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Abstract 
 A method for the generation of discrete-
domain two-dimensional (2-D) transfer functions 
possessing variable magnitude and contour 
characteristics is presented in this paper.  The 
proposed method is based upon a configuration 
constituted by two 1-D filters in cascade and a 
feedback loop. Each of these 1-D filter is 
designed to have a monotonic magnitude 
frequency response. This is obtained by 
performing one or several integrations, either 
with respect to ω or ω2, of the denominator of a 
magnitude Butterworth low-pass frequency 
response and obtaining the corresponding 
modified transfer function.  The variable 
characteristics in each domain are obtained by 
changing a multiplier either in the forward path 
or in the feedback path of the proposed general 
configuration. The use of a generalized bilinear 
transformation (GBT) on the transfer functions 
obtained by the above mentioned method permits 
the generation of a large number of different 
characteristics. A certain number of these 
characteristics is examined in some detail.  
Illustrative examples are provided. 
 
Index Terms: 2-D discrete filters, variable 
magnitude. 

 
1. Introduction 

Various magnitude characteristics will 
be required in many aspects of signal processing 
like speech processing, image processing etc., 
There are different methods of obtaining such 
variable characteristics.  One of them is to 
introduce a constant in the denominator, which 
can be varied [1-2].  However, this results in 

some disadvantages in the actual realization.  
There are other methods also [3-5].  However, it 
is advantageous to start with a known filter in 
one dimension with a feedback constant (which 
can be varied).  This entire unit can be cascaded 
with another set in the other dimension.  This 
permits us to vary the characteristics in each 
dimension separately and hence the overall 2-D 
magnitude characteristics can be changed.   
 In this paper, we start with a known 
filter in the analog domain and apply the 
generalized bilinear transformation (GBT) [6] to 
get a discrete filter, whose characteristics can be 
changed by varying a constant in the feedback 
path. 
 

2. The Starting Configuration 
 The starting configuration is shown 
either in Fig.1(a) or in Fig.1(b). 
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where 

D(z)

N(z)
H(z) =                       ..(1)                                                

Analysis yields 

kN(z)D(z)

N(z)

(z)1X

(z)1Y

+
=               ..(2)                                              

for the  structure of Fig.1(a). 

Similarly, for the structure of Fig.1(b), we have 

kN(z)D(z)

D(z)

(z)2X

(z)2Y

+
=              ..(3)                                             

In both cases, the denominator remains the same.  
This means that, if we start with a given D(z), 
N(z) can be associated with it and the required 
range of values of k has to be computed so that 
the structure remains stable.  It is tacitly assumed 
that when k = 0, the  structure is always stable. 
 

3. Generation of D(z) 

 The polynomial D(z) can be generated 
in a large number of ways.  It is intended to use a 
polynomial which gives a monotonic magnitude 
response.  Here also, a number of possibilities 
exists [7-10].  However, we generate a second-
order polynomial by the integration of a first-
order Butterworth polynomial.  Here also, there 
are two possibilities which are discussed below: 
Category A:  Consider 

d1(x) = x  + 1                        ..(4a)                                                 

                where                     x = ω2                             ..(4b)               

Integrating d1(x)  with respect to x once and 
choosing the constant of integration as unity so 
that the response at ω = 0 to be unity, we have 
[11] 

1x
2

2x
dx (x)1d ++∫ =              ..(5)                                           

Substituting (4b) in (5) along with s = jω and 
factorizing, we have four roots with quadrantal 
symmetry.  Selecting the roots in the left-half of 
the s-plane, the transfer function in the analog 
domain will be 

11.5537s20.7071s

1
(s)A1T

++
=     ..(6)                                       

Category B: In this category, the integration is 
carried out twice both with respect to ω.  Two 

integrations have to be carried out, because the 
highest degree should be of even degree.  
Specifically, starting with (4a) and (4b), the first 
integration yields 

∫ +=+ ω
3

3ω
dω 1)2(ω                ..(7a)                                     

The next stage of integration  yields 

∫ ++=+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
1

2

2ω

12

4ω
dω ω

3

3ω
     ..(7b)                                    

The constant ‘1’ is added so that the response is 
normalized to unity at ω = 0. 

Proceeding as before, we get the 
transfer function in this case as 

11.038s20.2887s

1
(s)B1T

++
=      ..(8)                                     

 Table I gives the denominator 
polynomials obtained by the above method for 
both categories A and B, starting from 
Butterworth polynomials up to order 5.  As can 
be observed, the starting polynomials could be 
different and such tables can be constructed for 
each case easily following the above approach.  

Now, we can apply the Generalized 
Bilinear Transformation (GBT) [6] given by 

bz
azαs

+
−

=                       ..(9)                                     

If a low pass filter is needed, b = 1, in which 
case, the relationships 0 < a ≤ 1 and α > 1 hold, 
in order that the resulting digital filter is stable.  
The denominator polynomial can be obtained 
and any numerator can be associated with it.  
The transfer function to be considered can be 
written as 
 

(z)dD

(z)dN
(z)d =H                   ..(10) 

 
For the purposes of this paper, only the second-
order polynomial in either of the categories A or 
B will be used and the numerator N(z) as the 
function LP00 = 1 which is based on Switched-
Capacitor filter low pass classification [12].  
Other classifications can be used giving other 
possibilities.  Therefore, we can write 

D(z) = e21 z2 + e11 z + e10           ..(11)  
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Table I 

Starting 
Butterworth 

function 
(only the 

denominator 
polynomial 

is given) 

The 
denominator 
polynomial 
obtained in 
Category A 

The 
denominator 
polynomial 
obtained in 
Category B 

1 + ω2 0.7071 s2 + 
1.5537 s + 1 

0.2887 s2 + 
1.038 s + 1 

1 + ω4 0.5774 s3 + 
1.5243 s2 + 
2.0121 s + 1 

0.1826 s3 + 
0.7116 s2 + 
1.3868 s + 1 

1 + ω6 0.5 s4 + 
1.6459 s3 + 
2.7092 s2 + 
2.5334 s + 1 

0.1336 s4
  + 

0.6109 s3 + 
1.3964 s2 + 
1.8146 s + 1 

1 + ω8 0.4472 s5 + 
1.7395 s4 + 
3.3831 s3

+ 
4.0433s2 + 
2.9303s + 1 

0.1054 s5 + 
0.5556 s4 + 
1.4640 s3 + 
2.3626 s2 + 
2.2859 s + 1 

1 + ω10 0.4082 s6 + 
1.8914 s5 + 
4.3816 s4 + 
6.4059 s3 + 
6.1656 s2 + 
3.6512s + 1 

0.08704 s6 + 
0.5195 s5 + 
1.5502 s4 + 
2.9210 s3 + 
3.6294 s2 +  
2.7855 s + 1 

 

When such a filter is utilized in either 
configuration, the value of ‘k’ required in order 
to ensure stability is governed by the following 
two inequalities [13]: 

1
21e

k10e
<

+
                      ..(12a)                                                   

and          1
k10e21e

11e
<

++
                   ..(12b)                                                                                       

As can be seen, even with a small class of 
functions considered, a very large number of 
possibilities exist.  In the next two sections, we 
shall consider some typical 2-D responses. 
 
4. Some typical 2-D responses obtained from 

the second-degree polynomial obtained in 
Category A 

 As remarked earlier, numerable 
possibilities exist, because when one unit is a 
function of z1 and the other unit is a function of 
z2 and they are cascaded together.  Some 
representative responses are given below:  In this 

section, we shall consider only second-order 
functions obtained in Category A. After the 
application of the GBT, the transfer function to 
be considered can be written as: 

( )2z,1zA2D

1
(z)A2H =              ..(13)                                     

where DA2(z1,z2) = 

( )
( )2k02e2z12e2

2z22e

.  1k01e1z11e2
1z21e

+++

+++
                   ..(14)        

with  

1)1a11.5337α2
1a2

1(0.7071α01e

2)1a(111.5337α1a2
11.4142α11e

1)11.5337α2
1(0.7071α21e

+−=

+−+−=

++=

1)2a21.5337α2
2a2

2(0.7071α02e

2)2a(121.5337α2a2
21.4142α12e

1)21.5337α2
2(0.7071α22e

+−=

+−+−=

++=

 

Case (A1):  Let α1 = 1, a1 = 1, α2 = 1 and a2 = 1.  The 
case corresponds to the well-known bilinear transfor- 
mations.  The overall transfer function  is 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+++

+++

)2k(0.153420.5858z2
23.2607z

)1k(0.153410.5858z2
13.2607z

1 .  

⎛ 1
 .(15)            

The limits for k1 and k2 are obtained as 

[ ] 3.10732k,1k2.9315 <<−      ..(16)                                       

Figs. 2(a), 2(b) and 2(c) give the magnitude responses 
and the contour plots for the cases (a) k1 = k2 =1, (b) 
k1 = k2 –1 and (c) k1 = -k2 = 1. 
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Fig.2(a) : Magnitude and Contour characteristics 

when k1 = 1, k2 = 1 for the transfer function 
given in (15 ) 

 
Fig.2(b) : Magnitude and Contour characteristics 

when k1 = -1, k2 = -1 for the transfer function 
given in (15 ) 

 

 
Fig.2(c) : Magnitude and Contour characteristics 

when k1 = 1, k2 = -1 for the transfer function 
given in (15) 

 
Case (A2):  Let α1 = 2, a1 = 0.5, α2 = 2 and a2 = 
0.5.  The overall transfer function of the 2-D 
filter as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+++

+++

)2k(0.153420.7253z2
26.9358z

1

.  
)1k(0.153410.7253z2

16.9358z

1

 (17)             

The limits for k1 and k2 are obtained as 

[ ] 6.78242k,1k6.3639 <<−          ..(18)                                    

Figs. 3(a), 3(b) and 3(c) give the magnitude 
responses and the contour plots for the cases (a) 
k1 = k2 =2, (b) k1 = k2  = –2 and (c)  k1 = - k2 = 3. 
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Fig.3(a) : Magnitude and Contour characteristics 

when k1 = 2, k2 = 2 for the transfer function 
given in (17) 

 
Fig.3(b) : Magnitude and Contour characteristics 

when k1 = -3, k2 = -3 for the transfer function 
given in (17) 

 
Fig.3(c) : Magnitude and Contour characteristics 

when k1 = 3, k2 = -3 for the transfer function 
given in (17) 

  
5. Some typical 2-D responses obtained from 

the second-degree polynomial obtained in 
Category B 

 As remarked earlier, numerable 
possibilities exist, because when one unit is a 
function of z1 and the other unit is a function of 
z2 and they are cascaded together.  Some 
representative responses are given below:  In this 
section, we shall consider only second-order 
functions obtained in Category B. After the 
application of the GBT, the transfer function to 
be considered can be written as: 

( )2z,1zB2D

1
(z)B2H =            ..(19)                              

where DB2(z1,z2) = 

( )
( )2k02e2z12e2

2z22e

.  1k01e1z11e2
1z21e

+++

+++
               ..(20)   

with       

)11a11.038α2
1a2

1(0.2887α01e

21a11.038α1a2
10.5774α11e

1)11.038α2
1(0.2887α21e

+−=

++−=

++=
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1)2a21.038α2

2a2
2(0.2887α02e

12e

e

2)2a(121.038α2a2
20.5774α

1)21.038α2
2(0.2887α22

+−=

+−+−=

++=

Case (B1):  Let α1 = 1, a1 = 1, α2 = 1 and a2 = 1.  
The case corresponds to the well-known bilinear 
transformations.  The overall transfer function of 
the 2-D filter as 
The limits for k1 and k2 are obtained as 

[ ] 2.07602k,1k1.1548 <<−       ..(22)                                       

Figs. 4(a), 4(b) and 4(c) give the magnitude responses 
and the contour plots for the cases (a) k1 = k2 =0.5  b) 
k1 = k2 –-0.5 and (c) k1 = -k2 = 0.5. 

 
Fig.4(a) : Magnitude and Contour characteristics 
when k1 = 0.5, k2 = 0.5 for the transfer function 

given in (21 ) 

 
Fig.4(b) : Magnitude and Contour characteristics 
when k1 = -0.5, k2 = -0.5 for the transfer function 

given in (21) 

 
Fig.4(c) : Magnitude and Contour characteristics 
when k1 = 0.5, k2 = -0.5 for the transfer function 

given in (21) 
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Case (B2):  Let α1 = 2, a1 = 0.5, α2 = 2 and a2 = 
0.5.  The overall transfer function of the 2-D 
filter as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+++

+++

)2k(0.250721.3642z2
24.2308z

1

)1k(0.250711.3642z2
14.2308z

1

  (23)         

The limits for k1 and k2 are obtained as 

[ ] 3.98012k,1k3.1173 <<−       ..(24)                                          

Figs. 5(a), 5(b) and 5(c) give the magnitude 
responses and the contour plots for the cases  
(a) k1 = k2 =0.5, (b) k1 = k2 =-0.5 and (c) k1 = - k2 

= 0.5. 

 
Fig.5(a) : Magnitude and Contour characteristics 
when k1 = 0.5, k2 = 0.5 for the transfer function 

given in (23) 

 
Fig.5(b) : Magnitude and Contour characteristics 
when k1 = -0.5, k2 = -0.5 for the transfer function 

given in (23) 
 

 
Fig.5(c) : Magnitude and Contour 

characteristics when k1 = 0.5, k2 = -0.5 for 
the transfer function given in (23) 
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6. Summary and Discussions 
 Various 2-D filters with different 
magnitude characteristics have been obtained by 
connecting two 1-D filters in cascade with a 
feedback multiplier loop. The characteristics of 
each of these 1-D filters have been varied 
independently of the other one. Each starting 1-D 
filter has been generated such as to have a 
monotonic magnitude frequency response 
obtained by the integration of the denominator of 
the frequency magnitude response of a low-order 
Butterworth transfer function, called the 
generating function.  Any other type of filter 
characteristics could be considered also. There 
are two different possibilities to generate the 
required two 1-D filters: (a) one of them is 
obtained by integrating the starting polynomial 
with respect to ω2, and (b) the other one is 
obtained by double integration of the starting 
polynomial with respect to ω. Further 
integrations can be carried out and the two 
categories can be intermixed in any fashion. By 
the use of the generalized bilinear 
transformation, two more variables can be 
introduced, in addition to the feedback factor for 
the generation of LP filters. These two 
parameters together with the feedback factor can 
generate an infinite number of possibilities in the 
shapes of the resulting 2-D filter frequency 
responses.   From the given examples (though 
small in number), the variations in the magnitude 
characteristics are readily noticeable.  It is 
readily concluded that the nature of the starting 
filter, the feedback factor and the variables in the 
generalized bilinear transformations yield 
different characteristics. It is also observed that 
the two 1-D filters need not be identical.  The 
only precaution to be taken is that the feedback 
factor and the variables of the GBT have to be 
kept within prescribed limits so that the stability 
is guaranteed. In this paper, only second order 
factors have been considered.  Higher orders 
could also be considered and appropriate 
stability conditions obtained.  It is also noted 
that, even though we started with monotonic 
responses in both the filters, the overall 2-D 
characteristics need not be monotonic in   
character.  The conditions which ensure the 
maintenance of the 1-D monotonic frequency 
response in the 2-D domain requires a separate 
study.  
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