Python Exercises
May 8, 2008

Exercise #1
Clipping with Multiple Input and Clip Features

We will step through creating a Python script that will use ArcGIS to clip several input layers using multiple clip features.

We will begin by exporting a very simple clip model from ModelBuilder. This exported model will be the foundation of our multi-clip script.

Let’s begin by adding a function that will handle the multiple datasets or layers passed by ArcGIS to our script. We can add functions nearly anywhere in our script, with the exception of another code block. Type the following into your exported script:

def SplitMultiInputs(multiInputs):

 try:

 multiInputs = multiInputs.replace("(","").replace(")","").replace("'","")

 return multiInputs.split(";")

 except:

 raise Exception, msgErrorSplittingInput

Essentially, the function strips out any parentheses and single quotes from the string passed. It then splits the string on each semicolon and returns the parts as a list. The function works like so:

>>> SplitMultiInputs(SplitMultiInputs("layer1;layer2(wetlands);'layer 3'")

['layer1', 'layer2wetlands', 'layer 3']

Our script should accept three arguments, a list of input features, a list of clipping features, and an output workspace in which ArcGIS will save the resulting files. Let's modify the script to accept those passed arguments.

Input_Features = SplitMultiInputs(sys.argv[1])

Clip_Features = SplitMultiInputs(sys.argv[2])

output_workspace = sys.argv[3]

We will also need to set the default workspace for our script. We can do that by passing a path to the gp.workspace method.

gp.workspace = output_workspace

We now need to construct the two loops that will handle the clipping. One of the loops will be contained inside the other, this is typically referred to as "nested" or "nesting" loops.

for input_feature in Input_Features:

 for clip_feature in Clip_Features:

The outer nested loop will run for each input feature in our input and the inner loop will run for each item in our clip list. The path names for the input and clip features for each pass of the loop are temporarily stored in "input_feature" and "clip_feature", respectively.

outfile = gp.CreateUniqueName(input_feature, output_workspace)

gp.Clip_analysis(input_feature, clip_feature, outfile, "")

We need to create a unique output filename for each of our clip outputs. The geoprocessor has a method that will create a unique file name based on an input name and a workspace. We will pass CreateUniqueName our input_feature variable and our workspace. We will store the result of CreateUniqueName in "outfile". On the next line, "outfile" is passed to the Clip function as the output dataset.

We can now add the script to ArcToolbox. Make sure you set MultiValue to yes for our two list fields.

Going Further
Error Capture
We can add try and except blocks to our code to handle errors gracefully. Place the code within the try block and the following in the except block:

except:

 gp.AddError("Error encountered when attempting clip.")

 print gp.GetMessages()

The except block, run only when an error occurs, will add a custom error message to the message list within the geoprocessor. The final statement in the except block prints all the messages out. You can add multiple try and except blocks to handle various errors or to debug your script.

Friendly File Names
We are using the CreateUniqueName method to avoid the errors associated with overwriting existing features. The method is helpful, but the result is a number appended to the input feature name. What can we do to make more user-friendly filenames that include both the input and clip feature class names?
Exercise #2
County Clipper
We will now create a script that will clip an input feature class 21 times for each of the counties in the state.

In ModelBuilder, create a starter script that will make a feature layer from our County feature class. The County layer will be run through Select By Attributes, selecting one county from the feature class. Be sure you use the Select By Attributes tool and not the Select tool – we want a layer with a selection and not a feature class of the selection. Also, use ModelBuilder to help you author the SQL expression used to select the county. The SQL expression should export with your script, giving you some direction when modifying the expression in Python.

We will need a tuple to store the County names. These names will be used to select a county for each iteration of the loop. The County name will also be appended to the input feature class name and used as the output feature class.

The County Clipper script should accept two arguments, an input feature and an output workspace. Remember to set the gp.workspace method to save yourself from providing a complete path name.

The for loop is surprisingly less complicated than the nested loops in Exercise #1. Using pseudocode, we can plan out how our county loop will operate.

· Listen for arguments passed from the command line or ArcToolbox

· Make a Feature Layer for the County data

· For each county name in our county list:

· Create a SQL expression that will select the current county

· Select by Attributes using the above SQL statement

· Create a descriptive output name that includes the county name

· Clip using the selected county polygon

· Restart the loop with the next county name until all the counties are processed

Going Further
Multiple Input Features
Thinking back on Exercise #1, you should be able to easily modify the County Clipper script to handle multiple inputs. Nest the county selection loop within the input features loop.

Other Iterable Feature Classes

There are many other datasets that are often used to clip statewide datasets into manageable pieces: municipalities, watersheds, UEZs, designated centers, etc. What if we wanted to clip to each polygon in a feature class that does not have a unique text field to select?

Exercise #3
Compactness Ratio

One task we have all likely performed while doing quality control is a search for sliver polygons as a result of geoprocessing. One indicator of a sliver polygon is a relatively low compactness ratio. The compactness ratio is the ratio of the polygon's area and perimeter to the ratio of area and perimeter of a circle with the same area.

A script that would automatically calculate the compactness ratio for a polygon feature class could help evaluate data, save time, and could be incorporated into a model to calculate the ratio right after geoprocessing.

Calculating a field is a simple task that could be completely performed within ModelBuilder. Python allows us to extend ModelBuilder's functionality to check for the existence of a field and creating a field if it does not exist.

Start your script from a model that will add a double field titled "COMPACTNESS" to a feature class, then calculate the compactness ratio. The VB formula used to calculate compactness ratio is:

pi = Atn(1) * 4
cr = (4 * pi * [Shape_Area])/([Shape_Length] * [Shape_Length])

The code above assumes that your feature class exists within a Personal Geodatabase. (You'll need to change the square brackets to double quotes for use in a File Geodatabase or SDE.)

Another check we should perform on our feature class is whether or not the shape type is polygon. If the type is not a polygon, we should let the user know through an error message and stop execution of the script. We can get the Shape Type through the Describe method, like so:

fc_desc = gp.describe(input)

fc_type = gp.ShapeType # will equal "Polygon" if polygon shape type

Here's some pseudocode to help you get started in Python:

· Listen for arguments passed from the command line or ArcToolbox

· Make a Feature Layer for the input feature class

· If the Feature shape type is not equal to "Polygon":

· Generate an error and exit the script

· If the Feature does not have a field called "COMPACTNESS":

· Add the COMPACTNESS field

· Calculate the Compactness Ratio

Going Further
Taking Advantage of Area/Perimeter Calculations
If your feature class does not live in a geodatabase, you might want to let the user know that your script should be placed in a geodatabase to take advantage of the automatic calculation of the area and perimeter fields. You could take the initiative and move the input shapefile into a geodatabase or recalculate existing AREA and PERIMETER fields in the shapefile. If remaining in the shapefile format, you should check to see if the AREA and PERIMETER fields exist before calculating.

Compactness Field Type
We assume that if a COMPACTNESS field exists, it is a double floating point field. If for some reason our feature class has a COMPACTNESS field that is a text or integer field, we will end up generating an error or calculating a useless value. How would we go into checking a field for type information?

Exercise #4
Simple SearchCursor

In previous examples, we have been dealing with all the features within a Feature Class. The geoprocessor can produce a list of features within a feature class that Python can use in a loop.

We create this list of features (or rows, as we can perform the same process on tables) using a SearchCursor method.

rows = gp.searchcursor(FeatureClass, WhereClause, SpatialReference, FieldList, Sort)

We'll only worry about the first two arguments for this exercise

Let's use the County layer to iterate through each of the features and print the County name and the 2000 Population value.

We will create a rows list object using the syntax above. The rows object is essentially a list, but is accessed differently because Python is reading from a data source and not storing the list in memory. We access the rows list like so:

rows = gp.searchcursor(…)

row = rows.next() # stores the next feature in the list in the "row" object

while row: # a while is similar to a for loop. it will continue running if there are rows

You'll figure out what we will need to do to print out information from the fields of each feature. Your "row" object stores the value of each field as a property that can be accessed using the object.prop method. For example, row.AREA would return the value in the AREA field for that individual feature.
row = rows.next() # when out of rows, row will be empty and the while loop ends.
What other information could we retrieve from each individual feature in a feature class?
Exercise #5
Report Generation
Given a workspace that contains a number of Feature Classes of various shape types, use Python to gather information about each Feature Class's extent, whether or not the feature class has M or Z values, and if a spatial index has been generated for the Feature Class. Each of these items along with the Feature Class name should be printed out to a file. The file format should have one Feature Class to a line and values should be separated with a tab.

Hints
· You'll need to look into how the gp.describe method works

· You might need a refresher on writing to files with Python

· f = open("output.txt", "w") # overwrites any existing file
f.write("Line of text ended by a carriage return: \n") # explicit new line

Going Further
Data-type Conditional Reporting
Your script could branch based on the type of data within the workspace and report on different attributes of the data. Polygons could have some summarized area information while rasters could have band and cell size information.
