Completely Replicable Functions
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Abstract. We find all completely replicable functions with integer coeffi-
tabulate the new ones, and summarize the computations needed.

-"t'rous moonshine. To each conjugacy class of cyclic subgroups, (m),
of the Monster simple group, M, a modular function, J(my(z), was found
empirically in [CN] for which the g-coefficients (Fourier coefficients) are the
values of the trace in the so-called head representations. For the identity
subgroup the function is the elliptic modular function J(z) = j(z) — 744.
Here, and throughout, the computations are simplest to describe if we as-
sume all our g-series to have constant term zero. .

Replication. Replication enables us to associate with a formal g-series

f=3 aig, aa=1, a=0, (1)

i==1

a; € C, certain functions of the same form, called the replicates of f. Al-
though f is a formal g-series, it is useful to write f = f(2), where g = €27+,
consistent with the properties of modular functions. We tacitly omit de-
scribing the Galois action [N], which is trivial when the g-series coefficients
are rational integers.

The prototypical replication relation is that between the monstrous moon-
shine function J(my(z) for (m) C M and its p** replicate J(mey(2) for (m?).
Conway and Norton [CN] note that monstrous moonshine functions satisfy
identities involving f and its replicates which they call replication formulae.
A replicable function is a function with a g-expansion of the form (1) for
which replicates exist. Such functions also satisfy the replication formulae.

Norton [N] has conjectured that a function ¢+ Y% aidai€Zi>1,
1s replicable if and only if either a; = 0 for all i > 1 or it is the canonical
Hauptmodul for a group of genus zero, containing I'y(N) for some N and
containing 2z — z 4 k precisely when k is an integer.
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Hecke Operators. Motivation for introducing the twisted Hecke operator
T,. derives from the action of the standard Hecke operator, T, ,on J(2) =
j(z) — 744, given by

I, = % Z J((az +b)/d) = P.(J(2))/n (2)

ad=n

0<h<d

which value is a polynomial in 7 since the sum is invariant under the modu-
lar group and J is a Hauptmodul holomorphic in the upper half-plane. Note
that P, is the unique polynomial such that P.(J(z)) has a g-expansion ¢ "
mod ¢Z[q].
. We introduce a twisted Hecke operator T, which, like Tn , acts linearly
on g-coefficients yet takes certain functions f(z) to Pa(f(2))/n. i
More precisely, we call a function f replicable if there are replicate func-
tions {f(®)} such that

| PAfNn=1 3 £z +b)/d), o

ad=n

0<h<d

with Pa(f(2)) = ¢~" mod gZ[g], and we define f|Tu to be the right side of
(3).

- The monic polynomial Pn(t) € Zlay,az,. .- ,an—1][t] is unique and we
shall abuse notation by using P, to denote the polynomial in each case.
This definition of T, is provisional since we have not yet incorporated the
i Galois action.

(i Note that J(z) of level N =1 is the sole normalized modular function on
| which the Hecke operators T, act as in (2) for all n, since (N,n) = lio
{ all n. Replicable functions are defined so as to share this property under.
i the action of the twisted Hecke operator fn. In this case, however, the sum
‘nvolves both f and its replicates. :

! From Norton [N] it follows that ..
2 Pat)
3 Bt in — _in(q(£(2) - 1), 4
n=1 " |
a,nd 50 Pl(t) = tPg(f) = tg = 20.1. P;(f} = '53 - 3a1t i 3{,]'.'1..‘ B

We define coefficients {Hm,n} by

fifa=1Pa(f(z))=na " + Y. Hapd™ 2l

m=1

——_
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that .in . 1s the coefficient of ¢™ in f]fn and ng is the coefficient of
: '@i?”aﬁ"(dmoted H,, by Norton).

-g' We find that Pn(t) satisfies the recurrence relations:

r—2

& B(t)=1, rar1+ Z axPr_k1(t) =tP4(t), r=12,... (6)
k=—1

while }?,.,, = (r + s)H,,, satisfies

r—1 s—1

I?r,a =(r+s)Heps-1+ E Z -Hm-l-n—lﬁr—m,s—n- (?)

m=1n=1

Norton has another definition of replicability that is somewhat easier to
use in practice.
A function f is replicable if Hy, , = H, , whenever mn = rs and
ged(m,n) = ged(r, s).
This is equivalent to the definition given above: assume f is replicable in
Norton’s sense, then set

| P =Y oy (8)
1==—1
where
" =k p(Hs i, i>0, a¥ =1, aP =0 (9)

d|k

and u is the Mobius function. It follows that fY = f. For any pair r,s €
2>°, we find, by Mobius inversion, that

1
Hr,rs = Z Eai’lfd’ (10)
dlr

nd, since f is replicable under Norton’s definition, this implies that

L (@)
Hun= 3 S0mn/e (11)
d|(m,n)

vhich, from (5), gives (compare Serre [S, Chap.VII, §5.3))

== 3 FO(az +)/d). (12)

ad=n
0<b<d
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Conversely if f has replicates which satisfy (12) it follows that the Hiigof
(5) satisfy (11) and so f is replicable as defined by Norton.
When n = p, a prime, we see that

p—1

pf|Ty = fP(pz) + ) f((z +K)/p)- (13)

k=0

In terms of the standard operators Up and Vp where

Up: anq" — Gpnq >

Vp:ang" — anq"",

we have

pfITy = FI(¥Vs +pUs) = Pp(£(2)) (14
where TP acts as an Adams operator (see Mason [Mas]); equivalently we
may compute f () from

fP(pz) = Pp(f(2)) — 2f|Up- (15)

Complete replicability. A function is completely replicable if it and all
its replicates are replicable. One would expect properties of the monstrous
moonshine functions to be shared by the completely replicable functions '_
(and they are). At the end we tabulate all non-monstrous completely repli- |
cable functions with rational integer coefficients. Complementary monstrous '
data are found in [CN] and [MS]. :

Method of Calculation. To find all completely replicable functions, we
computed the larger class of all completely 2-replicable functions. These are
functions whose iterated duplicates are replicable. Table 1 of [N] contains
a list of all completely 2-replicable functions satisfying f @) = f. We call’
g a replication p root of f if ¢® = f. With a small prime 7, the repli-;
cation square roots of these functions are found by first testing all choices
of a1, az,as and as mod 27 for replicability using replication identities and
:dentities derived from them (see [CN]). Solutions are then lifted by 7-adic
approximation using identities up to Hiys = Hs 20 so that the solutions
found mod 2, for some prime , lift uniquely to ok k> 1.

These calculations require further coefficients which are computed from
a1, az,as,as and the coefficients of f(? via the generalized Mahler recur;
rence relations [Mah] (compare [B]) derived from:

F(102) + f(nz) + [ (z) = f(2) — 2an,

(1
(f(mz)+ f(‘YnZ))f(z) (722) + f(y02)f(mz) = 2a2f — @ +2(as— @)
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g /10 (11 /2 0\,
70—02371‘_02172—011

namely, for k > 1:

k-1
1/.2 (2)
agk = azk41 + g ajazk—j + 3(axy —a;”’),
Jj=1
k
1¢ 2 (2) 1¢,2 (2)
Q4k41 = Q2k+43 + 5 ajazk+2—; + 5(ak41 — a;}) + 3(ads +ayy)
F=1
k-1 2k—1
2) ;
— azasg + E aﬁ- Qak—4j + E (-1)Yajask—j,
=1 1=1
1
k (17)
Gak42 = A2k42 + g @jazk+1—5, and
i=1
k+1
1 2 2)
Cohgs-=Uaknet E :aia““—f — 2(a2k41 — agk+1)
j=1
k 2k
(2) '
— QzQ2k41 + E a;" agky2-_45 + E (=1Yajaqk42—;j.
j=1 j=1

Replication square roots are repeatedly extracted until functions which have
1o replication square roots mod 27 are found. In addition the prime power
maps are calculated. In each case enough coefficients of the p** replicates
of the non-monstrous functions are computed from (15) to reduce the num-
ber of candidate functions to at most one. A useful check is given by the
tongruence:

fP=f (modp).

Programs in Ford’s language ALGEB [F] were written from procedures
senerated by Maple [M]. For the functions ¢=! and ¢! + ¢ we found no
brime for which the solutions mod 2 lifted uniquely to 27*%, k > 1. The
function ¢~ — ¢ is a root of ¢! + ¢ and we have assumed that no other
f00ts of these functions exist. The recursive relations given here, together
Wwith the monstrous data in [CN] or [MS], determine the g-series.

Table. The table contains the initial coefficients ai,as,as, and as of 157
flon-monstrous, completely replicable functions, which we believe to be the
omplete set. Bach function is described by a number which is its “repli-
Cation level”, together with a small letter identifier; the prime power-maps
follow, Capital letter identifiers indicate monstrous functions, for which
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ATLAS notation is used as in [CN]. The ghosts [CIN] 25Z, 49Z, and 50Z
appear here as 252, 49a, and 50a.

Non-monstrous completely replicable functions

I Power maps a; az as as
1la 1 1] 0 o
1b 0 0 0 0
2a 1A -492 0 -22580 -367400
2b 1a =1 0 0 0
4a 2A -76 1] =702 -5224
5a 1A -8 20 15 0
Ba 3A 2a -33 4] -153 -713
6b 3A 2a 21 0 171 T45
B¢ 3B 2a -8 v] 2 16
ed 3C 2A 18 -8 0 28
8a 4A -20 (4] -62 -216
8b 4B 8 0 -8 48
8¢ 4B -8 0 -8 -48
ga 3A 0 14 0 85
ob  3A 9 -4 0 2
9c 3B 0 -4 0
pd 38C -3 2 0 5

10a BA 2a 8 0 35 100
. 10b  bBa 2A 2 -4 T 0
| 10c 5a 2a -2 0 -5 0

12a 8A 4B -11 o -21 -55

12b BA  4a 5 0 27 41

12c eC  4C 5 0 -5 9

12d 8C 4D -3 0 3 -7

12e 6d 4B 4 o 0 -4

12f ad 4a -4 0 0 -4

1l4a TA 2a -9 0 -15 -33 |
14b 7B  2a 2 0 =¥ 2 :

l4c TA 2a 5 0 13 37

15a 5A 3C 5 -2 0 -1

15b  5a 3A 3 2 -3 0

18a 8B 0 0 8 0

16b 8B 4 0 = 8

18c 8B -4 0 -2 -8

16d 8D 0 0 -2 0

18e 8C 2 0 22 4

18f 8C -2 0 -2 -4

16g B8b 2 0 2 -4

16h  8b -2 0 2 4

18a ob BA 1 4 0 10

18b  9a éb 0 0 0 T

18c oA Be 3 0 ] 18

18d 9¢ 6B 0 4 0 10
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80a 40B 18a
82a 41A 2a
84a 42A 28a 12b

i
N oo
=N - I -
1
S
1
=+ o

90a 45a 30B 18a 1 -1 0 0
g0b 45b 30A 18d 0 -1 v] (1]
p6a 48Bg 32a 0 1] 0 0
102a 51A 34a Ba 1 (] 0 1
117a 39A fa o 1 ] (]
120a 60B 40a 24a 4] V] 4] 1
126a 63a 428 18b 0 0 o 0
1832a 66A 44a 12a 0 0 1 0
140a T70A 28Ba 20a 1 0 ] 0

We correct an error in [MS]: On page 265 class 297 should read 25Z and
signs should be inserted compatible with its sign pattern.

| REFERENCES

[B] R.E. Borcherds, Monsirous moonshine and monstrous Lie superalgebras, preprint
(1989). .

[CN] J.H. Conway & S.P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11
(1979), 308-339.

[F] D.J. Ford, “On the Computation of the Maximal Order in a Dedekind Domain,”
Ph. D. Dissertation, Ohio State University, 1978.

[M] B.W. Char, K.O. Geddes, Gaston H. Gonnet, M.B. Monagan and S.M. Watt,
“The Maple Reference Manual (5th edition),” Watcom, Waterloo, 1988.

[Mah] K. Mahler, On a class of non-linear functional equations connected with mod-
ular functions, J. Austral. Math. Soc. 22A (1976), 65-118.

[Mas] G. Mason, Finite groups and Hecke operators, Math. Ann. 283 (1989), 381-409.

[MS] J. McKay and H. Strau, The g-series of monstrous moonshine & the decom-
position of the head characters, Comm. in Alg. 18 (1990), 253-278.

[N] S.P. Norton, More on Moonshine, in “Computational Group Theory,” edited by
M. D. Atkinson, Academic Press, 1984, pp. 185-193.

[S] J-P. Serre, “A Course in Arithmetic,” Springer-Verlag, 1973.






