Determining a Hierarchy of Correctness Through Student Transitions on the FMCE

Kyle J. Louis ${ }^{1,2}$, Bartholomew J. Ricci ${ }^{1,3}$, and Dr. Trevor I. Smith ${ }^{1,2}$
Department of ${ }^{1}$ Physics \& Astronomy, ${ }^{2}$ STEAM Education, and ${ }^{3}$ Mathematics, Rowan University, Glassboro, NJ, 08028

Background

Purpose: To determine a hierarchy of "correctness" on a commonly used multiple-choice assessment in introductory physics courses.

- Data were collected from over 7,000 students
- We omit J as an answer choice because it provides no understanding of a student's understanding.

Item Response Theory

- Assumption: Students who choose correct responses on most questions are more likely to choose more sophisticated incorrect answers than students who choose few correct responses [2] 2-parameter nested logit model for a multiple choice test $[3,4]$

Correct: $P(\theta)=\frac{1}{1+e^{-a(\theta-b)}}$

- a: related to slope of the item response curve (IRC)
- Discriminates student understanding
- b : Difficulty of the question
- Right shift means harder question
- Left shift means easier question

Incorrect: $P_{k}(\theta)=\left(1-\frac{1}{1+e^{-a(\theta-b)}}\right) \frac{e^{a_{k}\left(\theta-b_{k}\right)}}{\sum e^{a_{i}\left(\theta-b_{i}\right)}}$

- Correctness of answer choices determined by higher a_{k} value

[^0]
Force and Motion Concept Evaluation [1]

Assume that friction is so small that it can be ignored. A force is applied to the car. Choose the one force graph (A through H) that for each statement below which could allow the described motion of the car.

__18. The car moves toward the right and is slowing down at a steady rate (constant acceleration).

Hypotheses

\mathbf{H}_{0} : The number of transitions from one answer choice to another is the same in both directions
H_{a} : More students transition in one direction between two answer choices than in the other

McNemar-Bowker Chi-Square

 Test for AsymmetryAssumption: Students are more likely to choose more sophisticated responses after instruction than before instruction Using the False Discovery Rate (FDR) correction, the adjusted p-value determines whether or not a transition is statistically significant $[5,6]$

	Posttest								
	Q18	A	B	C	D	E	F	G	H
P	A	4	28	2	9	0	2	4	26
r	B	14	717	6	33	5	4	12	87
e	C	7	37	6	10	1	4	12	46
t	D	16	208	13	87	10	14	63	236
e	E	1	11	1	4	2	1	0	8
5	F	10	45	3	16	2	16	22	72
t	G	22	250	13	59	7	21	93	281
	H	92	1420	52	227	26	72	281	1904

Statistically Significant Transitions		
Response Comparison	Adjusted \boldsymbol{p}-value	Percent of Population
$\mathrm{B}>\mathrm{H}$	<0.001	22.3%
$\mathrm{~B}>\mathrm{G}$	<0.001	3.9%
$\mathrm{~B}>\mathrm{D}$	<0.001	3.6%
$\mathrm{~A}>\mathrm{H}$	<0.001	1.7%
$\mathrm{~B}>$ F	<0.001	0.7%
$\mathrm{~B}>\mathrm{C}$	<0.001	0.6%
$\mathrm{E}>\mathrm{H}$	0.01	0.5%
$\mathrm{~A}>$ G	0.002	0.4%

Statistically Insignificant Transitions		
Response Comparison	Adjusted \boldsymbol{p}-value	Percent of Population
$\mathrm{G}=\mathrm{H}$	1	8.3%
$\mathrm{D}=\mathrm{H}$	1	6.9%
$\mathrm{D}=\mathrm{G}$	1	1.8%

B > $\{\mathrm{H}, \mathrm{G}, \mathrm{D}, \mathrm{F}, \mathrm{C}\}$;
$\mathrm{D}=\mathrm{G}=\mathrm{H}$
$\mathrm{A}>\{\mathrm{H}, \mathrm{G}\} ;$
$\mathrm{E}>\mathrm{H}$
R. K. Thornton and D. R. Sokoloff, Am. J. Phys. 66, 338 (1998) T. I. Smith, K. A. Gray, KO. J. Louis, B. J. Ricci, and N. J. Wright, PERC
Proceedings. p. 380 (2007) Proceedings, p. 380 (2017).
Y. Suh and D. M. Bolt, Psychometrika 75,454 (2010)
R. D. Bock, Psychometrik 37, 29 (1972).
R. D. Bock, Psychometrika 37,29 (1972).
Q. McNemar, Psychometrika 12, 153 (1947).
6. A. H. Bowker, J. Am. Stat. Assoc. 48, 572 (1948)

We thank Sam McKagan and Ellie Sayre for providing access to data from PhysPort's Data Explorer. We also thank Kerry Gray, Nicholas Wright, lan Grifitin,
and Ryan Moyer for their previous contributions as members of the research team.

Future Research

- Determining the models for each answer choice via interviews
- Synthesize results into a unified ranking system
- Use additional analyses to rank responses with different assumptions

[^0]: $\mathrm{B}>\mathrm{A}>\mathrm{D}=\mathrm{G}=\mathrm{H}>\mathrm{C}>\mathrm{F}$

