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A magnitude response preserving modification of the denominator polynomial of a causal
and stable digital transfer function leads to an infinite number of decompositions into a
mirror-image polynomial (MIP) and an anti-mirror-image polynomial (AMIP). Proper-
ties and identifications of the MIP and AMIP are given. The identifications of Schussler
and Davis, and the line spectral frequency formulation are special cases of the general
MIP and AMIP decompositions introduced in this paper. Two types of Discrete Reac-
tance Functions (DRF) are constructed. From these DRFs, five new continued fraction

expansions (CFE) are developed, and some properties are obtained.

Keywords: Mirror-image polynomial; anti-mirror-image polynomial; discrete reactance
function; continued fraction expansion.

1. Introduction

An nth order denominator polynomial Dn(z) can be decomposed as a sum of a
mirror-image polynomial (MIP) and an anti-mirror-image polynomial (AMIP). One
of the decompositions is due to Schussler.1, 2 This is used in the implementation of
a stability test.3 Another decomposition is due to Davis,4 which can also be used to
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determine the stability of the system.5 In this paper, it is shown that several other
new possibilities of decomposing zqDn(z) into a sum of a MIP and an AMIP exist,
and some of the properties of such polynomials are discussed. Two new types of
Discrete Reactance Functions (DRF) are constructed and new continued fraction
expansions (CFE) are derived.

2. Mirror-Image and Anti-Mirror-Image Polynomials

Let

Dn(z) =
n∑

i=0

d(i)zi (1)

be a minimum phase polynomial. One can formulate a stable all-pass transfer func-
tion given by

Hn+q(z) =
znDn(z−1)
zqDn(z)

, (2)

where q ≥ 0, and n+ q is the order of Hn+q(z). Based on Dn(z), we can now define
an MIP, Mn+q(z) and an AMIP, An+q(z) as follows:

Mn+q(z) =
1
2
[zqDn(z) + znDn(z−1)] , (3)

An+q(z) =
1
2
[zqDn(z) − znDn(z−1)] . (4)

In general, a polynomial of order n, namely, Pn(z) is an MIP if Pn(z) = znPn(z−1).
Similarly, Pn(z) is an AMIP if Pn(z) = −znPn(z−1). Obviously, Mn+q(z) is an
(n + q)th order polynomial obtained as half the sum of the denominator and
the numerator polynomials of Hn+q(z). Similarly, An+q(z) is an (n + q)th order
polynomial obtained as half the difference of the denominator and the numerator
polynomials of Hn+q(z). It is clear that, depending on the value of q chosen, an
infinite number of pairs of MIPs and AMIPs is obtained. Reconstruction of Dn(z)
is possible as

Dn(z) = z−q(Mn+q(z) + An+q(z)) . (5)

We will now consider some properties of these polynomials.

3. Properties and Identifications of MIP and AMIP

First, we have introduced a novel general MIP and AMIP identification given in
Eqs. (3) and (4). Note that in the sequel, Ms(z) denotes an MIP of order s and
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As(z) denotes an AMIP of order s. The general factorization properties of Mn+q(z)
and An+q(z) are given as follows:

Case 1. Suppose |q−n| is odd. Since (z+1) is only a factor of Mn+q(z) and (z−1)
is only a factor of An+q(z), one can write

Mn+q(z) = (z + 1)M (−1)
n+q−1(z) , (6)

An+q(z) = (z − 1)M (1)
n+q−1(z) , (7)

where M
(−1)
n+q−1(z) and M

(1)
n+q−1(z) are different MIPs of order n+ q− 1. The super-

script (−1) indicates that the MIP was derived from a polynomial of higher order
with the root at z = −1 removed or deconvolved. Similarly, the superscript 1 indi-
cates that the MIP was derived from a polynomial of higher order with the root at
z = 1 removed or deconvolved.

Case 2. Suppose |q−n| is even. Since (z+1) and (z−1) are only factors of An+q(z),
one can write

An+q(z) = (z − 1)M (1)
n+q−1(z) (8)

= (z + 1)A(−1)
n+q−1(z) , (9)

where M
(1)
n+q−1(z) is an MIP of order n + q− 1 and A

(−1)
n+q−1(z) is an AMIP of order

n + q − 1. Roots at z = ±1 are appropriately deconvolved.
The new identification and general factorization properties we give above have

special cases. First, consider q = 0. For n odd, the factorization given in Case 1
above holds in that

Mn(z) =
1
2
[Dn(z) + znDn(z−1)] (10)

= (z + 1)M (−1)
n−1 (z) (11)

and

An(z) =
1
2
[Dn(z) − znDn(z−1)] (12)

= (z − 1)M (1)
n−1(z) . (13)

Similarly, for n even, the factorization given in Case 2 above holds in that

An(z) =
1
2
[Dn(z) − znDn(z−1)] (14)

= (z − 1)M (1)
n−1(z) (15)

= (z + 1)A(−1)
n−1 (z) . (16)
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The special case q = 0 is Schussler’s identification.1 Reconstruction is possible using
Dn(z) = Mn(z) + An(z). For Dn(z) to be of minimum phase, it is necessary and
sufficient that (1) |d(n)| > |d(0)| and (2) the roots of the MIP Mn(z) and the
AMIP An(z) are on the unit circle, simple and interlace.1, 2 This has been further
implemented as a part of a stability test3 and a subsequent formulation for the
design of optimum least-squares infinite impulse response filters in which stability
is guaranteed.6

Another special case arises when q = 1. For n even and n odd, the factorizations
given in Cases 1 and 2, respectively, are applicable. For even n,

Mn+1(z) =
1
2
[zDn(z) + znDn(z−1)] (17)

= (z + 1)M (−1)
n (z) (18)

and

An+1(z) =
1
2
[zDn(z) − znDn(z−1)] (19)

= (z − 1)M (1)
n (z) . (20)

For n odd,

An+1(z) =
1
2
[zDn(z) − znDn(z−1)] (21)

= (z − 1)M (1)
n (z) (22)

= (z + 1)A(−1)
n (z) . (23)

Reconstruction is possible using Dn(z) = z−1(Mn+1(z) + An+1(z)). Again, for a
minimum phase Dn(z), it is necessary and sufficient that the roots of the MIP
Mn+1(z) and the AMIP An+1(z) are on the unit circle, simple and interlace. This
special case is the line spectral frequency (LSF) formulation commonly used in
speech processing. The LSFs were first introduced by Itakura7 as the angular
frequencies of the unit circle roots of the MIP Mn+1(z) and the AMIP An+1(z)
neglecting the roots at z = ±1. The polynomial Dn(z) is derived by linear predic-
tive analysis.8 The LSFs are commonly used in speech coding due to their intimate
relationship with the speech spectral envelope thereby making them conducive for
transmission at low bit rates.9–11

The case q = 1 has also resulted in Davis’ identification of Dn(z) as the sum
of an MIP and an AMIP of different orders derived from the Schussler and LSF
formulations.4 This has also been implemented as a part of a stability test.5 For
even n, Davis’ identification is

Dn(z) = M (−1)
n (z) + A

(−1)
n−1 (z) , (24)
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where M
(−1)
n (z) is defined in Eq. (18) and A

(−1)
n−1 (z) is defined in Eq. (16). For odd

n, Davis’ identification is

Dn(z) = M
(−1)
n−1 (z) + A(−1)

n (z) , (25)

where M
(−1)
n−1 (z) is defined in Eq. (11) and A

(−1)
n (z) is defined in Eq. (23).

4. Continued Fraction Expansions

Here, we introduce new results based on Mn+q(z) and An+q(z) defined in Eqs. (3)
and (4).

Theorem 1. The magnitude of the all-pass function Hn+q(z) (see Eq. (2)) on
various circles in the z-plane of different radii r is given as

|Hn+q(rejω)| is

⎧⎨
⎩

> 1 for r < 1 ,

= 1 for r = 1 ,

< 1 for r > 1 ,

(26)

The proof of this theorem is in Ref. 12. The result of Theorem 1 leads to Theorem 2.

Theorem 2. Let

Rn+q(z) =
Mn+q(z)
An+q(z)

. (27)

Then,

Re(Rn+q(rejω)) is

⎧⎨
⎩

< 0 for r < 1 ,

= 0 for r = 1 ,

> 0 for r > 1 ,

(28)

where Re( ) denotes the real part.

The proof of Theorem 2 is well known. Theorem 2 shows that Rn+q(z) is a
Positive Exterior Function (PEF). Therefore, Rn+q(z) contains all its poles and
zeros on the unit circle, which are simple and interlace.13 The PEF Rn+q(z) and
its reciprocal 1/Rn+q(z) are Discrete Reactance Functions (DRFs). This permits
us to define two types of DRFs, namely,

(1) Type A: The degrees of the numerator and the denominator polynomials are
the same. The DRFs are Mn+q(z)/An+q(z) and its reciprocal for various values
of q ≥ 0.

(2) Type B: The degree difference between the numerator and the denominator
polynomials is 1. For any q ≥ 1, the various DRFs are Mn+q(z)/An+q−1(z),
Mn+q(z)/An+q+1(z), Mn+q+1(z)/An+q(z), Mn+q−1(z)/An+q(z), and their
reciprocals.



492 V. Ramachandran, R. P. Ramachandran & C. S. Gargour

Each type of DRF can be expanded into continued fractions (CFEs).

Theorem 3. Type A DRF permits the following forms of CFEs:
CFE1:

a1
z − 1
z + 1

+
1

a2
z − 1
z + 1

+ 1
a3

z − 1
z + 1

+ 1
· · ·an+q

z − 1
z + 1

. (29)

CFE 2:

b1
z + 1
z − 1

+
1

b2
z + 1
z − 1

+ 1

b3
z + 1
z − 1

+ 1
· · · bn+q

z + 1
z − 1

. (30)

CFE 3: When n + q is even, we get

c1
z + 1
z − 1

+ c2
z − 1
z + 1

+
1

c3
z + 1
z − 1

+ c4
z − 1
z + 1

+ 1

· · · cn+q−1
z + 1
z − 1

+cn+q
z − 1
z + 1

. (31)

CFE 4: When n + q is odd, we get

d0
z + 1
z − 1

+
1

d1
z + 1
z − 1

+ d2
z − 1
z + 1

+ 1

· · · dn+q−2
z + 1
z − 1

+dn+q−1
z − 1
z + 1

. (32)

Proof for CFE1. For CFE1, there are two cases to be considered. The first case
is when |q − n| is even. Then, (z + 1) is a factor of An+q(z), and

An+q(z) = (z + 1)A(−1)
n+q−1(z) . (33)

Therefore, one can write

Mn+q(z)
An+q(z)

= a1
z − 1
z + 1

+ ψ1(z) , (34)

where the denominator of ψ1(z) is A
(−1)
n+q−1(z). It has been shown in Ref. 14 that

a1 > 0 and ψ1(z) is a PEF of odd order. Also, the numerator of ψ1(z) contains
(z + 1) as a factor. Therefore,

1
ψ1(z)

= a2
z − 1
z + 1

+ ψ2(z) . (35)

Continuing this process establishes CFE1.
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The second case for CFE1 is when |q − n| is odd. Then, (z + 1) is only a factor
of Mn+q(z) and (z − 1) is only a factor of An+q(z). Therefore, one can write

Mn+q(z)
An+q(z)

= (0)
z − 1
z + 1

+
1

An+q(z)/Mn+q(z)
. (36)

Since (z + 1) is a factor of Mn+q(z), one can write

Mn+q(z)
An+q(z)

= (0)
z − 1
z + 1

+
1

a2
z − 1
z + 1

+ ψ2(z)
. (37)

The expansion of CFE1 results by continuing this process.

Proof for CFE2. For CFE2, there are also two cases to be considered. The first
case is when |q−n| is even. Then, (z − 1) is a factor of An+q(z), and one can write

Mn+q(z)
An+q(z)

= b1
z + 1
z − 1

+ φ1(z) , (38)

where the denominator of φ1(z) is M
(−1)
n+q−1(z). It has been shown in Ref. 14 that

b1 > 0 and φ1(z) is a PEF of odd order. Also, the numerator of φ1(z) contains
(z − 1) as a factor. Therefore,

1
φ1(z)

= b2
z + 1
z − 1

+ φ2(z) . (39)

Continuing this process establishes CFE2.
If |q−n| is even, (z−1) is again a factor of An+q(z). The proof of CFE2 follows

along the same lines as for the case when |q − n| is odd. For CFE2, the values of
b1, b2, . . . always exist if one starts with Mn+q(z)/An+q(z) and not its reciprocal.

Proof for CFE3. For CFE3, |q−n| is even and both (z−1) and (z+1) are factors
of An+q(z). Therefore, one can write

Mn+q(z)
An+q(z)

= c1
z + 1
z − 1

+ c2
z − 1
z + 1

+ λ1(z) . (40)

From the knowledge of CFE1 and CFE2, it is seen that c1 > 0, c2 > 0, and λ1(z) is
a PEF of even order. Also, the numerator of λ1(z) contains both (z−1) and (z +1)
as factors. Therefore,

1
λ1(z)

= c3
z + 1
z − 1

+ c4
z − 1
z + 1

+ λ2(z) . (41)

Continuing this process establishes CFE3.
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Proof for CFE4. For CFE4, |q − n| is odd and (z − 1) is a factor of An+q(z).
Therefore, one can write

Mn+q(z)
An+q(z)

= d0
z + 1
z − 1

+ µ1(z) . (42)

From the knowledge of CFE1 and CFE2, it is seen that d0 > 0, and µ1(z) is a PEF
of even order. Also, the numerator of µ1(z) contains both (z − 1) and (z + 1) as
factors. Therefore,

1
µ1(z)

= d1
z + 1
z − 1

+ d2
z − 1
z + 1

+ µ2(z) . (43)

Continuing this process establishes CFE4.

The expansions CFE1 and CFE2 have been indicated in Ref. 14 for the special
case q = 0. Stability of 1/Dn(z) is ensured when each of the set of coefficients
ai, bi, and either of ci or di is positive. Each individual set of coefficients provide
the necessary and sufficient conditions for stability. Hence, any one CFE can be
used. Note also that some of the coefficients may not exist. For example, if z + 1
is not a factor of the denominator polynomial of the Type A DRF, a1 and c2 will
not exist. This can be seen for the example depicted in Table 1. In this situation,
the CFE can still be considered or the CFE of the reciprocal can be considered.
Similarly, z − 1 may not be a factor of the denominator polynomial of the Type A
DRF An+q(z)/Mn+q(z). In this case, b1, c1, and d0 will not exist. Again, the CFE
can still be considered or the CFE of the reciprocal can be considered. Whether
the first coefficient exists or not, the number of coefficients in the CFE will still be
equal to the order of the MIP or AMIP.

Theorem 4. Type B DRF permits the following form of CFE: CFE 5:

e1(z − 1) +
1

e2(1 − z−1) + 1
e3(z − 1)+ 1

e4(1 − z−1) + · · ·

. (44)

The proof is similar to the one given in Ref. 4 and is omitted for the sake of brevity.
For the case q = 1, the coefficients correspond to those given in Ref. 4. The number
of coefficients in CFE5 is equal to the order of the MIP or AMIP, whichever is higher.
If there is a common factor between the MIP and AMIP, the number of coefficients
of CFE5 reduces by one. The set of coefficients ei being positive provides only a
necessary condition for the stability of 1/Dn(z).

Numerical Example. Consider the minimum phase polynomial D3(z) = 3z3 +
2z2 + z + 1. For q = 0, the MIP and AMIP are given by

2M3(z) = 4z3 + 3z2 + 3z + 4 , (45)

2A3(z) = 2z3 + z2 − z − 2 . (46)
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For q = 1, the MIP and AMIP are given by

2M4(z) = 3z4 + 3z3 + 2z2 + 3z + 3 , (47)

2A4(z) = 3z4 + z3 − z − 3 . (48)

For q = 2, the MIP and AMIP are given by

2M5(z) = 3z5 + 2z4 + 2z3 + 2z2 + 2z + 3 , (49)

2A5(z) = 3z5 + 2z4 − 2z − 3 . (50)

Figure 1 shows the roots of D3(z), M5(z), and A5(z). Note how the roots of A5(z)
and M5(z) interlace on the unit circle.

The coefficients of the CFEs for the DRFs of Type A are given in Tables 1
and 2. It is readily observed that all the coefficients of the CFEs are positive,
thereby showing that the roots of D3(z) are contained within the unit circle. Note
also that since (z +1) is not a factor of A3(z) and A5(z), a1 does not exist in either
case. However, the number of CFE coefficients is still equal to the order of the MIP
or AMIP.

The coefficients of CFE5 for the DRF of Type B are given in Table 3. It is readily
observed that all the coefficients of the CFE are positive which is a necessary condi-
tion for the roots of D3(z) to be within the unit circle. Note also that A4(z)/M3(z)
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Fig. 1. Roots of D3(z) (denoted by a +), M5(z) (denoted by a ©), and A5(z) (denoted by an X).
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Table 1. Coefficients of CFE1 and CFE2 for three different

Type A DRFs corresponding to q = 0, 1, and 2.

DRF CFE1 CFE2

M3(z)/A3(z) a1 does not exist b1 = 1
a2 = 1/9 b2 = 7/8
a3 = 81/56 b3 = 8
a4 = 56/63

M4(z)/A4(z) a1 = 1/10 b1 = 1/2
a2 = 50/73 b2 = 14/11
a3 = 1387/840 b3 = 121/96
a4 = 336/511 b4 = 96/11

M5(z)/A5(z) a1 does not exist b1 = 1/3
a2 = 1/11 b2 = 63/64
a3 = 121/256 b3 = 128/93
a4 = 2048/1793 b4 = 961/576
a5 = 3214849/1951488 b5 = 576/62
a6 = 243936/138061

Table 2. Coefficients of CFE3 or CFE4 for three different
Type A DRFs corresponding to q = 0, 1, and 2.

DRF CFE3 or CFE4

M3(z)/A3(z) d0 = 1, d1 = 7/8, d2 = 1/8

M4(z)/A4(z) c1 = 1/2, c2 = 1/11,
c3 = 143/108, c4 = 121/108

M5(z)/A5(z) d0 = 1/3, d1 = 63/64, d2 = 3/32,
d3 = 128/81, d4 = 64/81

Table 3. Coefficients of CFE5 for the Type B DRF.

DRF CFE5

A4(z)/M3(z) e1 = 3/4, e2 = 16/7, e3 = 1/4

M4(z)/A3(z) e1 = 2/3, e2 = 4/9, e3 = 81/14,
e4 = 49/963

M5(z)/A4(z) e1 = 1, e2 = 3/4, e3 = 16/7,
e4 = 1/4

A5(z)/M4(z) e1 = 1, e2 = 3/2, e3 = 4/9,
e4 = 81/14, e5 = 49/963

and M5(z)/A4(z) each have a common factor of (z+1) thereby reducing the number
of CFE coefficients by one.

Theorem 5. The MIPs and AMIPs defined in Eqs. (3) and (4) have the following
properties:

(1) 2Mn+q+1(z) = (z + 1)Mn+q(z) + (z − 1)An+q(z),
(2) 2An+q+1(z) = (z − 1)Mn+q(z) + (z + 1)An+q(z),
(3) 2[Mn+q+1(z) + An+q(z)] = zq−1(z + 1)Dn(z).
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This allows us to easily calculate the MIPs and AMIPs of higher order from the
lower order MIPs and AMIPs.

Proof. The proof is by simple algebraic manipulation and hence, only the first
property is illustrated.

(z + 1)Mn+q(z) + (z − 1)An+q(z) =
1
2
[(z + 1)zqDn(z) + (z + 1)znDn(z−1)

+ (z − 1)zqDn(z) − (z − 1)znDn(z−1)] (51)

=
1
2
[2zq+1Dn(z) + 2znDn(z−1)] (52)

= 2Mn+q+1(z) . (53)

5. Summary and Conclusions

It is shown in this paper that a minimum phase polynomial of the type zqDn(z) can
be decomposed into a sum of an MIP and an AMIP. For each value of q, there exists
an MIP and AMIP pair whose roots on the unit circle, are simple and interlace. The
value q = 0 corresponds to Schussler’s identification. The value q = 1 corresponds
to the LSF formulation and Davis’ identification. These are particular cases of
the new general MIP and AMIP decomposition presented here. From the various
MIPs and AMIPs obtained, two types of Discrete Reactance Functions (DRFs)
are constructed. From the DRFs, new Continued Fraction Expansions (CFE) are
derived that are different from those developed in the related works.5,14–17 The
above treatment is not possible in the analog domain.
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