

Correct:
$$P(\theta) = \frac{1}{1+e^{-a(\theta-b)}}$$

References R. K. Thornton and D. R. Sokoloff, Am. J. Phys. 66, 338 (1998). 2. T. I. Smith, K. A. Gray, K. J. Louis, B. J. Ricci, and N. J. Wright, *PERC* Proceedings, p. 380 (2017). Y. Suh and D. M. Bolt, *Psychometrika* **75**, 454 (2010). R. D. Bock, Psychometrika 37, 29 (1972). Q. McNemar, *Psychometrika* **12**, 153 (1947). 6. A. H. Bowker, J. Am. Stat. Assoc. 48, 572 (1948).

Acknowledgements

We thank Sam McKagan and Ellie Sayre for providing access to data from PhysPort's Data Explorer. We also thank Kerry Gray, Nicholas Wright, Ian Griffin, and Ryan Moyer for their previous contributions as members of the research team.

Determining a Hierarchy of Correctness Through Student Transitions on the FMCE Kyle J. Louis ^{1,2}, Bartholomew J. Ricci ^{1,3}, and Dr. Trevor I. Smith ^{1,2} Department of ¹Physics & Astronomy, ²STEAM Education, and ³Mathematics, Rowan University, Glassboro, NJ, 08028

Unified Ranking

Hypotheses

 H_0 : The number of transitions from one answer choice to another is the same in both directions

H_a: More students transition in one direction between two answer choices than in the other

McNemar-Bowker Chi-Square **Test for Asymmetry**

- **Assumption:** Students are more likely to choose more sophisticated responses after instruction than before instruction. Using the False Discovery Rate (FDR) correction, the adjusted
- *p*-value determines whether or not a transition is statistically significant [5,6]

	Posttest								
	Q18	Α	В	С	D	E	F	G	H
Ρ	Α	4	28	2	9	0	2	4	26
r	В	14	717	6	33	5	4	12	87
е	С	7	37	6	10	1	4	12	46
t	D	16	208	13	87	10	14	63	236
е	E	1	11	1	4	2	1	0	8
S	F	10	45	3	16	2	16	22	72
t	G	22	250	13	59	7	21	93	281
	Н	92	1420	52	227	26	72	281	1904

Statistically Significant Transitions					
Response Comparison	Adjusted <i>p</i> -value	Percent of Population			
B > H	< 0.001	22.3%			
B > G	< 0.001	3.9%			
B > D	< 0.001	3.6%			
A > H	< 0.001	1.7%			
B > F	< 0.001	0.7%			
B > C	< 0.001	0.6%			
E > H	0.01	0.5%			
A > G	0.002	0.4%			

Statistically Insignificant Transitions								
Response Comparison	Adjusted <i>p</i> -value	Percent of Population						
G = H	1	8.3%						
D = H	1	6.9%						
D = G	1	1.8%						
$B > \{H, G, D, F, C\};$ $D = G = H$ $A > \{H, G\};$ $E > H$								

Future Research

- Determining the models for each answer choice via interviews
- Synthesize results into a unified ranking system
- Use additional analyses to rank responses with different assumptions

best incorrect magnitude)

· incorrect

