2(21,22) (z1 — 0.5)2(z2 — 0.5)2 — (0.1)2 )

The corresponding contour and the magnitude plots are shown in Figs. 18(a)
and 18(b), respectively.

7. Summary and Conclusions

This paper considers the generation of 2D discrete-domain transfer functions having
the following properties: (a) the degree in each variable is unity, and (b) by changing
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the value of the multiplier coefficient k, the magnitude and the contour character-
istics can be altered. The denominator polynomial of the transfer function can be
derived by one of the two basic structures considered. Seven different types are pos-
sible, depending on the term(s) in which k occurs. In all these types, the starting
polynomial remains the same, corresponding to the value £ = 0. The numerator
polynomial of the resulting transfer function can be one of the following: (i) the
term(s) in which k occurs, (ii) the starting polynomial and (iii) an arbitrary poly-
nomial depending upon the type of filter desired. For each one of these types, the
bounds on k to ensure stability are determined by testing the overall denominator
at only four points, namely z; = +1 and z; = £1. This aspect of testing stability at
only four extreme points proves to be a big advantage, because otherwise the order
of numerical complexity increases as the degree of each variable increases. It is also
shown that by varying the multiplier value k (within the bounds of stability deter-
mined earlier), the magnitude and the contour characteristics can be altered. By
cascading several structures, different characteristics can be obtained. Numerical
examples have been given to illustrate these concepts.
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