
Avoiding congestion through dynamic load control

Vasil Hnatyshin, Adarshpal S. Sethi

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716

ABSTRACT

The current best effort approach to quality of service in the Internet can no longer satisfy a diverse variety of customer
service requirements, and that is why there is a need for alternative strategies. In order to solve this problem a number of
service differentiation models have been proposed. Unfortunately, these schemes often fail to provide proper service
differentiation during periods of congestion. To deal with the issue of congestion, we introduce a new load control
mechanism that eliminates congestion based on the feedback from the network core by dynamically adjusting traffic
load at the network boundary. We introduce four methods for calculating load distribution among the ingress routers and
among different flows in each ingress router, and we evaluate these proposed methods through simulation.

Keywords: Quality of service, dynamic admission control, load distribution, network feedback

1. INTRODUCTION

As a diverse variety of applications with different customer service requirements are beginning to access the
Internet, the current best effort approach to quality of service in the Internet is no longer sufficient. As people become
willing to pay more for services that satisfy their application requirements, the one-service-for-all approach of today’s
Internet will become obsolete, creating a need for alternative strategies. In order to solve this problem, a number of
service differentiation models have been proposed. Differentiated Service architecture [1] introduced by IETF’s DiffServ
working group, core-stateless fair queuing [13] proposed by Stoica et al, and proportional service differentiation
framework [4-6] proposed by Dovrolis et al are currently among the most popular approaches. Unfortunately, these
schemes often fail to provide proper service differentiation during periods of congestion. For example, IETF’s DiffServ
model fails to provide fair resource allocation and fair service degradation during the periods of congestion [7,10-12]
because of static resource allocation. On the other hand, the proportional service differentiation model does not violate
relative guarantees under any network condition. However in this model, the lack of mechanisms for limiting the amount
of data injected into the network can reduce the absolute level of QoS below user expectations [4-6].

We believe that one way to deal with this problem is to introduce a dynamic load control mechanism at the
boundary routers. The idea behind dynamic load distribution is different from the idea of admission control. Although
both mechanisms adjust themselves based on network feedback, they determine their adjustments differently. While
admission control decides whether or not to admit new users into the network, the dynamic load control mechanism
admits all the users and only when congestion arises does it adjust user sending rates. Figure 1 illustrates the idea behind
the dynamic load control. As the figure shows, the traffic enters the network domain at the boundary router1 B1,
traverses the network in some fashion, and then exits this network domain at the boundary router B2. If congestion
arises, the core routers provide feedback to the ingress routers. Based on this feedback, the ingress routers adjust the
amount of traffic admitted into the domain.

The idea of adjusting admission control based on network feedback is not new. Chow et al also used such an
idea in their work [2]. They proposed to periodically probe the network and, based on the obtained results, adjust
admission control at the ingress nodes. However, they only introduced a general framework for the feedback-based
dynamic admission control and did not pursue further investigation of this idea. The framework for Explicit Congestion
Notification [9] also relies on a similar feedback mechanism. In this approach, when the core routers experience
congestion, they set Congestion Experienced (CE) bits in the IP headers of packets flowing through them in order to

1 Throughout this paper we will also refer to the boundary nodes at which traffic enters a domain as ingress routers and we will call
the boundary nodes where traffic leaves a domain as egress routers.

notify the sources to reduce their rates. The Explicit Congestion Notification model assumes that the sources will reduce
their rates upon reception of the CE marked packets, which may not always be true.

Figure 1. Scenario for Dynamic Load Control

In this paper, we extend these ideas and provide a new protocol for dynamic load distribution based on network
feedback. The rest of the paper is organized as follows. Section 2 introduces the general idea of our model, including a
detailed explanation of the message exchange mechanism used in this model. Section 3 describes possible techniques by
which each ingress node can reduce its sending rate to eliminate congestion at the congested interface. Section 4
provides an initial experimental evaluation of our scheme. We include concluding remarks and present directions for
future work in Section 5.

2. DYNAMIC LOAD DISTRIBUTION FEEDBACK CONTROL SCHEME

2.1. General Idea

The main idea of the feedback-based dynamic load control scheme is to dynamically adjust the traffic sending rates
at the network boundaries. When the network is congestion-free, the boundary nodes allow users to inject as much data
as they desire. However, when the network experiences congestion, the boundary nodes start limiting the amount of
traffic that can be admitted into the network. During these periods of congestion, the core routers provide indications to
the boundary nodes to slow down. We use an explicit message passing mechanism for providing congestion notifications
to the boundary nodes. In our model, these congestion notification messages contain information about which core router
interface is congested and its congestion level. This information allows each boundary node to determine by how much it
should reduce the overall traffic rate to eliminate congestion. Once the overall reduced rate is calculated, the boundary
router can calculate corresponding sending rates for all user flows that contribute to the congestion.

Figure 2. Congestion-free network

Consider the situation shown in Figure 2. This figure shows a congestion-free network, where the boundary
node B1 accepts traffic flows F1, F2, and F3 and forwards them towards their corresponding destinations. In particular,
flows F1 and F2 pass through core routers C1 and C2 and then exit this domain at the egress node B2. Flow F3 passes
through the routers C1 and C3 and then exits the network domain through the boundary node B3. Figure 2 depicts a
situation where all the interfaces of the core routers are congestion-free and no load control at the boundary nodes is

F1

B2

B3

B1 C1
C2

C3
F2

F3

From F1 and F2

From F3

B4

Boundary
Router B1

Core
router C1Incoming

traffic
Dynamic

Load
Control

Core
router C3

Core
router C2 Boundary

Router B2
FeedbackFeedback

Outgoing
Traffic

required. Figure 3 shows what happens when one of the core link interfaces becomes congested. Suppose that flow F4
becomes active and enters the domain at boundary node B4. Flow F4 follows the path C3, C2, B2 and creates
congestion on the link between C2 and B2. C2 identifies this situation and generates congestion notifications to all the
boundary nodes that send their traffic through the congested link. Congestion notifications travel through the routers C1
and C3 to reach boundary nodes B1 and B4 respectively.

Figure 3. Node actions during the congestion

When B1 and B4 receive their congestion notifications, they calculate by how much they should reduce their
traffic rate to eliminate congestion. Then B1 and B4 identify the flows that contribute to the congestion between C2 and
B2 (F1, F2 and F4). After that, B1 and B4 distribute the calculated rate reduction among these flows, by controlling each
flow’s load accordingly. Figure 4 illustrates how the network situation changes after the activation of load control for the
selected flows.

Figure 4. Congestion-free network after the adjusting load control

2.2 Overview of the message exchange mechanism

In our model, we assume that for each source host that sends traffic through a given ingress node, the ingress
node knows the list of destination hosts for which the traffic is intended. We record this information in the Service Level
Agreement (SLA) established between each source and the network domain. The SLA will also include information
about the minimum provisioned rate for each source-destination host pair. During congestion, the boundary node will
not reduce a flow’s sending rate below this minimum provisioned rate specified in the SLA. In our scheme we assume
that the network is well provisioned, and that congestion does not occur when all the users send traffic at their minimum
provisioned rates. Throughout the paper, whenever we refer to a flow, we will mean packets flowing between a source-
destination host pair specified in the SLA, as contrasted with the traditional definition of a flow, as stream of packets
flowing between a pair of applications. Table 1 shows an example of Service Level Agreements established between
users (source hosts) and a network domain.

When congestion occurs, the boundary node receives a congestion notification that specifies the address of the
interface where congestion occurred and the level of congestion on that interface. Not all the flows that enter the domain
at a particular ingress node travel through the congested interface; therefore, it is impossible to determine which flows

B2

B3

B1 C1
C2

C3

F2

F3

From F1, F2, and F4

From F3

F1

B4

F4

cn
cn

cncn

F1
B2

B3

B1 C1
C2

C3
F2

F3

From F1,
F2, and F4

From F3

B4

F4

Load Control

-- Inactive

-- Active

Congested
Not Congested

Link Interface

should slow down based only on the information provided in the congestion notification message. To remedy this
situation, we maintain two data structures in addition to the SLA in each boundary node, called path table and router
table. These tables allow the boundary node to identify the flows that should be slowed down when congestion occurs.
These data structures are generated and maintained based on information collected by probe messages, which the ingress
nodes periodically transmit on each currently active path, in order to discover the path changes. Probe messages are also
generated when a flow becomes active for determining the flow’s path within this domain. The probes collect the list of
routers they traversed within the domain and the ingress nodes use this information to maintain the path and router
tables. The path table contains a complete route within the domain that the flows follow to their destination. The router
table keeps the router interface addresses and the list of flows that pass through those interfaces. Thus, whenever a flow
becomes active or the path timer expires, the ingress boundary node generates a probe message that follows the route
toward a particular destination. The probe terminates its progress at the egress node, which is the last router within the
domain on the path to the destination. The egress node forwards the probe back to the ingress node that generated it. We
refer to the message forwarded by the egress node as a probe reply message.

Flow ID Source Egress Min. Provisioned Rate
1 192.0.1.1 B2 200 Kbps
2 192.0.1.1 B3 250 Kbps
3 192.0.3.5 B2 190 Kbps
4 192.0.3.5 B3 300 Kbps

Table 1. Example of Service Level Agreement

Figure 5. Network Topology

Destination Path List of Flows Timer Min. Provisioned Rate
B2 B1, C1, C2, B2 F1, F3 0.39 390 Kbps
B3 B1, C1, C3, B3 F2 1.17 550 Kbps

Table 2. Path Table for the boundary node B1.

Router Interface List of Flows
B1-C1 F1,F2,F3
C1-C2 F1, F3
C1-C3 F2
C2-B2 F1, F3
C3-B3 F2

Table 3 Router Table for the boundary node B1.

Tables 2 and 3 show an example of the path and router tables respectively at node B1 for active flows within
the network of Figure 5. We index the path table using the full path between the current ingress node and the egress
router where the flow exits the domain. In addition, each entry in the path table contains a timer and a list of active flows
that follow that path. The timer specified in the path table is used to determine when the next probe for that path should

Egress B2
Ingress

B1 C1
C2

C3

F3
From F1 and F3

From F2Egress
B3

F1, F2

192.0.1.1

192.0.3.5

be generated. A router table kept in each ingress node is indexed by the router interface address and contains the list of
the flows that pass through that interface. Both of these tables are built based on the data collected by the probe
messages.

When a probe reply message arrives at the ingress node, it contains a list of the interface addresses and their
current arrival rates. Interface arrival rates are used to update load control for the flows that pass through those
interfaces. The interface addresses are used to update the path and router tables. If the probe reply message was
generated due to timer expiration and contains a new route, then the old route entry in the path table should be replaced
with the new route information. Moreover, the router table should be updated. First, we identify the list of flows that
follow a new path, let us call it flows-to-update list. Then, we remove the list of flows-to-update from each router
interface entry of the router table that was part of the old route. Similarly, we add the list of flows-to-update to each
router interface entry of the router table that is part of the new route. In the case when the probe message was generated
due to activation of a flow, we update the path table as follows. If returned path already existed we simply add a new
flow to the list of current flows for that entry, otherwise we create a new entry in the path table. Similarly, we update the
router table by either modifying the list of flows for all existing interfaces, or by adding new entries into the router table
if unknown interfaces were encountered.

Now, let us consider an example of path and router tables updates. Consider that, in addition to the active
flows shown in Figure 6, flow F4 becomes active and starts sending traffic. When the first packet of the flow F4 arrives
at the boundary node B1, a probe is generated and forwarded towards its destination. When the egress node B3 receives
the probe generated by the ingress node B1, it copies collected data into the probe reply message and sends it to B1.
Upon arrival of the probe reply message at the boundary node B1, the corresponding entries in the path and router tables
are updated. Figure 6 illustrates how the probe message exchange works and Tables 4 and 5 show how path and router
tables are updated.

Figure 6. Network Topology

Destination Path List of Flows Timer Min. Provisioned Rate
B2 B1, C1, C2, B2 F1, F3 1.09 390 Kbps
B3 B1, C1, C3, B3 F2, F4 0.00 550 Kbps

Table 4. Updated path table for the boundary node B1.

In general, the message exchange mechanism of the feedback-based dynamic load control scheme consists of
two parts. The first part called probe message exchange keeps track of the routing changes and allows boundary routers
to identify the flows to which load control should be applied. The second part called congestion notification exchange,
provides indication to the boundary nodes about when and how to adjust the load control.

The probe message passing accomplishes two goals. First of all it allows core routers to identify which ingress
routers should be notified during the congestion, and it allows ingress routers to identify the flows that should reduce
their rates. Since boundary nodes generate probe messages each time a flow becomes active, these messages allow a core
router to keep track of the boundary nodes that are sending traffic through it. When the core router receives a probe
message, it records the address of the boundary node that generated this message and the address of the outgoing
interface on which the probe message departed. So for each outgoing interface the core router keeps a list of ingress

Egress
B2

Ingress
B1 C1 C2

C3

F3, F4

From F1 and F3

From F2, F4Egress
B3

F1, F2

192.0.1.1

192.0.3.5

Probe

Probe

Probe
Probe Reply

Probe Reply

Probe Reply

routers that send traffic through this interface. During congestion, the core routers consult this table and send congestion
notifications to all the boundary nodes that sent the traffic through the congested interface.

Router Interface List of Flows
B1-C1 F1,F2,F3,F4
C1-C2 F1, F3
C1-C3 F2, F4
C2-B2 F1, F3
C3-B3 F2, F4

Table 5. Updated router table for the boundary node B1.

The core nodes generate congestion notification when an outgoing interface becomes congested. Core nodes
estimate incoming traffic rate for each outgoing interface. If the estimated rate on a particular outgoing interface reaches
a certain threshold then it signifies congestion and notification messages are sent to corresponding boundary nodes. A
congestion notification message carries interface address, estimated arrival rate on that interface, and the capacity of that
interface. Based on this information along with the local flow information, the boundary nodes can calculate the new
sending rate for each of the flows that send its traffic on the congested interface.

3. RATE REDUCTION TECHNIQUES

3.1 Calculation of the congestion reduced aggregated rate

The problem of adjusting traffic load at the boundary nodes may be divided into two parts. The first part deals with
the problem of calculating the total load that a particular ingress router can generate without causing congestion in the
network core. The second part of the problem deals with the question of how the total load should be divided among the
individual flows. In this section we will introduce three simple mechanisms for solving the first problem. Each ingress
router must compute the new aggregate rate at which it transmits traffic through the congested link. This rate, which we
call Congestion Reduced Aggregated Rate (CRAR), should satisfy two requirements:

1. The sum of all CRARs from all the ingress nodes should not exceed the congested link’s capacity.
2. The congested link’s utilization should remain high after all the ingress nodes reduce their sending rates.

It is very difficult for the ingress nodes to compute the CRARs that satisfy the above requirements without
additional information about the rate distribution among the various ingress nodes that send traffic on the congested
interface. Unfortunately, this information is not available to the ingress nodes, which only have the estimated value of
their own sending rate and the information about the arrival rate and capacity of the congested interface.

A possible solution to this problem is to have the core router monitor the rates of traffic reaching it from each
ingress node and then provide this information to the boundary nodes when congestion arises. In order for the core router
to estimate the arrival rate of the boundary node, it should know which flows enter the domain through that ingress node.
One way to achieve this is for the core router to pre-compute and keep information about all the flows that enter this
domain and their corresponding ingress nodes. Another approach would be to require all the packets to be marked in
such a way that the core router could uniquely identify the ingress node through which the packet entered this domain.
Both of these approaches seem to be too “heavyweight” and would introduce too much additional complexity into the
core router processing. Because of this additional complexity associated with distribution of the boundary node traffic
sending rates among the ingress routers, we decided to estimate the value of the Congestion Reduced Aggregated Rate.

We will first examine a set of naive methods for calculating the CRAR at each boundary node. In the first method,
we reduce the rate at each ingress node proportionally to its sending rate. We will use the following notation in our
subsequent discussion:

• iR – total traffic rate on the congested interface i from all ingress nodes.

• iC – capacity of the congested interface i.

• iE – excess traffic received at the congested interface i.

• new
iR – CRAR that arrives at interface i.

• jiR – total traffic rate from the ingress node j to the interface i.

• jiS – total provisioned traffic rate from the ingress node j to the interface i.

• jiE – excess traffic sent from the ingress node j to the congested interface i.

• new
jiR – CRAR from ingress node j to interface i.

In the first method, called naive method 1, we calculate the CRARnew
jiR , as follows, reducing sending rates only of

those ingress nodes that send traffic above their minimum provisioned rate.

 =new
jiR

−

i

i
ji R

E
R 1 , only if jiji SR > (3.1.1)

Using this method, the boundary nodes will reduce their aggregated sending rates to new
jiR . However such rate

reduction may not completely eliminate congestion. Consider the situation where some ingress nodes send traffic below
their minimum provisioned rate and therefore do not slow down during the congestion. For this case, we can show that
reducing the sending rate in accordance with naive method 1 will not eliminate the congestion. We define congestion as

the situation when the estimated arrival rate at the link is above the link’s capacity, ii CR > . The excess traffic is given

by:

iii CRE −= (3.1.2)

The total rate iU from all nodes sending traffic below their provisioned rates is:

∑
≤∋

=
jiji SRj

jii RU (3.1.3)

Whereas the total rate iO from all nodes that exceed their provisioned rates is:

∑
>∋

=
jiji SRj

jii RO (3.1.4)

Obviously,

ii
i

jii UORR +== ∑ (3.1.5)

When load control is applied according to naive method 1, the new rate from the previously over-provisioned nodes is
adjusted to:

∑
>∋

=
jiji SRj

new
ji

new
i RO , where ji

new
ji RR < (3.1.6)

Thus, the CRAR is:
new
ii

j

new
ji

new
i OURR +== ∑ (3.1.7)

By re-writing (3.1.7) and by using definitions (3.1.2) – (3.1.6) we will obtain that:

 i
i

i
iii

i

i
i

new
i C

R

O
ERU

R

E
OR >−=+

−= 1 (3.1.8)

Inequality (3.2.8) holds sinceiE is the exact amount by which we should reduce rateiR in order to eliminate congestion.

However, since the ratio
i

i

R

O
is smaller than 1 because of the assumption that there are some ingress nodes that send

traffic below their minimum provisioned rate, we have reduced the rate iR by an amount smaller than iE . Therefore,

in this case, we will not eliminate congestion at the core router i. However, if all the ingress nodes send above their
minimum provisioned rates, such rate reduction will eliminate congestion. Another problem of this approach is that it

computes rate reduction based only on the ingress node’s sending rate and congestion level in the core router. Because of
that, this rate reduction method might cause certain ingress nodes to reduce their sending rates below their corresponding

minimum provisioned rate jiS .

 To eliminate the last problem, we propose two other rate-reduction techniques, which we will call naive
methods 2 and 3. Similarly to the naive method 1, we will reduce sending rate only at those ingress nodes that send
traffic above their minimum provisioned rate. Both of these approaches guarantee that the ingress nodes will not reduce
their sending rates below their minimum provisioned rates. In naive method 2, the ingress nodes reduce their sending
rate only by a fraction of the excess rate, and therefore can reduce their sending rate by excess rate at the most.

 =new
jiR

i

i
jiji R

E
ER − , only if jiji SR > (3.1.9)

On the other hand, in naive method 3, we explicitly prohibit reducing sending rates below corresponding minimum
provisioned rates.

=new
jiR

− ji

i

i
ji S

R

E
R ,1max , only if jiji SR > (3.1.10)

Unfortunately, none of the naive methods can reduce sending rates to a level that will eliminate congestion after
only a single congestion notification. Using these rate reduction approaches would require multiple congestion
notification messages before congestion in the core router’s interface is eradicated.

3.2 Two-iteration method for computing CRAR

We expect that none of the naive techniques for computation of the CRAR at the ingress nodes can guarantee fast
convergence to the sending rate that would eliminate congestion. That is why we propose an alternative method that is
able to reach a sending rate that will eliminate congestion after the second congestion notification. In this scheme, when
the first congestion notification arrives at the ingress nodes, the sending rate is lowered to a level which reduces but does
not eliminate the congestion. Because of that, the congested interface of the core router generates another congestion
notification. In our scheme, after receiving the second congestion notification, the ingress nodes are able to calculate the
exact value of the CRAR, such that congestion in the core router’s interface will be completely eliminated. In this
section we will use the same notations as in Section 3.1, except that we will distinguish between the rates before the first
and the second computation of the CRAR. For example, we will call the amount of excess traffic that interface i receives

before the first and the second rate reductions as 1
iE and

2
iE respectively. Also we will use symbol 1id to denote the rate

reduction ratio used to compute the new rate after receiving the first congestion notification. Thus, when the first

congestion notification is generated, the congested interface has an amount of excess traffic that is equal to 1
iE . After

the rate is reduced using reduction ratio 1
id , the congested interface will have an amount of excess traffic that is equal to

2
iE . When an ingress node receives a congestion notification, it computes the first rate reduction ratio as follows:

1

1
1

i

i
i R

E
d = (3.2.1)

Those ingress nodes that send traffic below their provisioned rates have excess traffic rate equal to zero. Then
each ingress router that receives a congestion notification will compute the CRAR as follows:

 1112
ijijiji dERR −= (3.2.2)

The excess traffic after this rate reduction is:

()112 1 ijiji dEE −= (3.2.3)

We can easily show that this reduction will not eliminate congestion and therefore a second congestion
notification will be generated. The first rate reduction caused the following decrease in the arrival rate at the congested
interface:

∑ −=
j

iijii EEEd 2111 (3.2.4)

Based on the knowledge that, for ingress node i, the reduction by 11
jii Ed × caused an overall rate reduction at

the congested interface in the amount of 21
ii EE − , we can calculate the reduction ratio 2

id , such that it will cause an

overall rate reduction at the congested interface in the amount of 2
iE . Based on this observation and equation (3.2.3),

we can construct the following equality and solve it for 2
id . In order to be able to construct this equality, we assume that

the number of the ingress nodes that adjust their rates remains the same for the period of the rate reduction.

()
2

11
2

21

1
1 1

i

jii
i

ii

ji
i E

Ed
d

EE

E
d

−
=

−
(3.2.5)

−

−

=
21

2

1

1
2

1 ii

i

i

i
i EE

E

d

d
d (3.2.6)

Selecting the value of 2
id according to equation (3.2.6) ensures that the previously congested interface will

become congestion-free. To verify the correctness of equation (3.2.6), we will show that the overall rate reduction after
the second congestion notification equals the amount of excess traffic at the congested interface.

∑ =
j

ijii EEd 222 (3.2.7)

By applying equation (3.2.3) to the left side of equation (3.2.7) and then by using equations (3.2.4) and (3.2.6)
we obtain:

() ()
1

21
1211222 11

i

ii
ii

j
jiii

j
jii d

EE
ddEddEd

−−=−= ∑∑

() 2
1

21
1

21

2

1

1
22 1

1 i
i

ii
i

ii

i

i

i

j
jii E

d

EE
d

EE

E

d

d
Ed =

 −−

−

−

=∑
Therefore, equation (3.2.7) holds, and selection of the reduction ratio for the second iteration according to equation

(3.2.6) will eliminate congestion on the interface that generated the congestion notification.

3.3 Reduction of the flow rates during the congestion

When the boundary node receives a congestion notification, it calculates the CRAR, using one of the methods

presented in Sections 3.1 and 3.2. After that, the boundary node calculates the new traffic rate, k
nr , for each flow that

contributes into the aggregate that passes through the congested link. In this section, we will use a slightly different
notation in order to make the formulas more readable.

• newR – Congestion Reduced Aggregated Rate.

• R – estimated traffic rate generated by the flows passing through the congested interface.
• S – sum of the minimum provisioned traffic rates for all the flows that travel to their destination through

the congested interface.

• kr – estimated traffic rate of flow k that passes through the congested interface.

• ks – minimum provisioned traffic rate of flow k that passes through the congested interface.

• k
newr – new traffic rate of flow k that passes through the congested interface.

The idea of this approach is very simple: we calculate a fair share for each flow and we reduce the flow’s
sending rate only if it sends traffic above its fair share. We calculate the fair share of the flow as follows:

 −+=

S

SR
sf newii 1 (3.3.1)

where,

()SRnew − is the amount of excess bandwidth available for all the flows.

Then, we calculate a new sending rate for each flow that sends above its fair share as follows:

 −−+=
over

overunder
newii

new S

SRR
sr 1 (3.3.2)

where,

∑
≤∋

=
ii fri

iunder rR , is the total sending rate of those flows that send below their fair share.

∑
>∋

=
ii fri

iover sS , is the total provisioned rate of those flows that send above their fair share.

()overunder
new SRR −− is the excess bandwidth left for sharing among the flows that send above their fair

share.
We assert that reducing flow rates according to equation (3.3.2) will reduce the aggregated rate to the calculated

value of newR . To prove this assertion, we need to show that:

∑ =
i

new
i

new Rr (3.3.3)

By applying the definition of uR , oS , and (3.3.2) to (3.3.3) we get:

∑∑ ∑ ∑

 −−++=

 −−++=
i

i

i i
over

overunder
new

i

iunder
over

overunder
newiunderi

new s
S

SRR
sR

S

SRR
sRr 1

new
over

over

overunder
newoverunder

i

i
new RS

S

SRR
SRr =

 −−++=∑

4. EVALUATION OF THE LOAD DISTRIBUTION FEEDBACK CONTROL SCHEME

4.1 Simulation set-up

To evaluate the proposed load control scheme, we built a simulation model using the OPNET [7] network simulator.
We implemented the message exchange mechanisms described in Section 2, and compared the performance of the
different rate reduction schemes for the network topology shown in Figure 7.

Figure 7. Simulation topology.

B3

B1 C1

C3
C2

B2

User 1

User 2

User 3

User 4

ServerBottleneck

We connected all the nodes in this topology with T1 links with a capacity of 1.544 Mbps. Only the bottleneck
link between nodes C3 and B3 was provisioned with a different amount of bandwidth, varying its capacity to simulate
different congestion situations. We simulated one-directional traffic from the user nodes (sources) to the server node
(destination). All the sources generated FTP traffic with an average inter-request time of 0.1 second and data size of 800
bytes. Including all the headers, this added up to a total sending rate of 66,240 bits/second for each user. Also the
boundary nodes B1 and B2 established SLAs with their corresponding users as shown in Table 6.

We used the Time Sliding Window Metering (TSW) mechanism [3] for estimating the arrival rate in the core
and boundary nodes. The boundary routers estimated a value of the arrival rate for calculation of new reduced rates,
while the core router used the estimated rates for determining if there was congestion. We configured the TSW meter
with a window size of 5 seconds. During the congestion, we passed user traffic through a simple token bucket that
reduces the sending rate of the user as needed. We ran our simulations for 300 seconds and activated users according to
the following schedule:

• User 1 and user 3 start sending traffic at time instant chosen randomly during the first 40 seconds of
simulation.

• User 4 starts sending traffic at time 100 seconds.
• User 2 starts sending traffic at time 300 seconds.

User 1 – Server User 2 – Server User 3 – Server User 4 – Server
Minimum Provisioned Rate 10 Kbps 20 Kbps 30 Kbps 40 Kbps
Boundary node B1 B1 B2 B2

Table 6. Service Level Agreement

4.2 Evaluation of the 2-step rate reduction method for computing CRAR.

During our experimental evaluation, we observed that the 2-step rate reduction method was not able to properly
estimate the CRAR. After close examination of the results, we noticed that the value of the aggregated arrival rate at the
congested interface as reported to the ingress nodes was not very accurate. The 2-step rate reduction method is based on
the assumption that we can clearly observe the results of the first rate reduction. Any inaccuracy of the current arrival
rate values causes the estimate of the new CRAR to fail during the second iteration. For this reason, we evaluate the
performance of the 2-step rate reduction method separately from the other methods.

We further observed that the value of the arrival rate at the congested link reported during the first iteration was
usually smaller than the value reported during the second iteration. Closer examination of that phenomenon revealed that
the Time Sliding Window rate estimator was not reporting the current rate accurately enough and required additional
time to converge to the actual value of the arrival rate. Therefore, the ingress node was observing that the rate reduction
after the first congestion notification caused an increase instead of decrease in the arrival rate at the core link. Because of
that we slightly modified our implementation of the 2-step rate reduction mechanism. Instead of generating congestion
notification immediately after the congestion was observed, we delay this notification. Introduction of the delay
significantly improved the performance of the 2-step rate reduction mechanism. This method was now able to eliminate
congestion in exactly two steps.

A second problem with this method was that it reduced total sending rates of the ingress nodes below their
minimum provisioned rates. Again, the reason for this behavior was the inaccuracy of the reported values by the TSW
rate estimator. In one case, we noticed that although all the ingress nodes reduced their total load by 24 Kbps, the TSW
rate estimator reported a rate reduction of only 18 Kbps. Such inaccuracy forced the ingress nodes to reduce their loads
by an amount larger than was needed to eliminate the congestion. We then explicitly added a condition that does not
allow the reduction of the total load at the ingress node to be below the minimum provisioned rate. This solved the
problem partially but still resulted in larger than necessary rate reduction, causing the congested link to become
underutilized. In our simulation, the 2-step method with these modifications was properly reducing the ingress node
sending rates only when the interval between the congestion notifications was about 17 seconds.

4.3 Evaluation of the naive rate reduction methods for computing CRAR.

In our evaluation, we used the number of congestion notifications needed to completely eliminate congestion in
the core router as a measure of how well the method performs. For each method, we ran the experiment 10 times,
counted the number of notifications required to completely eliminate congestion, and averaged these counts over the 10
runs.

 In this set of simulations, we provisioned the bottleneck link with 105 Kbps of bandwidth, which is only 5
Kbps above the arrival rate at the link in the case when all of the users send their traffic at the minimum provisioned rate.
We also set the minimum time interval between two consecutive congestion notifications to be 1 second. This interval
was introduced in order to avoid sending too many congestion notifications.

Figure 8. Naive method 1: ingress node sending rate
variation

Figure 9. Naive method 3: ingress node sending rate
variation

Due to the user activation schedule, our simulation had three distinct periods of congestion.
• The first period of congestion occurred at time 30 seconds, when both users 1 and 3 became active. Since all

users send their traffic at the rate of 66.24 Kbps, the core router C2, had (2 * 66.24 – 105) = 27.48 Kbps of
excess traffic arriving on its interface.

• The second period of congestion stated at time 105 seconds, when the user 4 started sending traffic. At this
point, core router C2 had about 66.24 Kbps of traffic arriving above the capacity of the interface.

• The third congestion period started at time 210 seconds when user 2 began sending traffic. The core router
C2 again was observing 66.24 Kbps of excess traffic arriving on its link.

Table 7 displays the number of congestion notifications required to eliminate congestion in the core for each
period of congestion.

As expected, naive method 2 performs very poorly. This method requires about two and a half times as many
congestion notifications as naive methods 1 and 3. The main reason for that is the fact that naive method 2 always
reduces sending rate only by a fraction of the excess rate. As experiments showed, this reduction technique is unable to
converge to the value of the sending rate that would eliminate congestion completely. As a result, with naive method 2
the ingress nodes receive congestion notifications almost throughout the whole simulation. Naive methods 1 and 3, on
the other hand, converge to the correct sending rate fairly quickly, and as expected they require almost the same number
of congestion notifications to converge.

Congestion PeriodRate Reduction
Method 1-st 2-nd 3-rd
Naive 1 6.6 14.3 20.2
Naive 2 14.0 40.8 52.3
Naive 3 6.6 15.7 22.4

Table 7. Comparison of the methods for rate reduction

Also, as we expected, naive method 1 failed to avoid reducing aggregated rates below the minimum
provisioned rates. However, both naive methods 2 and 3 were able to eliminate this problem. Figures 8 and 9 illustrate
this by showing how the sending rates of the ingress nodes change during the congestion. As Figure 8 shows, naive
method 1 reduces traffic load at ingress node 2 to 59 Kbps, while this node is provisioned for 70 Kbps on the path to the
server. Naive method 3 on the other hand, does not reduce traffic loads below their minimum provisioned rates. As
shown in Figure 9, both, ingress node 1 and ingress node 2 send traffic at rates slightly above their provisioned rates.

4.4 Evaluation of the per-flow rate distribution.

As we expected, using the method proposed in Section 3.3 allows the ingress nodes to fairly distribute excess
bandwidth among their users. To illustrate how the ingress nodes distribute excess bandwidth among the users, we
conducted a different set of simulations. In this simulation set, we allocated 140 Kbps of bandwidth at the bottleneck
link, and we used naive method 3 for CRAR computation. In this scenario, we had only two congestion periods because
the bottleneck link had more bandwidth allocated to it. As the results in Tables 8 and 9 show, the excess bandwidth is
always distributed fairly among the users of the ingress nodes in proportion to their minimum provisioned rates. It
should be noted that the fair share distribution among flows is only across flows in a given ingress node and is not valid
for flows in different ingress nodes. Figures 10 and 11 illustrate these results in a graphical form.

Figure 10: Naive method 3: Per-flow rate
distribution.

Figure 11: Naive Method 3: Ingress node sending
rates variation.

First Congestion Period Second Congestion PeriodMinimum
Provisioned Rates Sending rate Excess BW Sending Rate Excess BW

Ingress Node 1 30 Kbps 47.3 Kbps 17.3 Kbps 68.5 Kbps 38.5 Kbps
Ingress Node 2 70 Kbps 92.6 Kbps 22.6 Kbps 71.4 Kbps 1.4 Kbps

Table 8. Rate distribution among ingress nodes.

First Congestion Period Second Congestion PeriodProvisioned
Rate Sending rate Fair share Sending rate Fair share

User 1 10 Kbps 47.3 Kbps 37.3 Kbps 22.8 Kbps 12.83 KbpsIngress
Node 1 User 2 20 Kbps -- -- 45.7 Kbps 25.67 Kbps

User 3 30 Kbps 39.7 Kbps 9.68 Kbps 30.6 Kbps 0.6 KbpsIngress
Node 2 User 4 40 Kbps 52.9 Kbps 12.91 Kbps 40.8 Kbps 0.8 Kbps

Table 9. Rate distribution among the users.

5. CONCLUSIONS AND FUTURE WORK

In this paper we introduced an architecture for load distribution in the ingress nodes of a network domain during
periods of congestion. We also presented and evaluated four methods for distributed computation of the sending rates at
ingress nodes. We found that the complex method for precisely estimating new sending rates does not work well because
of the inaccuracy in the reported arrival rate at the congested interface. However, simple methods for reducing rate can
eliminate congestion within a reasonable time and would not reduce traffic rates at ingress nodes below their
corresponding minimum provisioned rates. Furthermore, we proposed a mechanism for fair rate distribution among the
individual flows of the ingress node, and we showed using the OPNET [7] network simulator that this mechanism
achieves fair load distribution among the flows. However, to better understand possible advantages of the proposed
dynamic load control protocol, we need to investigate further the performance of the rate reduction mechanisms under a
variety of network conditions.

6. ACKNOWLEDGEMENTS

We would like to thank Dr. Constantinos Dovrolis for the long hours of discussion and for helping to realize this idea.

7. REFERENCES

1. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. "An Architecture for Differentiated Services",
December 1998. IETF RFC 2475

2. H. Chow, A. Leon-Garcia, "A Feedback Control Extension to Differentiated Services", March 1999. Internet Draft:
draft-chow-diffserv-fbctrl.txt

3. D. Clark, W. Fang, "Explicit Allocation of Best Effort Packet Delivery Service," IEEE/ACM Transactions on
Networking, vol. 6, no. 4, pp. 362-373, August 1998

4. C. Dovrolis, P. Ramanathan, "A Case for Relative Differentiated Services and Proportional Differentiation Model,"
IEEE Network, Vol. 13, No. 5, pp. 26-34, Sep./Oct. 1999.

5. C. Dovrolis, D. Stilliadis, "Relative Differentiated Services in the Internet: Issues and Mechanisms," In ACM
SIGMETRICS, May 1999.

6. C. Dovrolis, D. Stilliadis, P. Ramanathan, "Proportional Differentiated Services: Delay Differentiation and Packet
Scheduling," Proc. ACM SIGCOMM ’99 Conference, Cambridge, MA, Sep. 1999, pp.109-120.

7. Wu-chang Feng, Dilip D. Kandlur, Dabanjan Saha, and Kang G. Shin "Understanding and Improving TCP
Perfromance over Networks with Minimum Rate Guarantees," IEEE/ACM Transactions on Networking, Vol. 7, No.
2, pp. 173-187, April 1999.

8. OPNET Modeler. OPNET Technologies Inc. http://www.mil3.com
9. K. K. Ramakrishnan, Sally Floyd, D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", March

2001. Internet Draft: draft-ietf-tsvwg-ecn-03.txt
10. Rezende, J. F., "Assured Service Evaluation", In Proceedings Globecom’99, March 1999.
11. B. Nandy, N. Seddigh, P. Pieda, J. Ethridge, "Intelligent Traffic Conditioners for Assured Forwarding Based

Differentiated Services Networks,“ In Proceedings of IFIP High Performance Networking (HPN 2000), June 2000.
12. Peter Pieda, Nabil Seddigh, Biswajit Nandy, "The Dynamics of TCP and UDP Interaction in IP-QOS Differentiated

Services Networks," In Proceedings of the 3rd Canadian Conference on Broadband Research, November 1999.
13. Ion Stoica, Scott Shenker, Hui Zhang, "Core-Stateless Fair Queuing: Achieving Approximately Fair Bandwidth

allocations in High Speed Networks," Proc. ACM SIGCOMM’98 Conference, Vancouver, B.C., Sept. 1998,
pp.118-130.

14. A.F. Lobo and A.S. Sethi, ''A cooperative congestion management scheme for switched high-speed networks,'' Proc.
ICNP-96, International Conference on Network Protocols, Columbus, Ohio (Oct.-Nov. 1996), pp. 190-198.

