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ABSTRACT 
 
The natural gas transmission pipeline network in the United States is a key component of 

the nation’s energy supply infrastructure and extends for over 280,000 miles and has an 

average age of over 60 years. The integrity of the pipeline is maintained by periodic in-

line inspections using magnetic or ultrasonic pigs. Defect characterization algorithms 

developed using current pigging data are hampered by the fact that single inspection 

techniques (either magnetic or ultrasonic) do not yield sufficient information for 

accurately and repeatably characterizing defects. This thesis demonstrates that defect 

characterization algorithms using multiple inspection techniques can accomplish this 

task. In particular, it is shown that the varying depth of a surface breaking pipeline defect 

can be precisely determined using a combination of multiple inspection methods. Also 

the precise location of such defects can be predicted using dissimilar interrogation 

methods. A judicious combination of signal and image processing strategies, including 

geometric transformations, radial basis function approximations and Parzen windows 

density estimations, have been used to fuse data from both homogeneous and 

heterogeneous sensors. Application results using data from laboratory experiments 

demonstrate the consistency and efficacy of the proposed approach. 
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CHAPTER 1:  INTRODUCTION 

Nondestructive evaluation (NDE) techniques have long played a fundamental role in 

assuring the integrity of a variety of large-, medium- and small-scale infrastructure in the 

United States today.  The increase in the number of aging aircraft in the civilian fleet, 

deteriorating bridges and roadways (especially on the East coast) that are essential for 

maintaining increased transportation needs, have contributed to a concerted effort by the 

research and development community to devise more reliable techniques for in-line 

nondestructive inspection [1, 2].  In New Jersey alone, over 17 percent of roadways and 

38 percent of bridges are considered to be structurally deficient [3].  In the prevalent 

climate of terrorism threats, concerns have been expressed regarding the security and 

safety of the nation’s 104 nuclear power plants and oil and natural gas pipelines – key 

contributors towards maintaining the nation’s energy supply [4, 5]. 

 This thesis addresses  techniques for improving the reliability of nondestructive 

evaluation of the nation’s gas transmission pipeline network which extends for over 

280,000 miles and has an average age of over 60 years [6, 7].  Gas transmission pipelines 

(above and under-ground) are primarily inspected for pipe-wall defects using an 

inspection vehicle called a “pig”. The pig is conveyed inside a pipe, either under the 

pressure of natural gas, or is pulled externally. While magnetic methods of inspection 

predominate, ultrasonic and visual techniques are also employed. The pig contains an on-

board microprocessor with memory modules that can store inspection data. At the 

conclusion of the pigging process, inspection data is retrieved and analyzed for predicting 

the condition of the pipe-wall – a process referred to as defect characterization. 
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Defect characterization mechanisms prevalent in the industry range from 

calibration based approaches to simple parametric methods to sophisticated techniques 

using artificial neural networks. A complete signal characterization system provides the 

following capabilities: 

• Signal classification – this isolates defect signatures from signals obtained due to 

benign changes in geometry. 

• Signal location – this is used to provide a precise location of the flaw with respect 

to specimen geometry 

• Flaw profiling – this provides a 3-dimensional geometrical description of the flaw 

that can be used by subsequent visualization stages. 

Defect characterization algorithms developed using current pigging data are 

hampered by the fact that single inspection techniques (magnetic or ultrasonic) do not 

yield sufficient information for accurately and repeatably characterization of defects. This 

thesis demonstrates that defect characterization algorithms using multiple inspection 

techniques can accomplish this task. In particular, it is shown that the varying depth of a 

surface breaking pipeline defect can be precisely determined using a combination of 

multiple inspection methods. Also the precise location of such defects can be predicted 

using dissimilar interrogation methods. 

1.1 Nondestructive Evaluation 

Nondestructive testing is defined as those testing methods used to examine or inspect a 

part or material without impairing its usefulness in the future [8].  Originally, the concept 

behind NDE inspection was to send one form of energy into the specimen, and measure 
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the change in the returned single energy.   Any abnormal alteration in the original signal 

would demonstrate characteristics of an anomaly or defect in the specimen.  This concept 

is illustrated in Figure 1.1.   

 

Figure 1.1: Inspection with single NDE technique. 

 
Inspection techniques have long been a necessary element of society since the 

realization of the unreliability of mankind and their inventions [9].  A wide variety of 

inspection techniques have been employed, either destructive or nondestructive, in order 

to prevent and minimize failures in any type of infrastructure.  Nondestructive testing 

(NDT) allows for the inspection of materials for flaws that could potentially cause 

catastrophic failures such as bridges to collapse, airplanes to crash and the primary focus 

of this research, pipelines to rupture.  Nondestructive testing does exactly as its name 

states by performing analysis without affecting the future functionality of the object 

under test.  Since inspection can be performed without interfering with the use of the 

product, nondestructive testing provides a common ground between quality assurance 

and cost-effectiveness [10].  

Nondestructive testing technicians operate under three main assumptions [9]:  

1. All materials contain flaws,  

2. Flawed materials are not always unfit for use, and  

Test Specimen 

E1, in E1, out 

Anomaly 
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3. The detection of defects increase with size. 

The concept of materials being used in operation after flaws have been detected makes 

the distinction between nondestructive testing and nondestructive evaluation.  In this case 

it is no longer enough to identify the presence of defects as in NDT, but it becomes 

necessary to characterize the size, shape, and orientation of the defect.  NDE methods 

provide a more quantitative assessment of the flaws providing information that can 

estimate its severity.   

Generally NDE methods are characterized as either active or passive techniques 

with the distinction of inspecting surface, near surface, or internal defects in materials.  

Active inspection techniques operate by exposing the material under test to some form of 

energy.  In the presence of a defect or anomaly, the input energy is distorted in some way 

allowing for the change in energy to be measured.  Typical active NDE inspection 

techniques include the use of magnetics, ultrasound, eddy currents, radiography, and 

thermal sources.  Passive techniques alternatively measure anomalies by monitoring the 

specimen under its normal operation.  The presence of defects becomes apparent with a 

response or release of energy from the specimen due to its operational load.  Common 

passive NDE methods are acoustic emissions, penetrant testing, leak testing, and visual 

examination.  Examples of surface inspection methods include visual and penetrant 

testing techniques that are only capable of determining defects located on the surface of 

the specimen.  Other techniques such as eddy current testing and magnetic testing can 

provide surface and near surface defect characterization but are unable to produce full 

volumetric estimations of the specimens under test.  Volumetric methods are capable of 

inspection throughout the entire specimen to uncover any internal defects present.  This 
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type of detection is possible with ultrasonic, acoustic emission, and radiographic NDE 

techniques.   

The research presented in this thesis utilizes four of the inspection techniques 

mentioned above including ultrasonic testing, magnetic flux leakage, thermal imaging, 

and acoustic emission.  Although these four techniques will be described later in 

extensive detail, a brief summary of all previously mentioned NDE techniques is given 

below [8, 9, 10, 11]. 

• Visual Inspection:  A method of inspection that searches for defects visible 

with normal eyesight.  Tools such as magnifying glasses and mirrors are used 

to increase the inspector’s visibility of the object under inspection.  Although 

a simplistic method of inspection, defects are often located with this 

procedure as they become larger and more visible.  More technology based 

NDE systems are still needed to locate defects at earlier stages to ensure 

prevention of critical failures to the infrastructure. 

• Penetrant Testing:  Penetrant testing, used for detection of surface 

discontinuities, exploits the natural occurrence of fluid accumulation near 

surface defects.  The accumulation is caused by the capillary process at the 

location of the defect which attracts a higher volume of fluid to the 

discontinuity relative to the surrounding area.  More advanced methods of 

penetrant testing make use of visible or fluorescent dye solutions.  A thick 

coating of dye is layered onto the specimen.  The excess dye is then removed 

leaving only the dye trapped in surface defects.  A developer or ultraviolet 
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light is then used to draw forth any remaining dye making it easy for the 

naked eye to view.    

• Leak Detection:  Leak detection methods are commonly used in NDT of gas 

transmission pipelines.  In this type of testing, the specimen is some type of 

pressure vessel that contains a pressurized substance.  Leak detection as an 

NDT method searches for any presence of exiting material from the pressure 

vessel using electronic listening devices, monitoring of pressure gauges, and 

insertion of liquid or gas penetrants that could be easily seen exiting the 

pressure vessel.  

• Electromagnetic or Eddy Current Testing:    This type of NDE testing 

requires a ferromagnetic material in which electrical currents can be induced 

with the presence of a magnetic field.  The eddy currents which flow in 

circular patterns at the surface of the specimen are interrupted at the presence 

of a discontinuity or changes in the metal surface.  The disruption in current 

flow can be measured with a Hall probe or coil of wire to catch the induced 

magnetic field.   

• Magnetic Flux Leakage:  Similar to electromagnetic testing, MFL testing 

requires a ferromagnetic material.  In this type of testing, the specimen is 

magnetized with the presence of large magnet or with an induced magnetic 

field from lines of current.  In the presence of a defect, magnetic flux will 

leap out of the specimen.  A Hall probe can be used to measure the leakage 

magnetic flux density. 
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• Thermal Imaging:  Thermal imaging relies on the transfer of heat to 

determine the presence of defects.  Heat sources such as high intensity lamps 

are directed at the surface of the specimen.  The heat transfer throughout the 

specimen varies in the location of a defect.  The change in energy throughout 

the specimen can be viewed by taking multiple frames with an infrared 

camera.   

• Acoustic Emissions:  Acoustic emission, a passive NDE technique, listens 

for high frequency noise created by cracking, dislocations, and disbonding.  

An effective technique for metals, concrete, and composites, acoustic 

emission waves are generated by local stress redistributions as a specimen 

yields while under use.  A stress stimulus that simulates normal use or 

overloading is needed to induce the emission of acoustic waves.  

Piezoelectric transducers are used to constantly monitor the specimen under 

test. 

• Ultrasonic testing:  Ultrasound is one of the most effective active NDE 

methods providing defect information throughout the entire thickness of the 

specimen.  Ultrasound searches for defects by bombarding the specimen with 

high frequency sound waves.  As the sound waves propagate through the 

material, they scatter and reflect at the presence of any discontinuity.  The 

change in the sound waves after propagation through the specimen is 

measured to indicate the presence of any defects.   

• Radiography:  Radiography is considered to be the most accurate and 

reliable testing procedure for NDE engineers, providing exceptional results 
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when finding internal defects.  Radiographic inspection employs the 

propagation of energy sources such as X-ray and penetrating gamma 

radiation through its specimens.  The energy sources are passed through the 

object under inspection, allowing analysis of the energy pattern exiting to 

make a determination of the specimen condition.  The exiting radiation is 

directed onto a film or other imaging device to depict the dimensional 

features of the object similar to that of a medical x-ray.     

 
Unfortunately no single NDE method is capable of inspecting all types of 

infrastructure.  Therefore to properly extract the necessary defect characterization 

information, multiple NDE techniques must be employed to the same specimen.  This is 

largely due to the wide variety of materials used in past and present infrastructures which 

consist of composites with different types of metals and dielectrics present.  This presents 

the need for a combination of NDE methods working in conjunction with each other to 

produce additional information about the object under inspection.  This technique is 

illustrated in Figure 1.2 where three different NDE modalities are entered into a test 

specimen.  Each NDE method provides different information about the test specimen 

allowing analysis of this data to characterize any anomalies present.  
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Figure 1.2:  Multi-sensor NDE inspection. 

 
With the addition of multi-sensor inspection comes the need for multi-sensor data 

fusion.  The resulting NDE signature after the data fusion process will contain additional 

information about the defect that was not available from any one of the original NDE 

signatures alone [12].    

 Although multi-sensor interrogation provides added information about the defect, 

the data fusion process of combining the various NDE signatures produces an array of 

complications.  High complexity can arise when the data fusion process is being 

performed with heterogeneous data sources where the dimensionality of the data may 

vary between each NDE signature.  Heterogeneous multi-sensor data fusion is the 

combination of dissimilar NDE inspection signatures that vary in dimensionality of data 

and information available for combination.  This means NDE signals found in practice 

are a compilation of 1-D time-domain signals, 2-D spatial domain images, singular events 

describing time-history, anecdotal evidence and a priori knowledge [13].  Many NDE 

inspection modalities such as ultrasound, MFL, X-ray, and eddy-current testing provide 

two dimensional analysis of the specimen providing information of defect geometry as 

E2, out 

E1, in 
Test Specimen 

Anomaly 
E2, in 

E3, in 

E1, out 

E3, out 
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well as defect location.   The homogeneous data fusion combination of these sources is 

less complicated since the same type of information is present in each source.  Other 

NDE inspection methods such as acoustic emission do not provide the specific 

geometrical or location information of the defect that is provided by the previously 

mentioned sources.  Therefore when combining heterogeneous NDE signatures it 

becomes necessary to ensure the combination of information pertaining to the same 

characteristics of the defect.  Data fusion between dissimilar testing methods such as 

these can provide valuable information providing the necessity for heterogeneous data 

fusion algorithms.   

Another common problem is difficulty in registering the data so the different NDE 

signatures correspond to the exact same section of the specimen under test.  It also 

becomes necessary to optimize the data fusion combination technique in order to increase 

the amount of relevant information pertaining to the defect characterization.  It is the goal 

of this thesis to address these concerns with the use of experimental NDE data. 

1.2 Multi-sensor Data Fusion 

A significant amount of resources have been designated to the advancement of multi-

sensor data fusion in recent years.  The objective of data fusion techniques is to combine 

the related information found in multiple sensors to develop more specific conclusions 

then could be determined with a single sensor or source [14].  A wide variety of both 

military and non-military applications have been researched including earth resource 

monitoring, weather forecasting, vehicle traffic control, and military target classification 

and tracking [15].  The concept of multi-sensor data fusion has been present throughout 

nature, but only recently has become a practical technique with the advancement of 
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sensors and computer processing capabilities.  Humans and animals regularly utilize a 

form of multi-sensor data fusion when combining their five senses to make 

determinations about their surrounding environment.  For example, when an animal is 

determining whether something is edible it does not only rely on its sense of sight [14].  It 

is also necessary for the animal to smell, taste and touch the object before determining the 

safety of the situation.  It is this type of combination of information that engineers of 

multi-sensor data fusion techniques hope to replicate as their methods advance.  

 The data fusion model was first introduced by the U.S. Joint Directors of 

Laboratories (JDL) Data Fusion Group in 1985.  The first attempts at data fusion model 

were very specific and restricted to only military applications.  In order to apply the data 

fusion model to other non-military processes, the model was redesigned in 1998.  The 

updated data fusion model definition reads as follows: “Data fusion is the process of 

combining data or information to estimate or predict entity states”.  The object of the data 

fusion process can either be to predict entities of physical states (such as: identity, 

attributes, activity, location, etc.) or that of perceptual states.  Perceptual state data fusion 

processes predict the actions of individuals or groups of individuals [14].  The data fusion 

model also accounts the interaction between physical and perceptual states.  

 There are many inherent advantages to combining information from multiple 

sensors.  First and most obvious, when combining the output of multiple identical 

sensors, a greatly improved estimate of the objects characterization can be obtained.  This 

provides a statistical advantage for each addition sensor N introduced to the network 

improving the estimate by a factor proportional to N1/2 [14].  Second, the observation 

process can be improved by strategic placement and movement of multiple sensors.  
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Multiple sensors with angular direction measurement capability can triangulate the 

position of an object.  A known movement of one sensor relative to another stationary 

sensor can be used to determine the position and velocity of an object in comparison to 

the sensors.  Most importantly, additional information about an object can be ascertained 

with the use of multiple varying sensors.  Each sensor measures a different aspect about 

the objects functionality and characterization that the other sensor can not produce.  The 

combination of this data provides a more accurate and informed estimation of the object 

that could not have been determined without the use of multiple sensors.      

There is substantial potential in applying data fusion techniques to the area of 

non-destructive evaluation.  It is the intention of NDE to use data fusion methods to 

combine data from non-commensurate NDE signals to gather additional information 

concerning the specimen under test.  The addition of multiple independent sensors will 

provide a more detailed characterization of any anomalies present in the specimen.  The 

NDE signatures to be combined correspond to the same test specimen and location 

scanned.  The data fusion process is performed on the NDE signatures to produce the 

fused data which contains a more accurate and detailed description of the specimen.  

Figure 1.3 illustrates the data fusion process.  The NDE inspection signals are considered 

to be any of the NDE techniques listed in section 1.1 of this chapter.   

     

NDE Inspection 
Signature 1 

NDE Inspection 
Signature 2 

 
Data Fusion 

Process Fused Data 
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Figure 1.3: Block diagram of data fusion process. 

 
 The NDE signatures are comprised of different information corresponding to the 

test specimen.  In this particular case, redundant and complementary information between 

the two NDE signals is the focus of this research.  The redundant data feature represents 

the information that is present in both NDE signatures.  If a defect is present in a test 

specimen and both NDE signatures are able to locate and characterize the size and shape 

of that defect, those features would be redundant between the two NDE signatures.  For 

example, given three measurable parameters x, y, and z, where NDE method 1 is able to 

determine parameters x and y only while NDE method 2 is able to determine parameters y 

and z only.  In this instance, the resulting redundant data would be parameter y.  The 

addition of redundant information as a features helps to improve the confidence in the 

measurement taken since two methods have now verified that parameter.  

 Complementary information is the information present in the NDE signals that is 

unique to each signal when testing the same object.  An example of this would be an 

NDE method that is capable of determining the full geometry of a defect including the 

length, width, and depth of the anomaly, where as the second NDE method can only 

ascertain the two dimensional profile limited to length and width of the defect.  In this 

case, the unique or complementary data is the depth of the anomaly.  Again focusing on 

parameters x, y, and z, the complementary information in these signals would be 

parameter x and z, were parameter x being determined by NDE source 1 and parameter z 

characterized by NDE source 2.  Complementary information is an important feature to 

focus on because it improves the accuracy of the testing results.  Each NDE method 

provides a different element to the fused data providing a total characterization of the 
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defect present in the specimen.  Figure 1.4 provides a visual representation of the 

redundant and complementary data extraction process.   

 

 
Figure 1.4:  Redundant and complementary information extraction from two NDE sources [13]. 

 

1.3 Objectives of Thesis 

The objectives of this thesis are: 

1. Design and development of a geometric transformation based data fusion 

algorithm for the prediction of specific information fusion measures – redundancy 

and complementarity; 

2. Application of the data fusion algorithm to accurately and confidently predict the 

varying depth profile of surface-breaking pipe wall defects in a gas transmission 

pipeline; 

3. Demonstration of the algorithm’s ability to fuse data from multiple homogeneous 

and heterogeneous sensors; 

4. Design and development of experimental validation test platforms and protocols 

for measuring the efficacy of the data fusion techniques. 
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1.4 Expected Contributions 

The overall objective of this research work is to design data fusion algorithms that can 

synergistically combine defect related information from multiple heterogeneous sensors 

used in gas pipeline inspection for reliably and accurately predicting the condition of the 

pipe-wall. The multi-sensor data fusion algorithms are exercised using the following set 

of NDE techniques – magnetic flux leakage, ultrasonic testing, and thermal imaging 

provide homogeneous data that are gray-level intensity images whose pixels are co-

located with the defect profile.  Additionally, acoustic emission testing provides “hit” 

information that can be used to predict defect location, but does not provide a defect 

profile. The multi-sensor dataset is experimentally obtained in the laboratory; test-

specimens representative of anomalies found in gas pipelines have been fabricated. 

1.5 Scope and Organization of Thesis 

 This thesis is organized as follows. Chapter 1 provides an introduction to NDE 

techniques and the role of multi-sensor data fusion to characterize natural gas 

transmission pipeline anomalies.  Chapter 2 describes the previous work performed in 

this area of research, provides a detailed description of NDE methods used in this 

research, and the necessary background information on geometrical transformations and 

density estimation techniques that form part of the proposed approach.  Chapter 3 

describes the proposed approach for performing multi-sensor data fusion using geometric 

transformations Parzen Windows for combining homogeneous and heterogeneous data 

sets.  Chapter 4 discusses the data collection experiments and implementation of the 

proposed data fusion methods.  Results presenting the effectiveness of these techniques 
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are also provided in this section.  Chapter 5 provides conclusions drawn from this 

research work, as well as the recommendations for further research in the area. 
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CHAPTER 2:  BACKGROUND 

This chapter provides a summary of previous work performed in the area of data fusion, 

particularly with NDE applications.  A detailed explanation of the NDE methods used for 

multi-sensor data collection will also be given.  Finally, the theoretical background 

information is provided on geometric transformations and Parzen windows, which are 

used as methods for performing multi-sensor data fusion. 

2.1 Previous Work in Data Fusion for NDE  

In the past ten years, the use of data fusion for NDE purposes has steadily increased.  

Table 2.1 outlines some of the prominent research in this area, including fusing data from 

a variety of sources including: ultrasound, eddy currents, X-ray, MFL, and thermal 

images.  This research includes the use of fusion methods such as Dempster-Shafer and 

Bayesian analysis, as well as the use of artificial neural networks (ANNs) for data fusion 

purposes. 

Table 2.1: Previous work in data fusion for NDE. 

Authors and Paper Title Area of Research 
M.Mina, J. Yim, S. Udpa, L. Udpa, et. al., “Two-
dimensional multi-frequency eddy current data 
fusion,” 1996 [16] 

Data fusion to combine multi-frequency eddy 
current images of same specimen 

X. E. Gros, J. Bousigue and K. Takahashi, “NDT 
data fusion at pixel level,” 1999 [17] 

Data fusion of eddy current and infrared 
thermographic images using weighted averaging, 
Bayesian analysis, and Dempster Shafer among 
other techniques 

D. Horn and W. R. Mayo, 
“NDE reliability gains from combining eddy-
current and ultrasonic testing,” 2000 [18] 

Bayesian analysis and Dempster Shafer to combine 
ultrasound and eddy current images of Zr-Nb 
pressure tube specimens with manufactured defects 

S. Gautier, B. Lavayssiere, E. Fleuet and J. Idier, 
“Using complementary types of data for 3D flaw 
imaging,” 1998 [19] 

Used Dempster Shafer and Bayesian inference to 
fuse X-ray and ultrasound images to reveal 
complementarities 

J. Yim, “Image Fusion Using Multi-resolution 
decomposition and LMMSE filter,” 1995 [20] 

Proved ANN are viable method for data fusion.  
Used MLP and RBF to combine eddy current and 
ultrasound images 
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P.J. Kulick, “Multi-sensor data fusion using 
geometric transformations for the nondestructive 
evaluation of gas transmission pipelines,” 2003 
[13] 

Extraction of redundant and complementary 
information using RBF neural networks from 
ultrasound, MFL, and thermal imaging data.  

 

 The authors of [16] performed a 6, 7, 8, and 12-block Discrete Cosine Transform 

(DCT) for the fusion of multi-frequency eddy current images in the spectral domain.  The 

images had undergone some form of linear degradation.  It was the goal of the research to 

reconstruct the true image by using two or more degraded images obtained at various 

excitation frequencies.  The fusion method was based on the ratio of the spectrum of 

images as well as the signal to noise ratio of each image.  This method was used as a 

measure of quality for each image to develop a weighting function for the image fusion.  

The image with a higher SNR was ultimately weighted more heavily in the final image 

fusion process.  The reconstructed image was then synthesized from the fused spectrum.  

A series of eddy current images ranging in frequency from 50 kHz to 250 kHz were taken 

from the same test specimen to be combined.  The test specimen consisted of a machined 

aluminum block with two surface and two subsurface defects.  The results showed that 

the reconstruction worked best when used with the 7 and 8 block DCT. 

 An array of pixel level data fusion techniques were used by the authors of [17] in 

hopes of combining eddy current and infrared thermographic images.  A carbon fiber 

reinforced plastic (CFRP) panel that had been subjected to impact damage by a low 

energy source, was interrogated using both NDE modalities.  C-scan ultrasound images 

were also collected of the damaged area to generate a point of reference to compare the 

data fusion methods.  The data fusion methods employed included:  maximum amplitude, 

integration, averaging, weighted averaging, Bayesian analysis and Dempster-Shafer 

theory.  The maximum amplitude data fusion method performed pixel level fusion by 
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choosing the pixel with the higher amplitude from the two initial images.  The integration 

data fusion procedure performed a logical AND function on each of the original pixels.  

The averaging technique simply averaged the pixel values of the original images. The 

weighted average method assigned rankings to different NDE methods depending on 

their accuracy and reliability.  This allowed for certain images to have a greater effect in 

the data fusion process when the pixels are averaged.  Finally the Bayesian analysis and 

Dempster-Shafer methods utilized probability and belief combinations to perform data 

fusion.  An area of impact analysis was performed on both ultrasound images and fused 

data images.  It was found that the maximum amplitude and Dempster-Shafer methods 

produced the results nearest to the ultrasound inspection reference.   

 The author of [18] performed data fusion on a database of 108 artificial flaws with 

test specimens made of Zr-Nb.  The specimens, a mineral metal bond, were pressure-tube 

billets that contained either notched or drilled defects.  Ultrasound and eddy current 

images of the specimens were combined using a series of elementary and more complex 

data fusion methods to provide classification between the notched defect, drilled defect, 

and no defect. The data fusion techniques ranging from simplistic to complex were 

performed using logical OR, averaging and weighted averaging, classical inference, 

Bayesian analysis and Dempster-Shafer theory.  The data fusion process using the OR 

function provides a zeroth-order combination that does not consider defect flaw size into 

the decision but rather only provides a yes/no decision.  This process rejects any sample 

from which one or more individual measurements signify rejection.  The averaging 

process provides a first order combination where the signal amplitudes being averaged 

relate to the defect’s size.  Weighted averaging provides extra dimensionality by 
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including a priori knowledge into the decision.  The classic inference, Bayesian 

inference, and Dempster-Shafer method provide decision level identity fusion where each 

decision is either accepted or rejected based on a joint probability distribution.  Different 

probability density functions and relative operating characteristics were used to determine 

how accurately the data fusion methods classified the defects.  The author’s results 

showed a significant improvement in classification when using the combined ultrasound 

and eddy current data with the OR logic combination compared to either data set by 

itself.  Additional improvement in classification was obtained by using the averaging and 

weighted averaging data fusion methods.  The classic inference, Bayesian inference, and 

Dempster-Shafer method also provide very good classification results but are only 

marginally better then the averaging combination results.   

 In [19], a dataset of X-ray and ultrasound images were collected from a steel test 

specimen with a previously known discontinuity.  Bayesian inference and Dempster-

Shafer theories were used for three different processing architectures: decentralized, 

cascade, and centralized.  The decentralized architecture performs fusion on the two 

datasets after preprocessing has been applied to each dataset separately.  The cascade 

architecture processes the first dataset independently then reprocesses the result with the 

second dataset together before performing the data fusion.  In the centralized architecture 

the datasets are fused directly without any preprocessing.  The inference theory is 

independent of which preprocessing architecture is chosen.  The difference between the 

architectures is noticed in the number of preprocessing steps taken before the fusion 

process.  The data collection process was focused on obtaining the complementary 

features between the two inspection modalities.  Optimal results were achieved using the 
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centralized architecture method, despite its higher complexity and longer run-time.  This 

is attributed to the additional preprocessing in other architectures causing a loss of 

information before the fusion process.   

 The authors of [20] experiment with using artificial neural networks to perform 

data fusion.  Multi-layer perceptrons (MLPs) and radial basis functions (RBFs) were used 

in the combination of ultrasound and eddy current images, and additionally the fusion of 

multi-frequency eddy current images.  The images were fused using pixel level logic 

operations AND and OR.  The AND (maximum) operator brings forth the common 

features between the images, where as the OR (minimum) operator determines the 

complementary information in the images.  The tests were performed on two different 

aluminum specimens of 6 mm thickness with varying defects.  The first specimen 

contained a 1/32 inch diameter through hole that was then covered with a thin layer of 

copper foil to conceal the defect.  The second specimen also contained a hole of 1/32 inch 

diameter but that only penetrated the surface by 5.5 mm.   Initial results were obtained for 

the combination of ultrasound and eddy current images performed on the first specimen, 

using both the MLP and RBF networks with two hidden layer nodes.  In this case the 

results yielded very poor and unclear images.  Additional results were also achieved 

using the RBF network with five hidden layer nodes with center identification from a K-

means algorithm.  These results yielded more accurately fused images with a higher SNR 

and recognizable defects.  The second specimen was used in the combination of the 

multi-frequency eddy current images.  The combination of 6 kHz and 20 kHz eddy 

current images using the five hidden layer RBF network with the K-means algorithm was 
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performed.  These combinations yielded fused images with clearly visible defects 

present.  

 Portions of this current research are a continuation on the work performed by 

Philip J. Kulick [13].   In his research, geometric transformations and RBF neural 

networks were used to extract the redundant and complementary information found in 

different NDE testing modalities.  A test specimen suite with various simulated pipeline 

anomalies including pitting, stress corrosion cracking, dents and welds was created.  The 

test specimens were subjected to ultrasound, MFL, and thermal imaging methods to 

create a rich database.  The results were promising, providing the extraction of redundant 

and complementary information of binary NDE images.  This current research extends 

this work by incorporating multilevel signatures into the algorithm and also integrating 

NDE data from heterogeneous sources.   

 

2.2 NDE Inspection Techniques 

The following NDE inspection techniques were used in this research to obtain multi-

sensor data.  The fundamental principles of each technique will be explained in detail in 

this section, including their use and application as nondestructive evaluation tools.   

2.2.1 Ultrasonic Testing 

Ultrasound was first used as an evaluation technique in the early 1900s and has since 

advanced to be the benchmark technique when performing nondestructive evaluation.  

Ultrasonic inspection uses high frequency sound energy, typically between 1 and 25 

MHz, for inspection and examination of materials.  Ultrasonic testing is well suited to 

perform flaw detection as well as other tasks such as dimensional measurements and 
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material characterization.  As an NDE method, ultrasound is valuable due to its capability 

in detecting both surface and subsurface discontinuities all while providing an extremely 

accurate determination of defect geometry and location.   

 A typical ultrasonic inspection system consists of a pulser/receiver, transducer, 

and display components.   The pulser/receiver generates high voltage electrical pulses 

that drive the transducer.  The transducer, made of a piezoelectric material, has the ability 

to convert the electrical energy into a mechanical vibration.  When the intensity of the 

vibration is large enough, high frequency ultrasonic energy is created.  The generated 

sound energy has the ability to propagate though materials as waves.  At the presence of a 

defect or discontinuity, the sound waves will reflect back or scatter in different directions 

providing a marker for flaws in material.   

 Currently there are both transmission and reflection techniques when performing 

ultrasound testing.  These techniques are known as through transmission and pulse echo 

respectively.  During a through transmission test, the ultrasonic energy is directed into the 

test object with a transmitter, and the energy exiting the opposite side of the test specimen 

is measured with a receiver.  In this scenario the presence of a defect would be detected 

by the decrease of energy at the receiver transducer.   The through transmission method is 

presented pictorially in Figure 2.1.  
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Figure 2.1:  Through transmission ultrasonic testing. 

Unlike through transmission, the pulse echo method uses only one transducer for both 

transmission and reception.  The ultrasonic energy is directed into the test specimen and 

the energy reflected back from any discontinuities present in the object is measured.  The 

pulse echo ultrasonic technique can be seen in Figure 2.2.  

 

Figure 2.2:  Pulse echo ultrasonic testing. 

Typically, ultrasonic testing generates three forms in which to measure the status 

of the specimen.  These forms of measurements are referred to as the A-scan, B-scan, and 

C-scan data, each providing different information about the specimen.  The A-scan 

depicts the voltage vs. time representation of the ultrasound data.  This depiction provides 

size and depth information that can be determined through a combination of amplitude 

and phase shift information.  The B-scan provides a cross sectional view of the specimen 

by plotting the x and y location of the transducer verses the ultrasonic values.  C-scan 
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similar to B-scan plots a top down view of the discontinuity area providing the defect 

location and size determined from variation in signal amplitude as a function of position.  

Figure 2.3 shows the variation in B-scan, and C-scan data.   

 

Figure 2.3: B-scan, and C-scan ultrasound data. 

 

There are three main parameters of interest when determining the presence of 

discontinuities in a specimen.  These parameters include back surface reflection 

amplitude, amplitude of extraneous reflections, and Time of Flight (TOF) measurements, 

which can all be determined by examining the A-scan of the ultrasound test.  These 

features are illustrated on a sample A-scan in Figure 2.4.  

B-scan 

C-scan 
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Figure 2.4:  Defect detection parameters [21]. 

 

The back surface reflection amplitude provides a measure of attenuation by 

measuring the difference between the amplitude of the front surface reflection to the back 

surface reflection.  A decrease or absence of a back surface reflection provides a quick 

indication that the transmitted sound was absorbed, refracted, or reflected by a defect.  

The defect can potentially be described from comparison of back surface reflection 

amplitude over no defect to defect area.  The extraneous reflection amplitude provides 

detection of discontinuities by measuring reflections appearing between the front and 

back surface waves.  The reflection pattern can be used to indicate the discontinuity type 

while the reflection amplitude provides a measure of the discontinuities size.  Amplitude 

gating is set to determine the area of interest and threshold setting for waves that become 

present.  Finally, the time of flight measurement determines the time between the front 

surface reflector to the next significant reflection in the signal.  When the next significant 

reflection is the back surface reflection, this is an indication of no discontinuities present.  

The addition of a peak before the back wall reflection indicates the presence of a defect 

that is reflecting the original signal.  Determining the time difference between the back 

wall reflection and defect reflection can provide an estimate of how deep the 
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discontinuity lies within the specimen.  Timing gates are used to define the boundaries of 

the time domain.   

Ultrasonic testing is a viable NDE method because there is minimal loss of 

ultrasonic energy in homogeneous materials.  The only energy loss is due to the 

interception or reflection of the ultrasonic beam by a discontinuity in the specimen.  

Despite ultrasounds exceptional ability to locate and characterize defects, it does posses 

some minor limitations.  In order to perform ultrasonic testing, a coupling or medium is 

needed to transmit the sound energy into the specimen.  Typically immersion tanks are 

used to submerge the specimen to use water as the medium, but this can become 

increasingly difficult as the specimen under test grow in size.  Another drawback to 

ultrasound is that heterogeneous or composite materials are difficult to inspect.  This is 

due to the same reason that makes ultrasound a viable method for testing homogeneous 

materials, in that ultrasonic testing strength lies in determining changes throughout the 

material.  In a composite structure that is composed of varying types of materials, 

ultrasound would misjudge the changing material structure as a defect, when no defect is 

actually present.   

2.2.2 Magnetic Flux Leakage 

Magnetic flux leakage methods have been used in practice for well over one hundred 

years dating back to 1868.  In the early 1900s magnetic particle testing was discovered 

when metal shavings were held in place by changes in the magnetic flux near the surface 

of a defect.  MFL testing was soon made possible by the addition of magnetic field 

sensors in the 1930s [22].  The sensors allowed for measurement of the magnetic field 

around the defect area and provided a more quantitative measurement then could be 
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gained by the scattering of magnetic particles.  In 1965 the first inline inspection tool 

(known as the “pig”) for magnetic testing of pipelines was developed by a company 

called Tuboscope.   Figure 2.5 shows a more modern version of the “pig” equipped with 

rings of magnets and hall sensors to perform inline inspection of pipelines.  Today, MFL 

is the oldest and most commonly used inline inspection method for finding metal loss in 

natural gas transmission pipelines [22].  MFL is well equipped to detect metal loss 

defects due to corrosion and gouging, and additionally can occasionally provide reliable 

results for other types of metallurgical and geometric conditions such as hard spots, 

inclusions, laminations, cracks, dents and buckles.   

 

Figure 2.5:  MFL inline inspection tool: the “Pig”. 

 The actual process of performing MFL testing consists of magnetizing a 

specimen of ferromagnetic material and scanning the surface with a magnetic flux 

sensitive sensor for changing magnetic fields [9].  The specimen under test is normally 

magnetized by placing it in close proximity to a permanent magnet or to a conductor with 

a high amount of current passing through it.  In some cases the magnetic field is created 

by passing current through the specimen directly.  Once a high magnetic flux density 

level is created the changing flux can be measured with a variety of sensors including 

coils, C-core yokes, and solid state magnetic sensors [9]. 
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 MFL testing is possible because when a magnetic field comes in contact with a 

defect the natural flux lines are diverted or forced to leak out of the pipeline.  Figure 2.6 

(a) shows a magnetic field in contact with an intact pipe wall.  The figure shows that most 

of the flux lines will naturally flow through the pipe wall which acts as a conductor 

between the north and south poles of the magnet.  When metal loss is present in the 

pipeline, this scenario is altered and can be viewed in Figure 2.6 (b).  The decrease in the 

thickness of the pipe wall causes the flux leakage to occur at the metal loss region.  The 

total flux that can be carried at the metal loss region is less then that of the full pipe wall 

region forcing the flux lines to find an alternate route.  The magnetic flux density in the 

metal loss region will be higher then that of the other regions, allowing it to be measured 

with an inline inspection tool.   

 

                              (a) Intact pipe wall                                    (b) Pipe wall with metal loss 

Figure 2.6: Magnetic flux lines through pipe wall [22]. 

The magnetic flux leakage that is measured corresponds to the geometry and 

magnetic properties of the anomaly present allowing the defect to be characterized by the 

measurement.  In some occasions the shape of the leakage field can resemble the shape of 

the defect, but this is usually not the case.  The leakage field measured is also dependant 

on the defects location being closer to the inside or outside of the pipe wall.   
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2.2.3 Acoustic Emission 

The acoustic emission technique is a relatively new NDE method with the ability to 

monitor the behavior of materials while under stress and strain.  Acoustic emissions can 

be characterized as transient elastic waves generated by the spontaneous release of energy 

within a material while undergoing deformation [23].  A passive method of testing, 

acoustic emission was originally developed for the inspection of pressure vessels.  It was 

noticed that growing cracks would emit high frequency noise that could be measured.  In 

addition to cracking, acoustic waves are also generated from dislocations, fiber breaks, 

and disbonding making AE an ideal method for inspection of metal, concrete, 

composites, and leak detection.  Typically waves are generated due to local stress 

redistributions associated with the aforementioned defects that appear on both a 

microscopic and macroscopic level.  In order to achieve this sound wave generation a 

stress or stimulus must be applied to the specimen.  Figure 2.7 demonstrates the acoustic 

emission process.  

 

Figure 2.7:  Acoustic emission process [23]. 

Stimulus Stimulus AE 
Source 

Sensors 

Instrumentation 
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 Acoustic emission systems consist of piezoelectric transducers that convert the 

mechanical energy of an elastic waveform to an electrical signal that can be amplified 

and filtered to produce meaningful results.  Current AE sensors have the capability of 

detecting frequency ranges as low as 10 kHz and up to 2000 kHz.  This translates to the 

detection of a microstructure movement as small as 10-12 inches, providing enough 

sensitivity to detect the breaking of a single grain of metal, a single fiber of a composite, 

or a single bubble from a pinhole leak [23].  With devices this sensitive, AE testing can 

provide an early warning system about the structural integrity of the specimen under test.   

 When performing an acoustic emission test, software will display points 

corresponding to the (x, y) position of any AE event.  Multiple sensors arranged in arrays 

on the surface of the specimen listen for any acoustic activity.  When an AE event occurs 

the time lapse between the sound wave arriving at each sensor is recorded and allows for 

the position of AE source to be triangulated.  Multiple AE events in the same position 

indicate the possible presence of a defect at that location.  Acoustic emission also has a 

passive nature that makes it advantageous since the only energy needed to perform a test 

is exhibited from the specimen while under its normal use.  This allows for specimens to 

be monitored continuously over a long period of time being much more cost effective 

then other active NDE methods.   

2.2.4 Thermal Imaging 

Thermal imaging is a relatively new NDE technique for the inspection of natural gas 

transmission pipelines.  Like most other NDE methods, thermal imaging relies on the 

transfer of energy to characterize defects present in specimens.  Heat energy in the form 

of high intensity lamps is directed into the specimen under test.  The transfer of heat 
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through the specimen varies in the presence of an anomaly providing a difference in 

temperature from defect to non-defect areas of the specimen.  A highly sensitive infrared 

imaging device can then be used to monitor the temperature variations over time as the 

specimen heats up and returns to its normal temperature.  The thermal imaging process is 

depicted in Figure 2.8.  Although at this point thermal imaging has not been proven as a 

viable method for pipeline inspection, recent research anticipates incorporation of 

thermal imaging in conjunction with an inline MFL inspection process, using the residual 

heat generated by the MFL testing as a heat source.   

 

Figure 2.8:  Thermal imaging technique. 

 

2.3 Geometric Transformations  

Geometric transformations are a widely used method in digital image processing.  

Geometric transformations are often used to perform image restoration, the process of 

objectively restoring an image by modeling the degradation phenomenon and inverting 

the process to reconstruct the original image.  Unlike most common image restoration 

techniques, geometric transformations modify the spatial relationship between the image 

pixels, rather then the spectral or frequency relationship.  Geometric transformations are 

often referred to “rubber sheet transformations.  This is because they can be interpreted as 

printing an image on a sheet of rubber, and then stretching the rubber sheet to some 
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predefined set of parameters.  In other words, the goal of a geometric transformation is to 

map a pixel (x,y) to a new position (x’,y’) by using a set of predetermined transformation 

equations.  Figure 2.9 helps to illustrate this principle.   The necessary transformation 

equations can often be determined from the known original and transformed/distorted 

images. 

 

Figure 2.9:  Geometric transformation pixel mapping [24]. 

 
Geometric transformations allow for the reduction or elimination of geometric 

distortion that occurs during the image capture process.  Geometric transformations are 

often used in computer graphics and image analysis.  They are particularly useful for 

matching different images of the same object.  An example of such an application would 

be to match remotely sensed images taken over the length of a year.  This becomes a 

challenge because the more recent images where most likely not taken from the exact 

same position.  In order to analyze the images it is first necessary to determine the 

geometric transformation that occurred by subtracting one image from the other to 

characterize the geometric calibration that is needed.  Another application that geometric 

transformations are often used for is correcting document skew in document image 

processing applications.  This is when an image with a set orientation (a printed page) is 

scanned or copied in a different orientation.  The orientation change may be insignificant 
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at first, but if the same skew is exploited in later reproductions of the image then the 

effects may become more severe.  This becomes a problem when optical character 

recognition systems are set in place to characterize these images.    

There are four main types of geometric transformations: translation, rotation, 

sizing, and shear.  These geometric transformations are illustrated in Figure 2.10.  

Translation is simply applying an offset to the entire image in a 2-D plane.  Rotation is 

the result of rotating or applying rotary movement to the original image.  Sizing is 

achieved by scaling the original image, and shear refers to a skew in some manor by 

changing the relationship between the pixels in the image.   

 

Figure 2.10:  Geometric transformation types. 

  
From a digital image processing standpoint, there are two basic operations 

involved in geometric transformations: spatial transformations and gray-level 

Translation Translation & Rotation 

Translation, Rotation & Sizing Translation, Rotation, Sizing, & 
Shear 
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interpolation.  Spatial transformation is the rearrangement of pixels on the image plane by 

using the determined pixel coordinate transform.  This process usually yields non-integer 

values for the output points because the transforms mapped positions do not normally 

match up with the digital grid.  For this reason, gray level interpolation is necessary, and 

is defined as the assignment of integer gray level values to the pixels in the spatially 

transformed image.  Both of these methods will be discussed in detail in following 

sections of this chapter. 

2.3.1 Spatial Transformations 

As previously stated the spatial transformation process maps the coordinates of the input 

image pixel to the corresponding point in the output image.   In actuality, as seen in 

Figure 2.11,  a pixel from the original image f with point (x,y) experiences a geometric 

distortion process and produces image g with point (x’,y’).   

 

Figure 2.11:  Spatial transformation on pixel level. 

 
The spatial transform is expressed by the following equations, where r(x,y) and s(x,y) 

represent the spatial transformations that produces the output image g(x’,y’). 

                                                                x’ = r(x,y)                                                       (2.1) 

                                                                y’ = s(x,y)                                                       (2.2) 

In the above equations, x’ is denoted as the spatial transformation in the x direction, 

while y’ is the spatial transformation in the y direction.  An example of a simplistic 

spatial transformation would be if r(x,y) = x/2 and s(x,y) = y/2.  The distortion applied 

f(x, y) Geometric 
Disturbance 

g(x’, y’)
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would simply shrink the original image f to ½ its original size in both the x and y 

directions.   

If both distortion parameters r(x,y) and s(x,y) can be fully described analytically, 

then it is theoretically possible to recover the original image f by applying the inverse 

spatial transformation.  Unfortunately, in practice, it is considered impossible to generate 

a single set of analytical equations to describe r(x,y) and s(x,y) over the entire image 

plane.  To overcome this problem, a method must be devised to generate spatial 

relationships between the image pixels.  This is often done by using “tiepoints” which are 

a subset of pixels whose (x,y) locations are precisely known in the input (distorted image) 

and output (corrected image).  Tiepoints are represented as the vertices of quadrilateral 

regions defined in the image.  This is further represented in Figure 2.12. 

                              

Figure 2.12:  Corresponding tie-points in quadrilateral regions of input and output images [25]. 

 
Tie-points can be generated by a number of different methods.  A common technique is 

to embed physical features with known positions into the image during acquisition.  This 

produces a set of known points called “Reseau” marks that can be correlated between 

images before and after a geometric disturbance.    

f(x, y) g(x’, y’) 
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The use of bilinear equations to model the geometric distortion process within the 

quadrilateral region is a popular spatial transformation method.   The equations below 

characterize the x and y direction displacement. 

                                             x’ = r(x,y) = c1x + c2y + c3xy +c4                                      (2.3) 

                                             y’ = s(x,y) = c5x + c6y + c7xy +c8                                      (2.4) 

 
Corresponding quadrilateral regions between the input and output images produce a total 

of eight known tiepoints.  The above equations can be solved for the eight coefficients (ci, 

i = 1, 2,…,8) which represent the geometric distortion model that is used to transform the 

pixels located in the quadrilateral region.  For this method to be effective, enough 

tiepoints are needed to cover the entire image with quadrilateral regions.  Once the 

coefficients have been generated, the process of reconstructing the image becomes trivial.  

To find the value of the undistorted image at any point (x0,y0), it is necessary to know 

where the original distorted image f(x0,y0) was mapped to.   To find this, substitute (x0,y0) 

into the set of bilinear equations to generate the geometrically distorted coordinates x0’ 

and y0’.  Since g(x0’,y0’), is the value of the point in the undistorted image that was 

mapped to (x0’,y0’), the restored point ( )oo yxf ,ˆ  is equal to g(x0’,y0’).  An example of 

this process would be to generate the restored pixel ( )oo yxf ,ˆ .  This is simply done by 

substituting (x,y) = (0,0) into the bilinear equations to obtain (x’,y’), and setting 

( )oo yxf ,ˆ  equal to g(x’,y’) where x’ and y’ are the points just calculated.  This process is 

repeated for all the remaining pixels to restore the entire image.   

Polynomial approximation is another method that uses tiepoints between the input 

and output images to model the geometric distortion process.  In this method the 
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functions r(x,y) and s(x,y) are given by polynomial equations in x and y of degree N 

whose coefficients P and Q represent the matching points the of distorted and corrected 

images respectively.  The polynomial approximations are given in Equations 2.5 and 2.6. 

                                  

(2.5)                            

 

 (2.6) 

 

The coefficients can be determined by solving a set of linear simultaneous equations 

involving the known matching points between the images.  Solving for (N+1)2 

coefficients requires a minimum of (N+1)2 independent pairs of points.  If possible, it is 

recommended to use a higher number of matched point pairs then needed to minimize the 

mean squared error of the reconstructed image.  The polynomial order is determined by a 

trade-off between accuracy and computational cost.  In a relatively simple geometric 

distortion where the transform does not change rapidly over the image, a degree of N = 2 

or 3 with approximately 8 pairs of corresponding points is sufficient to reconstruct the 

image.  The matching points between the images must be distributed uniformly across the 

entire image.  As the degree of the approximating polynomial increases, the method 

becomes more sensitive to the distribution of the pairs of corresponding points in the 

transform.   

2.3.2 Gray Level Interpolation 

To regenerate an image it is necessary that the output contain only integer pixel values.  

This is because the digital nature of the image only defines gray level values on integer 

ij
N

i
ji

N

j
yxPyxrx ∑∑

= =

==
0

,
0

),('

ij
N

i
ji

N

j
yxQyxsy ∑∑

= =

==
0

,
0

),('



 40

components.  Under some circumstances it is possible that the spatial transformation 

method will calculate non-integer values for x’ and y’, causing mapping to locations 

where no gray level values are assigned.  Gray level interpolation modifies the gray level 

values to account for this occurrence.    

Nearest neighbor approximation is the simplest method of gray level 

interpolation.  Also known as zero-order interpolation, the gray level value is chosen to 

be the integer value closest to the calculated (x’,y’) point.  This method is illustrated in 

Figure 2.13. 

 

               

Figure 2.13:  Gray Level Interpolation using Nearest Neighbor Approach [25]. 

 
Figure 2.13 shows first the mapping of the original point (x,y) to the geometrically 

transformed point (x’,y’), second the selection of the nearest integer gray level value, and 

thirdly the assignment of the gray level value to the reconstructed image [25].  Although 

the nearest neighbor approach is easily implemented, it often produces undesirable effects 

in higher resolution images, such as the distortion of straight edges producing step like 

boundaries at transitions.   
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For smoother results a bilinear interpolation process is used for gray level 

interpolation.  The bilinear interpolation method chooses a gray level value based on the 

gray levels of its four surrounding neighbors.  In this case a gray level value is actually 

interpolated using a bilinear equation instead of just being chosen because it is the closest 

gray level.  The interpolated gray level value is denoted as v(x’,y’), and can be calculated 

using the following bilinear equation: 

                                           v(x’, y’) = ax’ + by’ + cx’y’ + d                                          (2.7) 

Since the gray level values of the four nearest integer neighbors are known, v(x’,y’) can 

be interpolated.  The four unknown coefficients can easily be determined by the four 

equations from the known integer neighboring points of (x’,y’).  When these values are 

determined, v(x’,y’) is calculated and assigned to the reconstructed image f^(x,y).  This 

process helps reduce the rigid edges produced from the nearest neighbor approach.   

2.4 Density Estimation 

In pattern classification, density estimation techniques are essential to produce optimal 

classifiers.  Prior probabilities p(ωi) and class conditional densities p(x|ωi) are rarely 

known in pattern recognition problems making it difficult to design or train classifiers.  

Furthermore, Bayes classifier, a benchmark of pattern recognition algorithms, can rarely 

be used without the knowledge of the probability distributions [26].  Fortunately methods 

exist for parameter and distribution estimations.   

 Parameter density estimation techniques assume the distribution of the probability 

is known and thereby reducing the problem to estimation of parameters such as mean and 

variance.  Methods such as the Maximum Likelihood Estimation and Bayesian 

Estimation provide good techniques for parameter estimation but assuming a classic 
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distribution is not always correct.  In most cases the distribution functions are not known 

and hardly ever fit the common distribution function assigned.  Also most probability 

densities are multimodal as opposed to the unimodal distribution of classic probability 

densities.  Additionally, it is difficult to achieve a multidimensional density by taking the 

product of a one-dimensional function.  For these reasons nonparametric density 

estimation techniques can be used to create arbitrary distributions without the knowledge 

of the underlying densities.   

 Density estimation techniques rely on the assumption that the probability P that a 

vector x will lie in region R given by: 

                                                        ∫=
R

dxxpP '' )(                                                         (2.8) 

By this assumption P represents an averaged version of the density function p(x).  The 

density function p(x) can be estimated by determining the probability of P.  Consider the 

example where a large number of n fish are observed and all those with a length that falls 

into a range predefined by R are counted resulting in the value k.   This allows an 

estimation of the probability P by performing the ratio k/n as ∞→n .  Therefore the 

integral can be approximated by the product of the density function and the volume 

enclosed by the region R, or by the ratio of the area to the volume of the region otherwise 

determined as k/n [29].  This can be seen in Equation 2.9. 

                                                 ∫ ≈≈=
R n

kVxpdxxpP )()( ''                                           (2.9) 

To ensure an accurate estimate of p(x), it is necessary to have a vast amount of data 

points that correspond to the region R.  This can be done by fixing the volume V enclosed 

by R and taking more samples that fall inside this region.  This will make certain that k/n 
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will approach the probability P, but unfortunately this will only produce an estimate or 

average of p(x) due to the variance of P in any nonzero volume region.  In order to obtain 

a true value of p(x), as opposed to just an averaged value, the volume of the region must 

approach a value of zero while the number of samples is held constant.  However, in 

common practice there is only a finite number of sample points, allowing for the 

possibility of an arbitrarily shrinking volume to become small enough to contain no 

samples.  This would provide a result of k = 0 making the density function p(x) also equal 

to zero rendering the result worthless.  Therefore a small amount of variance is required 

when determining the value of p(x) producing a tradeoff when determining the size of the 

volume.  The volume must be large enough to ensure an adequate number of samples 

falls inside the region, but small enough that p(x) remains constant in that region.  

 In order to adhere to these limitations the following procedure in Equation 2.10 is 

used.  When estimating the density at x, a sequence of regions R1, R2… Rn that contain x 

are formed.  The first region created is used with one sample, the second with two 

samples and continued on where Ri is used with i samples. 

                                                           ( )
n

n
n V

nkxp /
=                                                     (2.10) 

Vn designates the volume enclosed in region Rn, kn is the number of samples that lie in the 

region Rn, and pn(x) is the nth estimate for p(x) [26].  In order for pn(x) to be an accurate 

estimate of p(x), the following three conditions must be met: 

• 0lim =
∞→ nn
V  

• ∞=
∞→ nn

klim  

• 0/lim =
∞→

nknn
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The first condition is necessary to ensure the space averaged value P/V will converge to 

p(x) providing that the region’s volume shrinks uniformly and the density function is 

continuous at x.  The second condition is needed to guarantee that the frequency ratio kn/n 

will converge to the probability P.  Finally the third condition is essential to make sure 

that the estimate pn(x) will converge to the true value of p(x) [26].   

 Two techniques commonly used for nonparametric density estimation that adhere 

to the above criteria are Parzen windows and K- Nearest Neighbors (KNN).  The Parzen 

windows method, also known as Kernel Density Estimation, aims to shrink the region R 

by making the volume Vn a function of the total number of samples n.  The KNN method 

updates the k value by making it a function of n so that Vn increases in size until it 

encloses kn samples.  The changing size in the volume Vn ensures that both Parzen 

windows and KNN will converge to an accurate density estimation of p(x) as ∞→n . 

2.4.1 Parzen Windows 

As previously stated, the Parzen windows method provides a true density estimation by 

reducing the size of the region as the number of samples in the region increases.  In order 

to determine the number of samples entering into the region kn, a window function must 

be used.  For explanation purposes, the region Rn will be assumed to be a d-dimensional 

hypercube with edge length hn [26, 27, 28].  The resulting volume of the hypercube is 

given below in Equation 2.11. 

                                                                  d
nn hV =                                                        (2.11) 

The window function φ(u) is defined as a unit hypercube that is centered at the origin 

seen in Equation 2.12. 

                                  φ(u) = {1, |uj| ≤ 1/2, j = 1,…, d; or 0, otherwise}                       (2.12) 
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Therefore the window function φ(( x – xi) / hn),  centered at x, will be equal  to one when 

xi falls inside the unit cube, and equal to zero otherwise.  The number of samples in the 

hypercube is then given by: 
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By inserting this into Equation 2.10 the following estimate of the density is attained seen 

in Equation 2.14.  This results in a density estimation of the number of samples falling 

into the region, when the region is centered at x and has a width of h.  V represents the 

volume encompassed by the region, φ is the window kernel function, and h demonstrates 

the width of the window function [29].   
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For application purposes the hypercube window function can be substituted with a 

smoother more continuous generalized function.  Under this scenario the density 

estimation )(~ xp  becomes the superposition of the window functions.  This allows for a 

type of interpolation where the window function contributes to the estimate by 

determining the distance each sample is from x.   Typically, xi are the training data points 

being used where x is the point the density estimation is being performed.  The object of 

the window function is to numerically determine the distance between each xi and x. 
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In the case of using a normal or Gaussian function, the density estimation would 

be determined by centering each Gaussian over the training data instances and taking the 

superposition of the overlapping areas to provide a distribution.  The window width 

parameter h would then pertain to the variance of each Gaussian.  Figure 2.14 helps to 

further explain this concept [29].   

 The window width parameter h also acts as a smoothing variable or bandwidth 

feature and has a great impact on the accuracy of the density estimation.  If the value of h 

is too large, then the result will become a more generalized summation of the density.  

This is because the width of the window is so large it will now encompass all points 

surrounding x.  On the other hand, a small value for h will create a very narrow window 

causing most points to fall outside of the window.  The result of this is essentially over 

fitting the data causing multiple sharp pulses for the density that represent mainly noise.  

Optimal conditions would provide a wide window when the data is sparse and a narrow 

window for more densely populated data.   
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2.4.2 K- Nearest Neighbor  

The K-Nearest Neighbor technique offers a solution to the variability in the h parameter, 

by making the window width a function of the actual training data rather then that of the 

overall number of samples.  The KNN methods computes the density p(x) at a specific 

point by centering the volume Vn around that point x.  The volume is then increased until 

it captures kn number of points, where kn is a fixed specified function of n.  KNN 

determines the optimal window function automatically in each case providing a narrow 

window when the density of points is high, and a wider window otherwise.  Once the 

volume encompasses the k-nearest neighbors to x, the density is estimated in that area 

using Equation 2.15. 

                                                           ( )
n

n
n V

nkxp /
=                                                     (2.15) 

Although KNN provides a more accurate kernel size, it does have drawbacks that can 

make the Parzen windows technique a better choice for density estimation.  The 

disadvantages include highly noisy density estimations, densities that are often 

discontinuous, and in some cases of k values p(x) will diverge making the estimation not 

a density at all.  It should be noted that larger values of k and n will increase the accuracy 

of the density estimation greatly, thereby proving its viability as a quality density 

estimation technique.   
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CHAPTER 3:  APPROACH 
 

The primary objective of this research is to develop multi-sensor NDE data fusion 

algorithms for the prediction of information fusion measures – redundancy and 

complementarity (as illustrated in Figure 1.4); specifically to include the effects of defect 

size and sensor data heterogeneity. The approach proposed in this thesis expands on 

previously developed work in invariance transformations for compensating NDE 

signatures for the effects of variations in operational parameters [30, 31, 32, 33, 34], and 

NDE image fusion for determining defect location [12, 13]. The heart of the algorithm, in 

both these previously established methods is a geometric transformation technique that 

uses radial basis function neural networks as a “Universal Approximator” [35]. 

Most often NDE inspection signatures from different interrogation methods vary 

in dimensionality and information content making data fusion a challenging task.  This is 

evident when combining heterogeneous datasets such as two-dimensional images 

containing information related to defect size and location (e.g. a UT signature), and one-

dimensional vectors containing information regarding possible defect location (e.g. AE 

signal intensity “hits”).  The approach taken in this thesis is to first ensure that the 

information obtained from these heterogeneous datasets possess the same dimensionality, 

thereby allowing the application of previously developed data fusion algorithms. It 

therefore becomes necessary to first transform the NDE datasets to be equivalent in 

dimension and information before a data fusion process can be applied.   

 This chapter outlines a generalized procedure for combining NDE signatures of 

varying dimensionalities. The two independent NDE signals are assumed to have 

originated from the same scene or test specimen and are combined through the data 
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fusion process outlined in Figure 3.1.  The dimensionality transformation process will 

utilize the Parzen windows density estimation technique.  Once each NDE dataset 

provides equivalent information and dimensionality, the data fusion process can be 

applied.  This process consists of extraction of redundant and complementary information 

from the transformed NDE signatures of equal dimensionality and similar information 

attributes.   

 

 

Figure 3.1:  Generalized approach for multi-sensor data fusion.  
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3.1 Definition of Redundant and Complementary Information 

The fused NDE data provides two main types of information: redundant and 

complementary information.  Redundant information is the common information present 

among NDE signatures.  Redundant information increases the confidence and reliability 

of the prediction by the combination of more than one signature. Complementary 

information is the novel information that is different between the NDE signatures 

obtained from each source. Complementary information reveals features that are unique 

to each source and can be used to further characterize a defect and improve accuracy 

[13].  Figure 1.4 illustrates the resulting redundant and complementary information from 

the data fusion process. 

3.2 Dimensionality Transformation using Parzen Windows 

This technique is designed to account for NDE signatures of different dimensionality and 

information content when performing data fusion.  Many NDE inspection modalities, 

including ultrasound, MFL, X-ray, eddy-current, and thermal imaging, provide two-

dimensional images.  NDE images provide a matrix of numbers that represent the (x, y) 

position, along with the measurement data corresponding to that position.  This 

measurement data can possibly represent the magnitude of the magnetic flux density or 

the C-scan amplitude providing a measure of defect location and size.  Other NDE 

inspection techniques, such as acoustic emission, generate scatter plots of A-scan 

amplitudes at specific (x, y) positions that can be related to the location of the defect but 

provides no information related to defect size.   

 To perform data fusion with the measures defined in this approach, the NDE 

signatures must be equivalent in dimensionality and information type.  The amplitude 
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scatter plots must be transformed to two-dimensional images with pixel gray level values 

indicative of defect size and location.  As explained in Section 2.3.3, in acoustic emission 

NDE, multiple scatter plots can be used to triangulate the location (or presence) of the 

defect. Laboratory results (shown in Chapter 4) confirm that acoustic emission sources 

clusters around the defect.  Separable clusters can be transformed into two-dimensional 

images using density estimation techniques.  The Parzen windows density estimation 

technique fits a two-dimensional Gaussian distribution whose parameters are determined 

by the variance and amplitude of the AE data points.   The possible location of the defect 

is determined by the areas where the Gaussian distributions from each cluster overlap.  

The overlapped region is depicted in a two-dimensional image whose pixel gray level 

values contain defect related information similar to other NDE inspection modalities.   

   In order to generate the equivalent two-dimensional NDE images from acoustic 

emission signatures, the Parzen windows density estimate is given by  
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where x, y, and z represent the x position, y position, and amplitude of the AE source 

respectively, V is the volume encompassed by the region, and h represents the width of 

the window function.   

3.3 Geometric Transformations  

As previously stated, the redundant and complementary data fusion extraction process 

will be based on geometrical transformations.  As detailed in the background chapter, 

geometric transformations are typically an image processing technique used to reverse 

distortion in images.  Geometric transformations consist of two operations including 
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spatial transformations and gray-level interpolations.  The goal of spatial transformations 

is to apply a set of equations to transform the distorted image pixels to the location of the 

corresponding correct image pixels.  Gray-level interpolation ensures integer gray level 

values are assigned to the spatially transformed pixels.  The entire process of geometric 

transformations can be thought of as morphing one image to resemble another by 

subjecting the initial image to a set of predetermined transformation equations.  As long 

as transformation equations are known, the geometric transformation process can be 

applied and reversed with minimal loss of information.  The correct geometric 

transformation may allow features of the original image to be enhanced and suppressed 

as desired.  It is this feature that makes geometric transformations ideal for the extraction 

of desired information.   

 In this manner, geometric transformations are utilized to develop two separate 

data fusion techniques including a redundant data extraction method and a 

complementary data extraction method.  In either data extraction method, geometric 

transformations are used to suppress one type of information while enhancing the other.  

In order to determine the appropriate geometric transformation equation to extract a 

single type of information, the universal approximator is utilized.    

Under the correct circumstances, each data fusion method should provide results 

invariant to the other.  Therefore the redundant information extraction should be invariant 

to the complementary information extraction and vice versa.  Consider the results of two 

different inspection modalities performed on the same testing specimen yield x1(r, c1) and 

x2(r, c2).  In this case, r would represent the redundant information found in the two data 
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sets since it is the same for both signals.  Similarly, c1 and c2 vary between the signals 

representing the complementary information found in the data [32].   

 In order to perform data fusion on this level, explicit functions must be developed 

based on the specific signal features being analyzed.  The function’s designation will be 

given as h to parameterize the features r, c1, and c2.  As stated earlier it is necessary to 

develop two separate data fusion algorithms one for the extraction of redundant 

information and the other for the extraction of complementary information.  For 

demonstration purposes only the redundant extraction method will be outlined.  In order 

to create the redundant data extraction technique, h will be a user defined function of the 

two input signals x1 and x2 that must be invariant to the complementary information of c1 

and c2.  The described function is defined in Equation 3.2. 

                                      ( ) ( ){ } ( )rhcrxcrxf 12211 ,,, =                                          (3.2) 

The addition of two arbitrary functions g1 and g2 modify the existing equation, allowing 

for h1(r) to be determined by the following equation: 

                                                      ( ) ( ) ( )22111 xgxgrh =◊                                                (3.3) 

In this case ◊  represents a homomorphic operator (any operator for which an inverse 

exists).  For this application, the addition operator (+) was chosen for the homomorphic 

operation, which yields the following result seen in Equation 3.4. 

                                                    ( ) ( ) ( )22111 xgxgrh =+                                               (3.4) 

 To continue with this process the arbitrary functions of h, g1 and g2 must be 

defined.  The function h is a user defined function that can be altered depending upon the 

needs of the user.  In this situation g2 is an application dependent conditioning function 

that can be altered to adjust the data to provide optimal results.  For example, g2 could be 
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chosen as a logarithmic function to adjust for a wide spread of values in x2 [13].  Since h 

and g2 are known, g1 can be evaluated by using the universal approximation method to 

determine the function that equates g1 to following expression in Equation 3.5 and 

thereby providing the function to extract the redundant information.   

                                                    ( ) ( ) ( )rhxgxg 12211 −=                                               (3.5) 

 In order to approximate the function g1, the radial basis function (RBF) neural 

network is used.  Ideally, the RBF neural network will produce the best results if given 

the proper training data.  The activation function for the RBF neural network that will be 

the model of g1 can be viewed below in Equation 3.6 
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1 φλ                                               (3.6) 

In this equation the variable jλ  represents the hidden layer node weight for the jth 

iteration.  The window function or basis function of the neural network is denoted byφ , 

which was chosen as the Gaussian window function given in Equation 3.7.  The Gaussian 

window function has a variance of σ and a mean of cij.  
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Equation 3.8 displays the redundant data extraction process when the conditioning 

function g2 is set to unity.  In this equation, x1 is the training data input to the RBF neural 

network while the expression x2 – h1(r) represents the training data output.  The RBF 

neural network training process can be viewed in Figure 3.2. 

                                                        ( ) ( )rhxxg 1211 −=                                                  (3.8) 
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Figure 3.2:  Block diagram of the redundant data extraction RBF training process [13]. 

 
Once the RBF neural network has been properly trained with the training data set, the 

network can be tested using the remaining data.  Again the x1 testing data set is fed into 

the system.  In this case the redundant data is isolated from the rest of the equation by 

subtracting x2 from the equation and inverting the output.  This produces the effective 

extraction of the redundant information with a final output of h1(r). This is evident in 

Equation 3.9 and is displayed in Figure 3.3. 

                                                        ( ) ( )1121 xgxrh −=                                                  (3.9) 

 

Figure 3.3:  Block diagram of the redundant data extraction RBF testing process [13]. 

 
The complementary data extraction method follows the same procedure as the redundant 

method with the exception that h is now a function of x1 and x2 that is invariant to r.  The 

resulting RBF neural network will now be trained and tested with complementary data 

thereby solving for h2(c1, c2) as seen in Equation 3.10. 
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                                             ( ) ( ){ } ( )2122211 ,,,, cchcrxcrxf =                                     (3.10)  

Results demonstrating the redundant and complementary data extraction processes 

performed on ultrasound, MFL, thermal imaging, and acoustic emission data are 

presented in Chapter 4. 
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CHAPTER 4:  IMPLEMENTATION AND RESULTS 
 
This chapter describes in detail the implementation of the algorithms and methods for 

performing multi-sensor NDE data fusion that are developed in this thesis.  Experimental 

NDE data using the following inspection methods was collected in the laboratory:  

ultrasonic testing (UT), magnetic flux leakage (MFL), thermal imaging, and acoustic 

emission (AE).  A comprehensive test specimen suite representative of actual pipe-wall 

anomalies was fabricated and subjected to the above-mentioned NDE methods.  Details 

of the test setup and the NDE experiments are described first. Next, results demonstrating 

the identification of redundant and complementary in both homogeneous and 

heterogeneous data combinations are presented. Finally, results comparing the 

effectiveness of the algorithm for various NDE signature combinations are provided. 

4.1 Experimental Setup 

4.1.1 Test Specimen Suite  

Two different sets of test specimens were needed to perform both the homogeneous and 

heterogeneous data fusion processes.  The test specimen suite was designed to provide 

the diversity of NDE data when subjected to multi-sensor inspection.  For the 

homogeneous case, the test specimens were developed to demonstrate pitting corrosion in 

the pipe wall.  6” x 4” test specimens were fabricated using ASTM 836 steel stock 

representing pipe-wall thicknesses of 5/16, 3/8, and 1/2 inch – these can be seen in Figure 

4.1.  Three specimens, one of each thickness, have been fabricated without any defect as 

shown in Figure 4.1(a), while Figure 4.1(b) displays one of the specimens that mimics 

pitting corrosion.  A total of nine slotted defect specimens were fabricated using a milling 

machine to create test specimens with defect depths of 0.1, 0.2 and 0.3 inches for each of 
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the three specimen thicknesses.  Table 4.1 describes test specimen suite 1 used for the 

combination of homogeneous NDE data.  

 

                                                   (a)                                                              (b) 

Figure 4.1: Homogeneous test specimen suite. 

 

Table 4.1: Test specimen suite 1 used for homogeneous sensor data fusion [13]. 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00 0.5 None N/A 
01 0.5 Pitting 0.3005 
02 0.5 Pitting 0.198 
03 0.5 Pitting 0.0945 
10 0.375 None N/A 
11 0.375 Pitting 0.298 
12 0.375 Pitting 0.199 
13 0.375 Pitting 0.1105 
20 0.3125 None N/A 
21 0.3125 Pitting 0.303 
22 0.3125 Pitting 0.1955 
23 0.3125 Pitting 0.0995 

 

A separate set of test specimens was needed to perform the heterogeneous data 

fusion.  This was necessary to accommodate the testing needs of the acoustic emission 

system.  As specified in the background chapter, acoustic emission testing requires a load 

or stimulus to be applied to the specimen (usually provided during normal operation) to 

generate the acoustic energy to be measured.  For this reason six new specimens were 

fabricated that could be stressed on a loading test platform.  Two types of specimens were 
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created to simulate the loading of a pressurized gas pipeline including a uniaxial loaded 

specimen, and biaxial loaded specimen.  The premise behind the uniaxial specimen is to 

simulate the axial stress along the length of the pipe.  The biaxial specimen also mimics 

the axial stress, but additionally simulates the hoop stress which is the loading around the 

circumference of the pressurized pipe.  Using these guidelines, the uniaxial specimen was 

designed as length of metal 3 inches wide and 14 inches long.  To account for the second 

loading axis the biaxial specimen was designed as a cross shaped specimen of the same 

dimension as two perpendicularly overlapping uniaxial specimens.  The uniaxial and 

biaxial specimens can be viewed in Figure 4.2.  The design of the AE specimens was 

based on the recommendations of the Petroleum Environmental Research Forum (PERF) 

95-11 Steering Committee.  Each specimen is made of ½ inch thick SA-516 grade 70 

pipeline steel and has a saw cut ranging in depths of 0.08”, 0.16”, and 0.32” deep.  The 

saw cut defect was chosen to simulate stress corrosion cracking (SCC) in an actual 

pressurized pipeline.   Table 4.2 outlines test specimen suite 2 used for heterogeneous 

data fusion.   

 

Figure 4.2:  Test specimens for AE inspection with biaxial and uniaxial loading. 

 



 60

 

Table 4.2: Test specimen suite 2 used for heterogeneous sensor data fusion. 

Specimen # Type Plate Thickness (in) Indication Crack Depth (in) 
Uni08 Uniaxial 0.5 SCC 0.08 
Uni16 Uniaxial 0.5 SCC 0.16 
Uni32 Uniaxial 0.5 SCC 0.32 
Bi08 Biaxial 0.5 SCC 0.08 
Bi16 Biaxial 0.5 SCC 0.16 
Bi32 Biaxial 0.5 SCC 0.32 

 

4.1.2 Ultrasound Scanning Test Setup 

The laboratory setup for the ultrasonic testing consists of an immersion ultrasound test 

station seen in Figure 4.3.   A 10 MHz piezoelectric transducer was used to perform 

pulse-echo ultrasonic testing.   Precision linear actuators and controlled stepper motors 

were interfaced via custom hardware to a PC providing real-time control and display of 

A-scan, B-scan, and C-scan data.  Each specimen in the suite was scanned to produce a 

resultant time-of-flight (TOF), and amplitude ultrasound images to be utilized for defect 

characterization.  Figure 4.4 and 4.5 contain two separate datasets of ultrasound TOF 

images obtained from the test specimen suite shown in Table 4.1.  Figure 4.6 displays the 

resulting amplitude ultrasound images obtained from the test specimen suite shown in 

Table 4.2 .  All of the scanned images in the datasets below have been cropped and 

registered with a resolution of 100 pixels per inch.   
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Figure 4.3:  Ultrasonic testing station. 
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Figure 4.4:  UT C-scan TOF NDE signatures from test specimen suite 1: Dataset 1.  
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Figure 4.5:  UT C-scan TOF NDE signatures from test specimen suite 1: Dataset 2. 
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Figure 4.6:  UT C-scan amplitude NDE signatures from test specimen suite 2. 
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4.1.3 Magnetic Flux Leakage Test Setup 

The magnetic flux leakage testing platform seen in Figure 4.7 induces the required 

magnetic field by passing 200 amps through the specimen using a HP 6571A DC high 

output power supply.  The high current generates the magnetic flux that flows through the 

specimen.  An F. W. Bell 9900 Gaussmeter with Hall probe is used to measure the 

leakage magnetic flux density.  The probe scans over the surface area of the specimen 

using a three directional linear actuator system.  A computer and data acquisition 

software are used to collect the x, y, and z directional components of the magnetic flux 

density.  Figures 4.8 and 4.9 contain two separate datasets of the tangential y component 

MFL scans of the homogeneous test specimen suite.  Again the images seen below have 

been cropped and register to 100 pixels per inch.  

 

Figure 4.7:  Magnetic flux leakage testing system. 
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Figure 4.8:  Y-component MFL NDE signature for test specimen suite 1: Dataset 1. 
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Figure 4.9:  Y-component MFL NDE signature for test specimen suite 1: Dataset 2. 
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4.1.4 Thermal Imaging Test Setup 

The thermal imaging test set up is shown in Figure 4.10.  Each of the specimens is held 

upright on a thermally insulated test surface.  Two high output 110 W Halogen lamps 

were directed at the side of the specimen containing the defect.  The heat sources were 

applied for a period of 10 seconds while a highly sensitive FLIR Systems 

Microbolometer camera was used to capture a thermal image every second over a 20 

second interval.  The entire experiment is performed in complete darkness to prevent any 

residual light from interfering with the test.  Each 20 second testing period produces 20 

images that that can be used to monitor the heating and cooling cycle of test specimen.  

Depending on the specimen thickness and defect depth the defect is visible sometime 

during this testing period.  The resulting thermal image datasets performed on test 

specimen suites 1 and 2 can be seen in Figures 4.11 and 4.12 respectively.   

 

 

Figure 4.10: Thermal imaging test setup. 
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Figure 4.11:  Thermal images from test specimen suite 1: dataset 1. 
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Figure 4.12:  Thermal images from test specimen suite 1: dataset 2. 
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4.1.5 Acoustic Emission Test Setup 

The acoustic emission experimental data is collected using a dual axis loading test 

platform that can be seen in Figure 4.13.  The loading platform is designed to reproduce 

the loading stresses of a pressurized pipeline on the specimens outlined earlier in the 

heterogeneous test specimen suite.  The testing platform utilizes hydraulic rams to apply 

a maximum of 50,000 lbs along the first loading axis and 25,000 lbs along the second 

loading axis to simulate the axial and hoop stress of a pressurize gas transmission 

pipeline.  Load cells are used to continually monitor the stress being applied to the test 

specimen.  

 

Figure 4.13:  Acoustic emission loading platform. 

 

A series of nine acoustic piezoelectric sensors interfaced with a computer are 

monitoring any acoustic emission activity that may occur.  The use of multiple sensors 

allows for triangulation of the acoustic emission source.  Figure 4.14 shows the acoustic 
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emission sensor placement on both the uniaxial and biaxial specimens.  Sensors 6, 7, 8, 

and 9 are configured in an array to detect extraneous noise created by the testing platform 

from corrupting the acoustic activity generated by the specimen.    

 

Figure 4.14:  Acoustic emission sensor placement. 

 

All six specimens in test specimen suite 2 were loaded to 30 ksi in the primary axis and 

15 ksi in the secondary axis.  The specimens were loaded in steps of 2500 lbs until the 

desired load was achieved.  Acoustic emission sensors 1 through 5 were arranged around 

the defect to listen for any acoustic activity caused by crack growth during the loading 

process.  The resulting acoustic emission data can be viewed in Figure 4.15(a) through 

(f).  The scatter points represent the acoustic emission sources that could be triangulated 

with the sensor array.  The vertical black line represents the location of the defect. 
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(a) AE data from uniaxial specimen with 0.08” deep defect 
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(b) AE data from uniaxial specimen with 0.16” deep defect 
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(c) AE data from uniaxial specimen with 0.32” deep defect 
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(d) AE data from biaxial specimen with 0.08” deep defect 
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(e) AE data from biaxial specimen with 0.16” deep defect 
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(f) AE data from biaxial specimen with 0.32” deep defect 

 
Figure 4.15: Acoustic emission dataset. 
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4.2 Results 

The results section will be segmented into the homogeneous data fusion section and the 

heterogeneous data fusion section.  Each section will discuss the details behind the data 

fusion process and how the redundant and complementary information was extracted 

from the NDE inspection data.  Training and testing sets will also be defined for each 

section followed by the resulting fused data with redundant and complementary 

information.   

4.2.1 Definition of Redundant and Complementary Information 

It is the goal of the RBF neural network to interpolate the redundant and complementary 

information as well as the intensity of the defect region.  To perform this operation the 

neural network must be trained in the difference between redundant and complementary 

information.  Therefore it is necessary to develop a definition that defines redundant and 

complementary information for multi-sensor NDE data in terms of the defect geometry.   

Figure 4.16 illustrates the definition of redundant and complementary information used in 

the exercise of the data fusion algorithms.   

 
Figure 4.16:  Redundant and complementary data definitions between two NDE signatures [13]. 
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Pixel gray values are assigned corresponding to the depth of the defect at that location.  

Complementary information in two NDE images are defined as those distinct pixels in 

each of the NDE signatures that are present in the defect region, but are not shared 

between them. Redundant information in two NDE images are defined as those common 

pixels that are present in both NDE signatures and are also present in the defect region.  

During the implementation of the data fusion approach, discrete Cosine transforms 

(DCTs) of the gray level images have been obtained and the 80 highest spectral 

coefficients have been used as feature vectors that are input to the RBF neural network. 

4.2.2 Homogeneous Training and Test Datasets 

The homogeneous data fusion is performed on the NDE inspection data collected from 

the ultrasound, MFL, and thermal imaging systems.  In each test platform the twelve 

specimens have been scanned twice on two separate instances to provide additional data 

for training and testing the neural network.  The data fusion technique is performed on 

three different instances between: UT & MFL, Thermal & UT, and MFL & Thermal.  

Each test sequence includes three separate trials that vary the training and test data 

inputted into the network.  The training and test data segmentation for each trial is listed 

below in Tables 4.3 through 4.5.  

Table 4.3: Trial 1 training and test dataset. 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
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23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 
13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

 

Table 4.4: Trial 2 training and test dataset 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 
13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

Test dataTraining data 

Test dataTraining data 
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Table 4.5: Trial 3 training and test dataset 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 
13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

 

The results in Figures 4.17 through 4.25 represent the three trials for each of the 

three combinations of NDE data.  Included in each trial are the training and test data 

outputs of the neural network seen in the subplots (a) through (x).  A border surrounding 

the subplot figure designates the test data outputs.  The subplots (a) through (x) represent 

the output for the specimens listed in the order of the trial tables, with the specimens 

designated for testing shown last.  For example subplot (a) represents the output from 

Specimen 00a, while subplot (b) represents Specimen 03a, and so on.  In certain 

Test dataTraining data 
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combinations, outlying training data instance were excluded from training and testing 

causing there to be fewer subplots in those cases.  Each subplot figure is segmented into 

six images.  The first row includes the input data from each of the NDE testing 

modalities.  The second row represents the redundant and complimentary output 

predicted by the algorithm while the third row shows the desired redundant the 

complementary output.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.1 Ultrasound & MFL Data Fusion Results 
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Trial 1: UT & MFL Results 
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                          (c) Specimen 02a                                                           (d) Specimen 01a         

 

Trial 1: UT & MFL Results (cont.) 
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                           (e) Specimen 10a                                                          (f) Specimen 13a         
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                           (g) Specimen 12a                                                         (h) Specimen 11a         

 

 

Trial 1: UT & MFL Results (cont.) 
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                           (i) Specimen 20a                                                        (j) Specimen 23a         
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Trial 1: UT & MFL Results (cont.) 
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Trial 1: UT & MFL Results (cont.) 
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Trial 1: UT & MFL Results (cont.) 
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                           (u) Specimen 22b                                                       (v) Specimen 01a         

Figure 4.17: UT & MFL Combination Trial 1 

Training Data: (a) – (u); Test Data: (v)  

Trial 2: UT & MFL Results 

x1, MFL Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

    

x1, MFL Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

 

                            (a) Specimen 00a                                                            (b) Specimen 03a      

Trial 2: UT & MFL Results (cont.) 
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Trial 2: UT & MFL Results (cont.) 
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Trial 2: UT & MFL Results (cont.) 
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Trial 2: UT & MFL Results (cont.) 
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Trial 2: UT & MFL Results (cont.) 
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Figure 4.18: UT & MFL combination Trial 2. 

Training Data: (a) – (s); Test Data: (t), (u), (v)  

Trial 3: UT & MFL Results 
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Trial 3: UT & MFL Results (cont.) 
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Trial 3: UT & MFL Results (cont.) 
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Trial 3: UT & MFL Results (cont.) 
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Trial 3: UT & MFL Results (cont.) 
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Trial 3: UT & MFL Results (cont.) 
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Figure 4.19: UT & MFL combination Trial 3. 

Training Data: (a) – (r); Test Data: (s), (t), (u), (v) 
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4.2.2.2 Thermal & UT Data Fusion Results 

Trial 1: Thermal & UT Results 
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Trial 1: Thermal & UT Results (cont.) 

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

    

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant
D

E
S

IR
E

D
 O

U
TP

U
T:

Complementary

 

                            (e) Specimen 10a                                                            (f) Specimen 13a      

 

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

    

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

 

                            (g) Specimen 12a                                                            (h) Specimen 11a      

 

 



 95

Trial 1: Thermal & UT Results (cont.) 
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Trial 1: Thermal & UT Results (cont.) 
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Trial 1: Thermal & UT Results (cont.) 
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Trial 1: Thermal & UT Results (cont.) 
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Figure 4.20: Thermal & UT combination Trial 1. 

Training Data: (a) – (w); Test Data: (x)  
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Trial 2: Thermal & UT Results 
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Trial 2: Thermal & UT Results (cont.) 
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Trial 2: Thermal & UT Results (cont.) 
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Trial 2: Thermal & UT Results (cont.) 
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Trial 2: Thermal & UT Results (cont.) 
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Trial 2: Thermal & UT Results (cont.) 
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Figure 4.21: Thermal & UT combination Trial 2. 

Training Data: (a) – (u); Test Data: (v), (w), (x)  
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Trial 3: Thermal & UT Results 
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Trial 3: Thermal & UT Results (cont.) 
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Trial 3: Thermal & UT Results (cont.) 
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Trial 3: Thermal & UT Results (cont.) 

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

    

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant
D

E
S

IR
E

D
 O

U
TP

U
T:

Complementary

 

                            (m) Specimen 00b                                                            (n) Specimen 03b      

 

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

    

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

Redundant

D
E

S
IR

E
D

 O
U

TP
U

T:

Complementary

 

                            (o) Specimen 02b                                                            (p) Specimen 01b      

 

 



 109

Trial 3: Thermal & UT Results (cont.) 
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Trial 3: Thermal & UT Results (cont.) 
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Figure 4.22: Thermal & UT combination Trial 3. 

Training Data: (a) – (t); Test Data: (u), (v), (w), (x)  
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4.2.2.3 MFL & Thermal Data Fusion Results 

Trial 1: MFL & Thermal Results 
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Trial 1: MFL & Thermal Results (cont.) 
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Trial 1: MFL & Thermal Results (cont.) 
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Trial 1: MFL & Thermal Results (cont.) 
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Trial 1: MFL & Thermal Results (cont.) 
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Trial 1: MFL & Thermal Results (cont.) 
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Figure 4.23: MFL & Thermal combination Trial 1. 

Training Data: (a) – (u); Test Data: (v)  
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Trial 2: MFL & Thermal Results 
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Trial 2: MFL & Thermal Results (cont.) 
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Trial 2: MFL & Thermal Results (cont.) 
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Trial 2: MFL & Thermal Results (cont.) 
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Trial 2: MFL & Thermal Results (cont.) 
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Trial 2: MFL & Thermal Results (cont.) 
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                            (u) Specimen 12b                                                            (v) Specimen 22b      

Figure 4.24: MFL & Thermal combination Trial 2. 

Training Data: (a) – (s); Test Data: (t), (u), (v)  
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Trial 3: MFL & Thermal Results 
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Trial 3: MFL & Thermal Results (cont.) 
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Trial 3: MFL & Thermal Results (cont.) 
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Trial 3: MFL & Thermal Results (cont.) 
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Trial 3: MFL & Thermal Results (cont.) 
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Trial 3: MFL & Thermal Results (cont.) 
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                            (u) Specimen 12b                                                            (v) Specimen 11b      

Figure 4.25: MFL & Thermal combination Trial 3. 

Training Data: (a) – (r); Test Data: (s), (t), (u), (v)  
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4.2.3 Heterogeneous Data Fusion 

In order to perform a redundant and complementary data extraction process on acoustic 

emission data it is first necessary to define how the location of AE source points 

corresponds to the position and shape of the actual defect.  Unlike the homogeneous NDE 

sources, acoustic emission data does not provide the user with geometrical shape 

information of the defect, but only provides an estimation of where the defect is located.  

To perform redundant and complementary data extraction it is first necessary to relate the 

acoustic emission point data to a specific defect location area.  Once this process has been 

performed the homogeneous data fusion process can be employed to extract the 

redundant and complementary information.   

 The acoustic emission testing performed in the laboratory seemed to indicate that 

the acoustic emission source locations do not fall directly over the defect area, but rather 

form clusters located around the defect.  This is also evident from the acoustic emission 

data seen in Figure 4.15.  From this information the assumption can be made that the 

defect is located somewhere in the area surrounded by the AE source locations.  In order 

to perform the data fusion process it is necessary to characterize this area of the defect so 

it can be combined with the other NDE testing modalities.  The first method in 

characterizing this area was to perform a K-means clustering algorithm on the raw AE 

data to determine how many clusters the data had been formed into and which points fell 

into each cluster.  Figure 4.26 shows the AE data from the uniaxial specimen with the 

0.16 inch deep defect (also seen in Figure 4.15 (b)) after the cluster algorithm has been 

performed.  In this case two separate classes of data have been clearly defined on either 

side of the defect. 



 130

5 5.5 6 6.5 7 7.5 8 8.5 9
5

5.5

6

6.5

7

7.5

8

8.5

9

 

Figure 4.26:  K-means clustering on AE data of  uniaxial specimen with 0.16” deep defect. 

 After the two classes of data have been defined, a Parzen windows density 

estimation is performed on each class separately which can be seen in Figure 4.27.  The 

Parzen windows approximation fits a two-dimensional Gaussian plot over each class of 

the data to demonstrate the areas of higher density of the AE sources.     

class 1 class 2

 

Figure 4.27:  Parzen windows density estimation of each class separately. 

The Parzen window images are then overlaid on top of each other.  Where the density 

estimations overlap becomes the region in which the AE data predicts the presence of a 
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defect.  To perform this process the Parzen window images are converted to binary 

images seen in Figure 4.28.  A logical AND is then performed between the two image 

matrixes to determine where the images overlap.   

class 1 class 2

 

Figure 4.28:  Binary representation of Parzen windows AE images. 

For the AE tests performed in this project, the number of clusters of data surrounding the 

defect could vary from one to four classes.  The overlapping areas of the Parzen windows 

images were then weighted from 0 to 1 in increments of 0.25, i.e.,  if two classes overlap, 

the overlapped area will be weighted at 50 percent, and for three classes overlapping 75 

percent and so on.  This allows for a high volume of data surrounding the defect to have a 

stronger influence on the data fusion process.  Figure 4.29 shows the resulting defect area 

represented from the acoustic emission source data shown above in Figure 4.26. 

 

Figure 4.29:  Defect location representation from AE data. 
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The above process was performed on all of the acoustic emission data to generate AE 

location estimation plots.  The resulting images seen in Figure 4.30 can then be inputted 

to the redundant and complementary data extraction algorithm.   

AE uniaxial 0.08" AE uniaxial 0.16" AE uniaxial 0.32"

AE biaxial 0.08" AE biaxial 0.16" AE biaxial 0.32"

 

Figure 4.30:  AE location estimation plots for the data fusion algorithm. 

 

4.2.4 Heterogeneous Training and Test Datasets 

The heterogeneous redundant and complementary data fusion combination process was 

performed on ultrasonic and acoustic emission data taken of test specimen suite 2.  Since 

only six data instances were available for training and testing purposes only two trials 

were performed.  Trials 1 and 2 seen in Table 4.6 and 4.7 show the division of training 

and test data. 
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Table 4.6: Trial 1 training and test dataset. 

Specimen # Type Plate Thickness (in) Indication Crack Depth (in) 
Uni08 Uniaxial 0.5 SCC 0.08 
Uni16 Uniaxial 0.5 SCC 0.16 
Uni32 Uniaxial 0.5 SCC 0.32 
Bi08 Biaxial 0.5 SCC 0.08 
Bi16 Biaxial 0.5 SCC 0.16 
Bi32 Biaxial 0.5 SCC 0.32 

 

 

 

Table 4.7:  Trial 2 training and test dataset. 

Uni08 Uniaxial 0.5 SCC 0.08 
Uni16 Uniaxial 0.5 SCC 0.16 
Uni32 Uniaxial 0.5 SCC 0.32 
Bi08 Biaxial 0.5 SCC 0.08 
Bi16 Biaxial 0.5 SCC 0.16 
Bi32 Biaxial 0.5 SCC 0.32 
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4.2.4.1 Acoustic Emission & Ultrasound Data Fusion Results 

Trial 1: AE & UT Results 
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Trial 1: AE & UT Results (cont.) 
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                                (e)                                                                    (f) 

Figure 4.31: AE & UT Combination Trial 1. 

Training Data: (a) – (e); Test Data: (f)  

Trial 2: AE & UT Results 
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Trial 2: AE & UT Results (cont.) 
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Figure 4.32: AE & UT Combination Trial 2. 

Training Data: (a) – (d); Test Data: (e), (f)  
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4.2.5 Discussion of Results 

The following observation can be made based on the data fusion results shown in Figures 

4.17 through 4.25. There exists significant agreement between the predicted and desired 

redundant and complementary defect depth related information for all instances of 

training data – this indicates that the information provided to the neural network is 

distinct and the resulting matrices are non-singular; and is clearly visible especially the 

UT and MFL data combinations (see Figures 4.17, 4.18, and 4.19). The poorest 

performance occurs for MFL and thermal image data combinations – this is to be 

expected since MFL images exhibit “blooming” and cannot precisely identify the edges 

of the defect (see Figures 4.23, 4.24, and 4.25). This situation is worsened for thermal 

images where the shallowest defects are barely visible (Figures 4.11 and 4.12). 

The homogeneous data fusion results shown in Figures 4.17 through 4.25 are 

summarized in the Figures 4.33, 4.34 and 4.35 for purposes of comparison.  The mean 

squared error (MSE) difference between the predicted and desired fused images for both 

redundant and complementary information, for test data cases is shown. The following 

observations can be made: 

1. Over all three trials, the combination UT and MFL images produces the lowest 

MSE for both redundant and complementary information. This is to be expected, 

since quantity of information related to the geometry and location of the defect is 

present in the following NDE methods in decreasing order: UT, MFL, thermal 

imaging and AE. 

2. For all three NDE data fusion combination, the lowest MSE was obtained in Trial 

1, where the maximum amount of training data was present. This allowed the 
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neural network data fusion algorithm to accurately interpolate instances of test 

data. The exact opposite is true of Trial 3. 

3. For almost every data fusion combination and trial number, the redundant 

information extraction algorithm produced a lower MSE then the complementary 

information extraction algorithm.  This is believed to be the result of the 

redundant training images containing more overall information then the 

corresponding complementary images.   

4. Overall, algorithm’s predicted results matched the desired output values.  The 

total average of the MSE for all combinations of test data was only 0.0201.  Very 

few outputs did not meet the expectations due to poor input data for that test case.  

All the test data outputs are highlighted red in Figures 4.17 through 4.25 where 

for the most part, the test data shows excellent results.  
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Figure 4.33:  MSE plot of Trial 1 for homogeneous data fusion. 
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Figure 4.34:  MSE plot of Trial 2 for homogeneous data fusion. 
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Figure 4.35:  MSE plot of Trial 3 for homogeneous data fusion. 

 

 The results from the acoustic emission and ultrasound combination can be seen in 

Figures 4.31 and 4.32.  It can be seen from these figures that both Trials 1 and 2 provided 

very good training data outputs with an average training output MSE of 2.86 x 10-8.  The 



 140

test results and are summarized in Figures 4.36 and 4.37 where the MSE of Trial 1 to 

Trial 2 for both redundant and complementary information are compared.  Both Trial 1 

and Trial 2 provided minimal MSE compared to the homogeneous data fusion 

combinations.  This is despite the appearance of the actual output images seen in Figures 

4.31(a) and 4.32(a) & (b) looking incorrect.  In both cases the algorithm made an effort to 

extract the desired information and suppress the unwanted information although it was 

not totally successful.  This is the result of very limited amount of data that was used to 

train the network.  This procedure shows great promise due to the fact of a very minimal 

amount of error in the training data.  With a greatly increased data it is expected the 

heterogeneous data fusion method will produce results comparable to that of the 

homogeneous data fusion method.   
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Figure 4.36:  MSE plot of Trial 1 for heterogeneous data fusion. 
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Figure 4.37:  MSE plot of Trial 2 for heterogeneous data fusion. 
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CHAPTER 5:  CONCLUSIONS 

Assuring the integrity of the nation’s gas transmission pipeline network is critical not 

only for public safety, but also for maintaining uninterrupted access to a key energy 

supply. Accurate and reliable determination of pipeline condition requires augmentation 

and improvement of current inspection tools from using single interrogation methods to 

multiple ones. This calls for a consequent improvement in data characterization 

algorithms, both in management of data volume, but also in defect characterization. This 

thesis has described the development and application of multi-sensor data fusion 

algorithms for a specific set of NDE defect characterization problems. A judicious 

combination of signal and image processing strategies, including geometric 

transformations, radial basis function approximations and Parzen windows density 

estimations, have been used to fuse data from both homogeneous and heterogeneous 

sensors. Application results using data from laboratory experiments demonstrate the 

consistency and efficacy of the proposed approach. 

 One of the principal advantages of the proposed approach for data fusion is that 

the method explicitly provides numerical measures of the effectiveness of the algorithm 

in terms of information redundancy and complementarity.  Furthermore, the definitions 

of these quantities can change with application – although the algorithm is not required 

to. Such opportunities for user definition lends to the versatility of this approach, 

allowing for possible future applications of multi-sensor data fusion outside the realm of 

gas transmission pipeline NDE. 
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5.1 Summary of Accomplishments 

The principal contributions of this thesis are listed along with the set of original 

objectives (that are revisited) below: 

5. The design and development of data fusion algorithms for the prediction of 

specific information fusion measures – redundancy and complementarity – 

geometric transformations in combination with radial basis function networks and 

Parzen windows density estimation techniques have been used. 

6. The application of the data fusion algorithms to accurately and confidently 

predict the varying depth profile of surface-breaking pipe wall defects in a gas 

transmission pipeline – combinations of UT, MFL, thermal imaging and AE NDE 

data have been fused to predict defect depths in the range of 0.01” – 0.03” for 

pipe-wall specimens of thicknesses 5/16” – 1/2”.  The average MSE between the 

predicted and desired values for the training and test data for all the combinations 

is 0.0028 and 0.0201 respectively.  

7. The demonstration of the algorithms ability to fuse data from multiple 

homogeneous and heterogeneous sensors – redundant and complementary 

information related to the location and size of a pipe-wall defect was predicted 

using homogeneous data combinations that include UT-MFL, UT-thermal 

imaging and MFL-thermal imaging; the heterogeneous data combination includes 

UT-AE. 

8. The design and development of experimental validation test platforms and 

protocols for measuring the efficacy of the data fusion techniques – a biaxial 

loading test platform was developed for obtaining AE signatures; standard 
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protocols were used for obtaining UT, MFL and thermal imaging NDE signatures. 

A comprehensive test specimen suite was fabricated to be indicative of gas 

transmission pipe-wall anomalies. Multiple scans were obtained from the test 

specimens and database of approximately 500 NDE signatures was created. 

 

5.2 Directions for Future Work 

Although, the research work presented in this thesis demonstrates that the stated 

objectives have been met, many concerns and issues still require attention to develop 

more versatile and comprehensive data fusion information extraction methods.  This is 

essential to the security and viability of the nation’s natural gas transmission pipeline 

infrastructure.  The objectives of this thesis have been met as evident from the results 

presented, but a considerable amount of research still must be applied before this multi-

sensor data fusion technique can be used an industry level.  Future developments of this 

research should include: 

1. Additional acoustic emission data must be gathered in order to rigorously test the 

heterogeneous data fusion algorithm.  Multiple specimens must be fabricated that 

can accommodate the acoustic emission loading platform as well as the ultrasonic 

scanning, MFL, and thermal imaging test setups.   

2. The current data fusion procedure must be adapted to include the combination of 

information from singular events such as: time-history, anecdotal evidence, and a 

priori knowledge.   
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3. In order to truly test the data fusion algorithm, actual pipeline data must be 

obtained or collected.  At this point, modifications can be made to adapt the 

algorithm for real world NDE data as opposed to current experimental data. 

4. Apply the data fusion algorithms to applications outside the NDE realm to test its 

versatility.  A possible application could be hardware implementation such as the 

development of a smart sensor system.   

5. Incorporate the data fusion algorithm into the virtual reality platform for use in 

data integration, visualization, and data management.  This is essential due to the 

vast amounts of data generated from NDE inspection of gas transmission 

pipelines.   

The accomplishment of these tasks could help to play a vital role in the safety and 

future of the natural gas transmission pipeline network.  As the current infrastructure 

continues to age, it is extremely important that multi-sensor data fusion methods such as 

those described in this thesis are implemented and put into action.  No longer can a single 

NDE inspection method characterize the rapidly changing pipeline.  It is anticipated that 

the methods and techniques developed in this thesis will play a significant role in the 

future on the nation’s natural gas transmission pipeline network.   
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