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1. INTRODUCTION. Finding the finite simple Fischer-Griess Monster group M of
order

808017424794512875886459904961710757005754368000000000

is one of the most spectacular and mysterious mathematical achievements of the past
fifty years. Unfortunately the various standard approaches to the Monster are noto-
riously difficult to learn. This paper presents a relatively elementary approach to the
Monster. We describe a construction of the smallest non-Abelian finite simple group
(of order 60), and show that it very closely parallels a construction of M × M.

In section 2, before we begin our main discussion, we give a quick overview of the
Monster both as a finite simple group and with respect to its most startling properties.
This is done to allow those readers who have only a passing acquaintance with the
Monster to get a better sense of its role in mathematics. Despite its brevity, this sec-
tion has a vast scope, so we refer the reader to other sources for more comprehensive
treatments (see [1], [2], or [6]). In section 3 we start with the tetrahedral graph and use
Coxeter groups, along with certain additional relations, to obtain a group presentation
for the finite simple group A5. Then in section 4 we see that this method, when applied
to different initial graphs, leads not only to the square M × M of the elusive Monster
group, but to other finite simple groups as well.

2. A QUICK OVERVIEW OF THE MONSTER. Hints of the Monster’s existence
first arose during the intense search for new finite simple groups that took place during
the 1960s and 1970s and occurred simultaneously with the effort to classify finite
simple groups. In fact, it was only after the classification was essentially complete that
Robert Griess proved the existence of the Monster. According to the classification,
every finite simple group falls into one of the following five families:

(1) the cyclic groups Cp for p prime;
(2) the alternating groups An for n ≥ 5 (An is the group of all even permutations

on n letters; A5, which has order 60, is the smallest such group);
(3) the matrix groups Ln(q), O±

n (q), Un(q), and Spn(q) (these are simple groups
derived from the n-dimensional linear, orthogonal, unitary, and symplectic ma-
trix groups over the field of order q);

(4) the exceptional groups of Lie-type;
(5) twenty-six “sporadic” groups (including the Monster).

The existence of the first four infinite families is well understood using number the-
ory, basic permutation group theory, linear algebra, and Lie geometry. The fifth family
contains the twenty-six finite simple groups that simply do not belong to any other
family. The Monster is the largest of these sporadic groups, and nineteen other spo-
radic groups appear as homomorphic images of subgroups of the Monster. Despite a
great deal of work, the sporadic groups remain mysterious, so a better understanding of
the Monster would improve our understanding of finite groups in general. Announced
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in the early 1980s, the proof of the classification of finite simple groups stretches the
traditional notions of proof. The proof involves some very difficult and specialized
mathematics spanning many thousands of pages, not all of which have been published.
To correct this deficiency, Richard Lyons and Ronald Solomon are leading an ambi-
tious and active program to produce a revised and complete proof of classification.
As of this writing, Michael Aschbacher and Stephen Smith are still in the process of
revising a 1196-page preprint on the so-called quasi-thin case in order to close a gap in
the original proof. Although there is little doubt that the classification is correct, there
remains great interest in obtaining a new and more efficient proof.

However, it is not the Monster’s role in group theory that has drawn the most at-
tention to it. Of even greater interest is the Monster’s miraculous “moonshine” phe-
nomenon. In the late 1970s, John McKay made a surprising connection between the
character table of the Monster and modular functions. The character table of the Mon-
ster is a 194 × 194 array of complex numbers that are the traces of its irreducible
representations on the conjugacy classes of the Monster. The first three entries of the
first column (corresponding to the identity conjugacy class) of the table are 1, 196883,
and 21296876. McKay asked whether the equality 1 + 196883 = 196884 makes a
real connection between the character table of the Monster and the elliptic modular
function

j (z) = 1

q
+ 196884q + 21493760q2 + · · ·

(where q = e2π i z). Although at first blush unbelievable, John H. Conway, Simon Nor-
ton, and John Thompson showed that this connection persists. The term “moonshine”
reflects both the mysterious, or dimly lit, nature of this connection, as well as its some-
what illicit origin in numerology. Not only by dint of the relationship between the first
column of the character table and the elliptic modular function (note that

1 + 196883 + 21296876 = 21493760

and similarly for the higher order coefficients of j), but also through consideration
of the other columns, a surprisingly strong linkage comes to light between the con-
jugacy classes of the Monster and a remarkable class of modular functions. As such,
moonshine connects two mathematical areas that seemingly should not be related. In
1998, Richard Borcherds received the Fields Medal for his work on the proof of these
moonshine conjectures. Moreover, he established the connection between the Mon-
ster and modular functions by exploiting information about vertex operator algebras
from conformal field theory. Instead of simpliflying the matter, Borcherds succeeded in
heightening interest in Monster by exposing hidden ties between three disparate areas
of mathematics: finite simple groups, modular functions, and vertex operator algebras.

Both for its role in finite group theory and from its association with the moon-
shine conjectures the Monster now occupies a prominent position in mathematics. The
presentation in the remainder of this paper provides an elementary way of accessing
this very nonelementary object. It is hoped that it, or other simple approaches, may
eventually contribute to more satisfying explanations for the subjects that we have just
discussed.

3. FROM THE TETRAHEDRAL GRAPH TO A5.

The tetrahedral Coxeter group. We start our search for non-Abelian finite simple
groups by considering the tetrahedral graph K4. This is the complete graph with four
nodes that we refer to as the 4-node diagram (Figure 1).
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Figure 1. The 4-node diagram K4.

We now want to attach a group to the 4-node diagram. If we consider the symmetry
group of this graph, we find that it is isomorphic to the symmetric group S4 of order
4! = 24, which is too small to contain any non-Abelian finite simple groups. To ob-
tain something, we must therefore use another method to attach a group to the 4-node
diagram. We do this by considering its Coxeter group. The theory of Coxeter groups
dates from the early 1930s (an excellent reference on Coxeter theory is [4]). The Cox-
eter group of a graph is the group generated by (nontrivial) elements ri corresponding
to the nodes of the graph subject only to the following relations:

(i) r 2
i = 1 for each node i ;

(ii) (rir j )
2 = 1 whenever nodes i and j are not joined by an edge;

(iii) (rir j )
3 = 1 whenever nodes i and j are joined by an edge.

We can think of the Coxeter group of an n-node graph as being the largest group
generated by n distinct involutions (elements of order 2) subject to the conditions that
the product of two involutions corresponding to unjoined nodes has order 2 and the
product of two involutions corresponding to joined nodes has order 3.

Any group G, such as a Coxeter group, whose relations are all of even length (where
the length of a relation is the number of generators, counting multiplicities, that it
contains) has a normal subgroup of index two consisting of those elements that can be
written as a product of evenly many generators. We call this the even subgroup of G
and denote it by 1

2 G.
Now let G be the the Coxeter group corresponding to the 4-node diagram, a group

known for obvious reasons as the tetrahedral Coxeter group. We note that G is then
generated by four involutions, where the product of any two distinct generators has
order 3. Unfortunately, G is an infinite group. In fact, it even has elements of infinite
order. We proceed by finding some of these elements. To do so, we first consider certain
infinite subgroups of G.

For a graph �, we define a free n-gon in � to be a cycle of length n such that each
node in the cycle appears only once and is adjacent to exactly two other nodes in the
cycle. A maximal free n-gon in � is a free n-gon such that � contains no free m-gon
with m > n.

For the 4-node diagram, the maximal free n-gons are 3-gons corresponding to the
triangular faces of the tetrahedron. We note that these 3-gons are equivalent to each
other under the symmetry group of the 4-node diagram. We now take any of these
3-gons, say the face with nodes a, b, and c (Figure 2) and consider the Coxeter group H
generated by the involutions ra, rb, and rc corresponding to the nodes of this maximal
3-gon. Fortunately it is not difficult to understand the structure of H . Indeed, Coxeter
theory tells us that all Coxeter groups are isomorphic to groups generated by geometric
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Figure 2. A maximal free 3-gon in K4.

reflections, so it suffices to see how H acts as a reflection group. It does so quite nicely
on a two-dimensional plane.

At this point it becomes notationally convenient to identify the elements ra , rb,
and rc by the abbreviated names a, b, and c. These elements then correspond to the
reflections in the lines (in a two-dimensional plane) indicated in Figure 3. (Be aware
that we are using the same letter to denote a node, a generator of the Coxeter group,
a line in a two-dimensional plane, and the reflection of the plane in that line.) We
note that these reflections satisfy the required Coxeter relations. Reflections naturally
have order 2, and since the angle between any two of the lines for a, b, and c is 60
degrees, the product of any two of the reflections is a rotation by 120 degrees about
the intersection of the associated lines, and therefore has order 3.

cbabb

a

� = c(bab)

Figure 3. The reflection group H .

We now find a new element of H by conjugating the reflection a by the reflection b.
This is the element bab−1, which can be rewritten as bab since b = b−1. If we take
the image of the line a when reflected in the line b we obtain a new line denoted
bab in Figure 3. The group element bab then acts as the reflection in this line. We
now let τ be the element obtained by first performing the reflection bab and then the
reflection c. So τ = c(bab) = cbab. Examining the action of τ on the plane, we find
that it translates all points of the plane in the direction indicated in Figure 3. The reader
is encouraged to check the foregoing claims by following individual points under the
indicated reflections.

Translations in the plane have infinite order, so o(τ ) = ∞. Since we wish to deal
with finite groups, we must do something to τ . We note that there are infinitely many
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translations in H and that they form a lattice isomorphic to Z
2. A translation in H is

said to be primitive (relative to H ) if it cannot be obtained by raising another translation
from H to a power greater than one.

A very finite group. The easiest way to deal with the infinite order element τ in
order to arrive at a finite group is to insist that τ have order 1! While this might sound
at first to be totally outrageous, what we really have in mind is introducing into H a
new relation, namely, the relation τ = 1. We call this deflating the translation. Since all
primitive translations in H are conjugate, this has the effect of deflating all translations
in H , so our particular choice of τ turns out to be unimportant.

As an aside we note that the relation τ = 1 is equivalent to c = bab. Therefore
imposing this relation on the group H = 〈a, b, c〉 generated by a, b, and c makes it
isomorphic to the finite Coxeter group 〈a, b〉 generated by a and b. The group 〈a, b〉
consists of the reflections a, b, and bab along with the rotations through 0, 120, and
240 degrees about the point of intersection of the lines determining a and b. As such it
is isomorphic to the dihedral group of order 6, or equivalently, to S3. Something very
different will occur when we move to a broader context.

We can define a new group G1 to be the group generated by the generators of the
tetrahedral Coxeter group G, subject to both the Coxeter relations and the deflation
relations stating that the translations τ arising from all four of the maximal free 3-
gons in K4 have order 1. These deflations are a bit too powerful to produce anything
interesting. The group G1 has only two elements, and its even subgroup 1

2 G1 is the
trivial group of order 1. This can be seen by noting that the deflations make c = bab
and d = bab, whence c = d. Similarly all four generating involutions of G1 are equal.

The smallest non-Abelian simple group. Of course in the deflation process we did
not have to insist that τ have order 1. We could just as well require it to be of some
specified finite order. For instance, we can try imposing the relation τ 2 = 1. This is
called biflating the translation. Again, because all primitive translations in H are all
conjugate, this has the effect of biflating all translations in H .

We now define G2 to be the group generated by the generators of G, subject to
both the Coxeter relations and the biflation relations demanding that all translations τ

arising from the maximal free 3-gons in K4 have order 2. This time we find that G2

has order 120 and is isomorphic to S5, the symmetric group on five letters. The even
subgroup 1

2 G2 is isomorphic to A5, the alternating group on five letters. Of course, A5

is the smallest non-Abelian simple group.
We can understand the structure of G2 by noting that, if we map a to the permu-

tation (15), b to (25), c to (35), and d to (45), then these images of a, b, c, and d
generate S5 and all the required relations of G2 are satisfied by them. For example,

τ = cbab = (35)(25)(15)(25) = (12)(35)

does indeed have order 2. It follows that S5 is a homomorphic image of G2. To show
that G2 is isomorphic to S5, we need to check only that G2 is not bigger than S5. In
other words we want |G2| ≤ 120(= 5! = |S5|). This is done in the next subsection us-
ing a coset enumeration argument. At this point the reader unconcerned with technical
details of this kind can skip ahead to section 4.

Coset enumeration. We start by recalling that the subgroup 〈a, b〉 of G2 has order
at most 6. We now consider the subgroup 〈a, b, c〉. The relation τ 2 = (cbab)2 = 1
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implies that

cbab = (cbab)−1 = b−1a−1b−1c−1 = babc.

Multiplying this relation on the left by b gives the identity cba = babcb. In a similar
manner we obtain cab = abaca. Using these identities, in tandem with the Coxeter
relations, we find that any word in a, b, and c can be rewritten so that if c occurs in
the word at all, c appears only in one of the two rightmost positions in the word. As
a result, 〈a, b, c〉 has at most four right cosets corresponding to the subgroup 〈a, b〉:
〈a, b〉1, 〈a, b〉c, 〈a, b〉ca, and 〈a, b〉cb. We infer that |〈a, b, c〉| ≤ 4|〈a, b〉| ≤ 24.

We now consider G2 = 〈a, b, c, d〉. Using a similar pattern of relations (starting
from the other 3-gons of K4), we discover that any word in a, b, c, and d can be rewrit-
ten as a word with d appearing, if at all, only in one of the two rightmost positions.
Consequently 〈a, b, c, d〉 splits into at most five right cosets of 〈a, b, c〉: 〈a, b, c〉1,
〈a, b, c〉d, 〈a, b, c〉da, 〈a, b, c〉db, and 〈a, b, c〉dc. Therefore |G2| ≤ 5|〈a, b, c〉| ≤
120 as desired.

The family of alternating simple groups. In fact, if n ≥ 4 and we start with Kn,
the complete graph with n nodes a1, a2, . . . , an , then the corresponding biflation
group G(n)

2 is isomorphic to Sn+1 and the even subgroup 1
2 G(n)

2 is isomorphic to the
simple alternating group An+1. This can be proved by extending the previous argu-
ments. By assigning the permutations (1, n + 1), (2, n + 1), . . . , (n, n + 1) to the
nodes of Kn, we can easily see that Sn+1 is a homomorphic image of G(n)

2 . We then
need to show only that |G(n)

2 | ≤ (n + 1)! (= |Sn+1|). This is done by induction. We
have already verified the base case n = 4. Assuming that |G(n)

2 | ≤ (n + 1)!, we extend
Kn to Kn+1 by adjoining a new node an+1, and by an argument similar to earlier ones
we establish that any word in a1, a2, . . . , an+1 containing an+1 can be rewritten to
make an+1 appear only in one of the two rightmost positions, meaning that G(n+1)

2

breaks into at most n + 2 right cosets relative to G(n)

2 . Therefore

|Gn+1
2 | ≤ (n + 2)|G(n)

2 | ≤ (n + 2)(n + 1)! = (n + 2)!,
as desired.

4. THE MONSTER.

The 26-node diagram. Instead of starting with the tetrahedral 4-node diagram we
now start with a graph that we call the 26-node diagram and denote it by I3 for reasons
that we explain shortly. The 4-node diagram K4 is a highly symmetric graph with four
nodes and valence (i.e., the number of edges incident at each node) three. The 26-node
diagram I3 is a highly symmetric graph with twenty-six nodes and valence four. The
exact details of the 26-node diagram are somewhat complicated and will not be needed
in the sequel. In the interest of completeness we provide them for the interested reader.

The 26-node diagram is the incidence graph Inc(P3) of the projective plane P3 of
order three. The projective plane P3 can be thought of as the finite geometry consisting
of thirteen points and thirteen lines with four points on each line and four lines passing
through each point. Each pair of points determines a unique line and any two distinct
lines intersect at a unique point. The incidence graph of P3 has twenty-six nodes (one
for each of the thirteen points and one for each of the thirteen lines). Two nodes are
joined precisely when one corresponds to a line, the other corresponds to a point, and
the point lies on the line.
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Figure 4. A representation of the 26-node diagram.

The 26-node diagram is represented in Figure 4. The indices i range over {1, 2, 3},
so some of the nodes that appear in the figure correspond to three different nodes of
the 26-node diagram. Nodes a and f are joined to each other as well as to b1, b2, and
b3 and e1, e2, and e3, respectively. Otherwise single edges between nodes indicate that
the corresponding nodes of the 26-node diagram are joined just if they have the same
indices. For example, b1 is joined to g1, b2 is joined to g2, and b3 is joined to g3. Double
edges between nodes indicate that the corresponding nodes of the 26-node diagram are
joined just when their indices differ. For example, a1 is joined to f2 and f3, a2 is joined
to f1 and f3, and a3 is joined to f1 and f2.

The bimonster. We now apply the same process used on the 4-node diagram to the
26-node diagram. Further details can be found in [3]. Let G be the Coxeter group asso-
ciated with I3. It is generated by twenty-six involutions and subject to the appropriate
Coxeter relations. Again G is an infinite group.

The maximal free n-gons in I3 are 12-gons. These free 12-gons are, in fact, all
equivalent under the symmetry group of the 26-node diagram. With each such 12-gon
we can associate elements that act as translations on eleven-dimensional Euclidean
vector spaces. Let τ be a (primitive) translation of this type. Then τ then has infinite
order, so we deflate it by imposing the relation τ = 1.

We then define G1 to be the group generated by the generators of G, subject to
both the Coxeter relations and the deflation relations requiring that all translations
associated with the maximal free 12-gons in I3 have order 1. It turns out that G1 is
an enormous finite group with order approximately 10108. This group is isomorphic to
the bimonster group M � 2 (the wreathed square of the Monster). The even subgroup
1
2 G1 is isomorphic to the direct product of the Monster with itself (i.e., M × M). The
elements of the bimonster M � 2 are either elements (x, y) of M × M or have the
form (x, y)σ , where σ is a (wreathing) involution satisfying the family of relations
(x, y)σ = σ(y, x). This identification is considerably more difficult to establish than
the analogous result for the 4-node diagram. A proof can be found in [3]. It appeals
to some deep results from the “monstrous” literature, including the Ivanov-Norton
theorem. The connection between the Coxeter group of the 26-node diagram and the
bimonster was first made by Simon Norton. The identification of 1

2 G1 with M × M

gives us an elementary way of viewing (the square of) the celebrated Monster group.

Beyond. It is of course possible to apply this process to other nice graphs (where
a “nice” graph is one that naturally leads to an interesting finite group). The case
involving the 14-node incidence graph I2 = Inc(P2) of the projective plane of P2 of
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order two is particularly instructive [5]. We provide a brief list outlining some such
constructions in Table 1. The groups are listed using the Atlas notation for simple
groups [2].

Table 1. From graphs to simple groups.

# of nodes graph n-gons action even subgroup

n(≥ 4) Kn 3-gons biflation An+1

8 cube 6-gons deflation O5(3) ∼= O−
6 (2)

10 Petersen 6-gon deflation O−
6 (2) ∼= O5(3)

14 Inc(P2) 8-gons deflation O−
8 (2)

26 Inc(P3) 12-gons deflation M × M
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