Promoting quantitative

 literacy in physicsPhysics Quantitative Literacy（PQL）：the ability to reason mathematically in the context of physics
A goal of many introductory physics courses； development is often less than desired（Brahmia， 2017）．
Enhancing PQL development may
improve students＇knowledge of mathematics （Ellis，2007；Thompson，2010），
better prepare them for future demands to think mathematically（Caballero，et al．，2015）， and
promote increased equity and inclusion in physics instruction（Brahmia and Boudreaux， 2017；Boaler，2015）．

Research Questions

How does PQL develop throughout the introductory physics course sequence？ How do students＇understanding of physics content and mathematical reasoning skills interact to impact their PQL abilities？

Enter：the PIQL

We are developing the Physics Inventory of Quantitative Literacy（PIQL）：an assessment instrument for measuring PQL across the physics curriculum．
20 multiple－choice questions
11 Single response
9 Multiple response（3 have more than one correct response）
－Given as a pretest in three introductory physics courses

Phys121，Mechanics（ $N=424$ ）
Phys122，Electricity \＆Magnetism（ $N=405$ ） Phys123，Thermodynamics／Waves $(N=329)$ －We focus on three constructs
proportional reasoning（Arons，1983；Boudreaux， et al．，2015）
reasoning with signed quantities（Bajracharya et al．，2012；Brahmia and Boudreaux，2016； Brahmia，2017；Hayes and Wittmann，2010； Vlassis，2004）
co－variational reasoning（Carlson，et al．，2010） Typical test statistics（such as Cronbach＇s α ）may not be relevant because we are trying to measure multiple constructs，want some challenging items that would demonstrate mastery，and don＇t want students and instructors to be discouraged by extremely low scores（Adams and Wieman，2010）．

Developing a reasoning inventory for measuring physics quantitative literacy
Trevor I．Smith，${ }^{1}$ Suzanne White Brahmia，${ }^{2}$ Alexis Olsho，${ }^{2}$ Andrew Boudreaux，${ }^{3}$ Philip Eaton ${ }^{4}$

Score Distribution

－Scores range from 1 to 20 correct
－Small increases from course to course －Broad range of item difficulty values

	Mean	Median St．Dev． Skewness Kurtosis			
Overall	10.9	11	3.55	-0.30	-0.29
Phys121	10.3	11	3.36	-0.21	-0.33
Phys122	11.0	11	3.70	-0.32	-0.34
Phys123	11.7	12	3.44	-0.47	-0.03

Score on PIQL 1.0 Fraction of students who answer correctly

Multiple－Choice Multiple－Response
－Most students choose at least one correct response
－Four－level scoring scheme

All Correct

Some Correct（Choosing at least one correct response， but no incorrect responses）
Both（Choosing at least one correct and one incorrect response）
Incorrec
－Progression over time varies by question

Which Responses do Students Choose？

－Item Response Curves（IRCs）Plot the probability of a student choosing a particular response，given her／his overall score on the PIQL
－Useful for seeing which of the answers students choose（particularly for MCMR questions）
－Only 1 student scored 19，only 1 student sco
－Only 1 student scored 19，only 1 student scored 20

Example Questions

```
|
\. Shown at righ isa pitare of small fag of the Kinglom
```



```
    M. The ditance around the edge of the fags,
```



```
    .The distane traveled by A. ispeater than B beause A rus for more time
    M
```



```
    #.)
```



```
    OM}|\cdot\square\cdotQ\cdot
```



```
    M,
```


 ther？Select thes statementis（t）that must be true．Choose all that apply．

 Choose all that apply．
b．The force exerted by the hand is is in the negativivedirection：
c．The diphecement of the bolokis is in the enegativiv direction．
e．The force exexereted by the henand is is in the direcrection popasulete to the the lookss displacement．

References

 Arons．A．．．．（198
thin
thinking and
2ind

Q9：Flag of Bhutan
－Choosing Perimeter（A）is more likely than choosing Diagonal（D），which is more likely than choosing the Curve（C）
－Incorrectly choosing Area
（B）gradually decrease
as scores get higher
Question 9

Score
－Q16：Electric Charge
Many students correctly indicate that the size of the net charge implies magnitude（C），regardless of score A common distractor is that negative net charge is less than positive net charge（ B ）；this is inconsistent with the negative sign indicating type of charge （unique among physical quantities）

Question 16

－Q17：1D Work
－More likely to answer correctly about the dot product（ $\mathrm{D}: W=F \cdot \Delta s$ ） than physical implications （G：$W=\Delta E$ ）
All distractors common （7－13）

1413
Bourd
201

 Procte dings of the 2oth annual
conference on RUME．San Diego，CA．

