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Abstract—Learning in nonstationary environments, also 
called learning concept drift, has been receiving increasing 
attention due to increasingly large number of applications that 
generate data with drifting distributions. These applications 
are usually associated with streaming data, either online or in 
batches, and concept drift algorithms are trained to detect and 
track the drifting concepts. While concept drift itself is a 
significantly more complex problem than the traditional 
machine learning paradigm of data coming from a fixed 
distribution, the problem is further complicated when 
obtaining labeled data is expensive, and training must rely, in 
part, on unlabelled data. Independently from concept drift 
research, semi-supervised approaches have been developed for 
learning from (limited) labeled and (abundant) unlabeled data; 
however, such approaches have been largely absent in concept 
drift literature. In this contribution, we describe an ensemble of 
classifiers based approach that takes advantage of both labeled 
and unlabeled data in addressing concept drift: available 
labeled data are used to generate classifiers, whose voting 
weights are determined based on the distances between 
Gaussian mixture model components trained on both labeled 
and unlabeled data in a drifting environment. 

Index Terms—concept drift; non-stationary environments; 
unlabeled data; ensemble systems; incremental learning 

I. INTRODUCTION 

ONSTATIONARY environments are typically associated 
with streaming data whose underlying distribution 

changes over time. When such a change occurs in data, the 
outcome is referred to as concept drift, which has been 
receiving increasing attention from the machine learning 
community [1,2]. Such an attention is not unfounded: the 
traditional assumption made by most machine learning 
algorithms – that the data come from a fixed distribution – 
does not hold in many real world applications, such as 
analysis of long-term financial, climate, or electricity 
demand data. Hence, many of the traditional classification 
algorithms are simply not equipped to handle concept drift. 
Considering the streaming nature of data generated by 
nonstationary environments, using traditional machine 
learning algorithms on such data inevitably causes subpar 
performance on future datasets. Learning in nonstationary 
environments is therefore an incremental learning problem, 
which is associated with two conflicting objectives: retaining 
previously learned knowledge that is still relevant, and 
replacing any obsolete knowledge with current information. 
These conflicting objectives are collectively known as the 
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stability-plasticity dilemma [3]. The problem is further 
complicated however, if the discarded information later 
becomes relevant again, a not-so-uncommon phenomenon 
observed in so-called cyclical environments (such as climate 
or any seasonal data). In such cases, the ability to recall 
previous knowledge would be useful. Therefore, algorithms 
designed to learn concept drift must be capable of adaptively 
adjusting its structure or parameters to accurately track a 
variety of drifting environments, such as slow, fast, gradual, 
abrupt or cyclical changes in the environment.  
 Since incremental learning in nonstationary environments 
requires a streaming source of data (either online or in 
batches) to learn the new concept, a further difficulty arises 
if obtaining labeled data is expensive, or the labels do not 
become available at the time data are acquired. This is 
because the typical scenario in streaming nonstationary data 
applications requires the algorithm to be trained with data 
available at time step ݐ, which is then evaluated on data that 
become available at time step ݐ ൅ 1. In applications where 
labeling the data is a time consuming process (compared to 
data acquisition), labels from the previous batch may not be 
available at the time new data become available.  

As unlabeled data are often less expensive or easier to 
obtain, a number of algorithms – so called semi-supervised 
and transductive approaches – have been developed, which 
can make use of (possibly limited) labeled and (usually 
abundant) unlabeled data [4,5]. As stated in [6], inductive 
semi-supervised approaches use labeled data ሼ࢞௜, ௜ሽ௜ୀଵݕ

௟  and 
unlabeled data ሼ࢞௞ሽ௞ୀ௟ାଵ

௟ା௨  to learn a function ݂:ࣲ → ࣳ such 
that ݂ is a good predictor on future unlabeled data beyond 
ሼ࢞௞ሽ௞ୀ௟ାଵ

௟ା௨ . Transductive approaches, on the other hand, use 
labeled data ሼ࢞௜, ௜ሽ௜ୀଵݕ

௟  and unlabeled data ሼ࢞௞ሽ௞ୀ௟ାଵ
௟ା௨  to learn 

a function ݂:ࣲ௟ା௨ → ࣳ௟ା௨ such that ݂ is a good predictor 
on ሼ࢞௞ሽ௞ୀ௟ାଵ

௟ା௨ . In a transductive learning setting, ݂ is only 
defined for a given training sample and is not expected to 
predict outside ሼ࢞௞ሽ௞ୀ௟ାଵ

௟ା௨ . Several researchers have shown 
that strategic use of unlabeled data could result in better 
generalization performances compared to using a strictly 
supervised algorithm with the limited labeled data only. It is 
reasonable to expect that a semi-supervised approach can 
improve the ability of a classifier to track nonstationary 
environments that provide limited labeled and abundant 
unlabeled data. The labeled data are available for training 
and the unlabeled data are provided for testing; however, the 
training and testing data may be sampled from different 
sources. Yet, developing semi-supervised and transductive 
algorithms for concept drift applications have been mostly 
underexplored. 

In this contribution, an incremental learning algorithm is 
presented that is designed to use unlabeled data drawn from 
a distribution different from previously seen distributions to 
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update the weights of an ensemble of classifiers. The 
approach integrates Gaussian mixture models for 
determining classifier-voting weights. 

The rest of this paper is organized as follows: Section II 
presents background literature into clustering and concept 
drift, Section III provides a motivation for the proposed 
approach, Section IV describes the current approach in 
detail, Section V contains the results of our preliminary 
experiments, and Section VI provides discussions, 
concluding remarks and future efforts.   

II. BACKGROUND 

Concept drift algorithms can be categorized in several 
ways, such as online vs. batch algorithms – based on the 
number of instances used for each update; active vs. passive 
approaches – based on whether an explicit drift detection 
mechanism is used or drift is simply assumed; as well as 
single classifier vs. multiple classifier systems (MCS) based 
approaches. MCS-based approaches have been widely used 
for a wide spectrum of data mining problems including 
concept drift, learning new classes [7], data fusion [8], and 
feature selection [9]. Earliest attempts of addressing concept 
drift include single classifier, passive batch algorithms 
STAGGER [10] and FLORA [11], which use a sliding 
window to choose a block of (new) instances to train a new 
classifier. The window size is modified via window 
adjustment heuristic, based on how fast the environment is 
changing, making the algorithm at least partially “active”. 
FLORA has a built-in forgetting mechanism with the 
implicit assumption that those instances that fall outside of 
the window are no longer relevant, and the information 
carried by them can be forgotten. On the other hand, some 
active drift detection approaches for concept drift include 
CUSUM (cumulative sum) and confidence interval 
intersection based approaches that only take corrective 
action when drift is detected [12,13,14]. These are also 
examples of single classifier based approaches. 

Ensemble based approaches constitute a different group of 
concept drift algorithms. Ensemble approaches have been 
widely popular because of their simple, yet well-founded 
theory based on variance reduction, and their ability to strike 
a meaningful balance between stability and plasticity, thus 
avoiding catastrophic forgetting associated with other 
algorithms that replace the existing classifier with a new one 
trained on the new data only [15]. Street and Kim’s 
streaming ensemble algorithm (SEA) was one of the earliest 
ensemble based techniques designed for nonstationary 
environments [16]. SEA simply adds new classifiers to the 
ensemble trained on the new data as new data become 
available; however uses an upper limit on the ensemble size 
(typically 25). To do so, SEA prunes additional classifiers 
(in excess of 25) by determining the quality of each 
classifier, measured by its correct classification performance 
with respect to the entire ensemble’s performance. Kolter & 
Maloof present dynamic weighted majority (DWM), an on-
line learning ensemble designed for concept drift 
applications [17]. DWM maintains a pool of classifiers and 
weighs these classifiers in a semi-heuristic method that 
reduces classifier weights when instances are misclassified. 

Classifiers with low weights are then discarded. More 
recently, Bifet et al. presented a new method of on-line 
bagging, which uses adaptive size Hoeffding trees (ASHT) 
[18]. ASHT is motivated by the idea that smaller trees adapt 
more quickly to a changing concept than a large tree, but a 
large tree will perform well over periods where the concepts 
are not changing. In our previous work, we introduced 
Learn++.NSE, a member of Learn++ family of incremental 
learning algorithms [19], which also generates a classifier 
with each new datasets, but uses a dynamic weighting 
strategy that uses a weighted sum of each classifier’s error 
over current, recent and old environments [20]. The 
weighted sum is a sigmoid applied to the classifier’s errors, 
which weighs recent errors more heavily than errors on older 
environments. Such a weighting scheme allows a classifier 
that performs well in recent times to be rewarded with a 
higher weight, regardless of its age. 

Other concept drift algorithms combine the ensemble 
approach with the sliding window to hold instances for later 
use either for training or as a change estimator/detector. One 
such example is ADWIN, an adaptive sliding window 
approach for drifting data streams [21]. Whenever two large 
enough sub-windows exhibit “distinct enough” expectations, 
ADWIN determines the corresponding expected values are 
significantly different and drops the older portion of the sub-
window.  

There has also been an increasing interest in clustering 
algorithms for concept drift, and a software package has 
recently been released geared towards clustering and 
classification with concept drift present in data streams [22]. 
StreamKM++ is a data stream clustering algorithm that 
computes a small weighted sample of the data stream and 
uses a modified ݇-means to select the initial values in the 
cluster [23]. However, the modified ݇-means requires access 
to the training data, which is not feasible for data stream 
mining. As a work-around, the authors present a non-
uniform sampling approach. Similarly, D-stream is a density 
based clustering framework for evolving data streams where 
little prior knowledge is known about the data [24]. Rather 
than retain old data as some clustering algorithms do, D-
stream partitions the feature space into discretized grids and 
maps new instances to the corresponding grid. Grids are 
clustered based on their density. ClusTree is another data 
stream clustering algorithm capable of detecting concept 
drift, novelty and outliers in the stream [25]. The clustering 
algorithm uses an adaptive index structure for maintaining 
summaries concerning the data stream. Finally, Den-stream 
uses “dense” micro-clusters to summarize clusters with 
arbitrary shape [26]. With the exception of a few recent 
works, a semi-supervised approach that can take advantage 
of abundant unlabeled as well as limited labeled data has 
been mostly underexplored, despite parallel set of works of 
classification and clustering in concept drift. The existing 
works include primarily those of Zhang et al [27,28]. In one 
approach they use relational ݇-means and a semi-supervised 
SVM to work with labeled and unlabeled data with concept 
drift in [27]. In another approach, the same authors ensemble 
algorithms for combining classifiers and clusters for learning 
from data streams [28].  
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III. DETERMINING CLASSIFIER WEIGHTS 

Consider the problem of estimating a set of Bayes-optimal 
discriminate functions based on the outputs of the classifiers 
in an ensemble [29]. The discriminate function can be 
formed by a weighted combination of the classifier outputs. 
However, we wish to determine a non-heuristic, optimal set 
of weights for member classifiers. The Bayes-optimal 
discriminate function for class ௝߱ on instance ࢞ is given by 
(1), where ܐ is a vector of labels predicted by ܶ classifiers in 
the ensemble. Assuming all classifiers in the ensemble 
provide independent outputs, we may apply the naïve Bayes 
rule on the conditional probability to formulate (2) which 
can be rewritten as in (3).  

 

 ݃௝ሺ࢞ሻ ൌ log൛ܲ൫ ௝߱൯݌൫ܐ| ௝߱൯ൟ

           ൌ log ൝ܲ൫ ௝߱൯ෑ݌൫݄௞| ௝߱൯

்

௞ୀଵ

ൡ 

           ൌ   log ܲ൫ ௝߱൯ ൅ ෍ log
1 െ ௞ߝ
௞ߝ

௞:௛ೖୀఠೕ

൅෍ߝ௞

்

௞ୀଵ

 

(1) 
 
 

(2) 
 
 

(3) 
 

where 
௞ߝ ൌ 1 െ ൫݄௞ห݌  ௝߱൯ (4) 

   
is the error of the ݇௧௛ classifier hypothesis ݄௞ in predicting 
the true label  ௝߱. The last term in (3) has no dependence on 

௝߱, and therefore it can be dropped from the discriminate. 
The discriminate function is further reduced if one can 
reasonably assume all classes have equal prior probabilities. 
Thus, the weights for the classifiers in the ensemble can be 
assigned using (5). 

 

 ௞ܹ ∝ log
1 െ ௞ߝ
௞ߝ

 (5) 
 

Equation (5) states that the optimal weights for each 
classifier in an ensemble can be determined if the error of 
the classifier can be compute on a static dataset. The error of 
the ݇௧௛ classifier, ߝ௞, is typically estimated by computing the 
error on a validation dataset. In order to compute the 
weights, there must be a significant amount of labeled data 
to reliably estimate the error. The objective of this work is to 
use unlabeled data, possibly drawn from a different 
distribution (i.e., different from the distribution that 
generated the training data) to aid in assigning a weight to 
each classifier. Let ܵ௞ represent the source distribution 
whose data was used to generate a classifier ݄௞ at time stamp 
݇ where ݇ ൌ 1,2, … ,  is the most recent time stamp ݐ and ݐ
for which training data is available. If the field data (i.e., test 
data) is sampled from a different source distribution, 
ܵ௧ା௧ഁ ് ܵ௧ where ݐ ൅  ఉ is an arbitrary time stamp in theݐ

future, the weights ௞ܹ
ሺ௧ሻ
 computed based on the errors of the 

classifiers trained on ܵ௧ will not be optimal. Using the 

weights given by 
௞ܹ

ሺ௧ା௧ഁሻ (as shown in (6)) would be ideal  
for testing our ensemble on data sampled from ܵ௧ା௧ഁ; 

however, there is not labeled data at time stamp ݐ ൅  ఉ toݐ

estimate ߝ
௞

ሺ௧ା௧ഁሻ. The problem is, then, how to estimate 

௞ܹ

ሺ௧ା௧ഁሻ when (field) data is not yet labeled. 
 

 
௞ܹ

ሺ௧ା௧ഁሻ ∝ log
1 െ ߝ

௞

ሺ௧ା௧ഁሻ

ߝ
௞

ሺ௧ା௧ഁሻ
 (6) 

A clustering algorithm is used to represent the distribution 
of the unlabeled data drawn from a source distribution ܵ௧ା௧ഁ. 

Specifically, a mixture of Gaussians with ܭ components is 
generated from the unlabeled data, and a separate mixture of 
Gaussians for each class in the labeled data set sampled from 
source ܵ௧. Assuming the drift in the data is gradual or 
incremental, one can try to determine a correlation between 
the two sets of mixture models. This processed is described 
in detail in the next section. 

IV. APPROACH 

The proposed weight estimation algorithm (WEA) is a 
batch based incremental learning algorithm for concept drift 
that receives batches of labeled and unlabeled data at each 
time stamp. However, in line with the typical streaming data 
applications, the unlabeled data are not available at the time 
of training, but only become available at the time of testing. 
Specifically, at time ݐ a batch of labeled data is used to train 
a new classifier. Upon completion of the training, there is 
unlabeled test data, which is used to adjust classifier voting 
weights. Furthermore, again in line with the assumption of 
possibly continuous drift, we accept that the source 
distributions that generated the training data and the test data 
may be different, and that access to the labels of the field 
data is not available until after they are evaluated by the 
ensemble. Using weights determined from the labeled data, 
per (5), may result in suboptimal raw classification accuracy 
if there is a significant amount of bias between the 
distributions of the labeled and unlabeled data sources. Thus, 
the goal is to use the unlabeled data and a set of mixtures 
models formed on the previous data sources to estimate the 
weights for all the classifiers in the ensemble before we 
begin to classify the unlabeled field data. Only after the field 
data have been classified, the true labels of the instances are 
received so that the accuracy of the ensemble can be 
computed.  

WEA assumes there is limited concept drift in the 
incremental learning scenario. By limited concept drift, the 
assumption is that the drift is not completely random; rather 
there is a structure to the drift. Thus, the underlying source 
generating the data is evolving with time and not randomly 
selecting new sources to generate data. The sources 
generating the labeled and unlabeled data presented at a 
future time stamp are not radically different. Instead, the 
learning scenario experiences a gradual or incremental drift. 
After all, a source changing randomly between time stamps 
cannot be learned. Therefore, we formalize our limited drift 
assumption as follows: the Bhattacharyya distance between a 
known (labeled) component and its future position 
(unlabeled at the time of testing) must be less than the 
Bhattacharyya distance between the known component and 
every other future (unlabeled) component from a different 
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class. This assumption simply means that the drift of mixture 
components is gradual and not radical.  

Let ௖ࣧ
ሺ௧ሻሺ݅ሻ be the ith component of a mixture model at 

time stamp ݐ for class ܿ, which contains ܭ௖ components and 
݅, ݆, ݇ ൌ 1,… ,  ௖. Assuming Gaussian mixture modelsܭ
(GMM) are used in WEA, the limited drift assumption is 
given by (7), which states that the Bhattacharyya distance 
between the ݅th component of the ܿth class in ௖ࣧ

ሺ௧ሻ and the 

݆th component of the ܿth class in ௖ࣧ
ሺ௧ାଵሻmust be less than 

the distance between ݅th component of the ܿth class in 

௖ࣧ
ሺ௧ሻand ݇th components of the ܿᇱth class in 

௖ࣧᇲ
ሺ௧ାଵሻ where 

ܿ ് ܿᇱ. We will see why this assumption is made and what 

are the possible outcomes of a violation of this assumption. 
Note that the limited drift assumption requires that (7) 
should hold for all ݅, ݆, ݇ with ܿ ് ܿᇱ for all classes. 

 
 

 
஻൫ߜ ௖ࣧ

ሺ௧ሻሺ݅ሻ, ௖ࣧ
ሺ௧ାଵሻሺ݆ሻ൯

൏ ஻ቀߜ ௖ࣧ
ሺ௧ሻሺ݅ሻ,

௖ࣧᇲ
ሺ௧ାଵሻ

ሺ݇ሻቁ 
(7) 

 

 
 
WEA, whose pseudo code is given Fig. 1, works 

iteratively as new data become available, as follows: At time 
 WEA is presented with a batch of labeled training data ݐ
ࣞሺ௧ሻ and a batch of unlabeled field data ࣜሺ௧ሻ. The source 
distribution that generated the data in ࣜሺ௧ሻ may be different 
from that of ࣞሺ௧ሻ due to concept drift in the data. A new 
classifier is generated using a supervised base classifier 
algorithm on ࣞሺ௧ሻ. Because this is an incremental learning 
algorithm, only the current training data may be used for 
training at any time, that is, prior data is considered 
unavailable. The base classifier is not a weak learning 
algorithm as used in AdaBoost and many other ensemble 
based approaches. Rather, a classifier that is a good predictor 
is generated and not a “rule of thumb”. Next, WEA 
generates a Gaussian mixture model (GMM) for each class ܿ 
(where ܿ is any arbitrary class), with ܭ௖ centers. ܭ௖ should 
be chosen – possibly based on prior knowledge or 
experience – that the GMM will be able to reasonably 
approximate the underlying data distribution. In this work 
Expectation-Maximization (EM) initialized by ܭ-means is 
used to form the mixture of Gaussians. The GMM for class 
ܿ, obtained from the labeled data at time ݐ is referred to as 

௖ࣧ
ሺ௧ሻ. The mixture model ௖ࣧ

ሺ௧ሻ, for all classes, consists of a 
total of ܭ components, ܭ௖ of which represent class ܿ. 
Another Gaussian mixture model is generated from the 
unlabeled data in ࣜሺ௧ሻ when such data arrive. A GMM is 
generated from the data in ࣜሺ௧ሻ with ܭ components where 
 is given by (8) ܭ
 

Input: Labeled training data ࣞሺݐሻ ൌ ሼ݅࢞ ∈ ࣲ; ݅ݕ ∈ ࣳሽ 
       where ݅ ൌ 1,… ,݉ሺݐሻ 
 Unlabelled field data ࣜሺݐሻ ൌ ൛݆࢞ ∈ ෡ࣲൟ 
       where ݅ ൌ 1,… , ݊ሺݐሻ 
ܿܭ  : number of centers for the ܿth class in a GMM 
    ሻ: number of instances generated to estimate theݐሺݍ     
               classifier error 
 BaseClassifier learning algorithm 
 
for ݐ ൌ 1,2, … do  
1. Call BaseClassifier on ࣞሺtሻ to generate ݄ݐ: ܺ → ࣳ 
2. Generate a GMM for each class with ܿܭ  centers in 

labeled ࣞሺtሻ. Refer to these mixture models as cࣧ
ሺtሻ.

3. Generate a GMM with ∑ܿܭ  centers from unlabeled 
ࣜሺݐሻ. Refer to this mixture model as ࣨሺݐሻ. 

4. Compute Bhattacharyya distance between the 

components in ࣨሺݐሻ and the components in cࣧ
ሺtሻ. 

Assign each component in ࣨሺݐሻ with the label of the 

closest component in cࣧ
ሺtሻ. Refer to this mixture as 

ࣨܿ
ሺݐሻ 

5. Generate synthetic data from ࣨܿሺݐሻand compute the 
error for each classifier on synthetic data 

݇̂ߝ
ሺݐሻ
ൌ

1

ሻݐሺݍ
෍݄ۤ݇ሺ݈࢞ሻ ൌ ۥ݈ݕ

ሻݐሺݍ

݈ൌ1

 

 where ݍሺݐሻ is the number of synthetic instances 
 generated and ݇ ൌ 1,2, … ,  ݐ

 if ݇̂ߝሺݐሻ ൐ 1 2⁄  then 

ሻݐሺ݇̂ߝ     ൌ 1 2⁄  
 end if 

6. Compute classifier voting weights for the field data 

ܹ݇
ሺݐሻ
∝ log

1 െ ݇̂ߝ
ሺݐሻ

݇̂ߝ
ሺݐሻ

 

7. Classify the field data in ࣜሺݐሻ 

݆࢞ሻ൫ݐሺܪ ∈ ࣜ
ሺݐሻ൯ ൌ argmax

c∈Ω
෍ܹ݇

ሺݐሻ
൳݄݇൫݆࢞ ൯ ൌ ݕ݆ ൷

ݐ

݇ൌ1

 

end for 
Fig. 1. Weight Estimation Algorithm (WEA) pseudo code 

Fig. 2. Initial likelihood of the rotating Gaussian mixture dataset. Each 
mixture in the concept drift problem represents a class. The mixtures drift in 
a clockwise rotation around on another.  
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ܭ ൌ෍ܭ௖

௖∈ஐ

 
(8) 

 

where the set Ω consists of all classes in the incremental 
learning problem. The mixture model obtained from the 
unlabeled data is referred to as ࣨሺ௧ሻ. Thus, ࣨሺ௧ሻ is the 
model of the data sampled from an unknown source, which 

is an evolution of the previous (known) model, ௖ࣧ
ሺ௧ሻ. Since 

labels are not available for ࣜሺ௧ሻ, we do not know which 
mixture components belongs to which class in ࣨሺ௧ሻ. Next, 

WEA seeks to determine where the components in ௖ࣧ
ሺ௧ሻ 

have drifted to in ࣨሺ௧ሻ by measuring the similarity between 
the components in both models. To do this, the 
Bhattacharyya distances are computed, given by (9), 

between a component in ࣨሺ௧ሻ and all components in ௖ࣧ
ሺ௧ሻ. 

The component in ࣨሺ௧ሻ is assigned to the label of the 

mixture in ௖ࣧ
ሺ௧ሻ with the smallest Bhattacharyya distance. 

Thus, we now observe why the assumption of limited drift 
was stated because if (7) does not hold a component will be 
temporarily mislabeled.  
 

 

஻ߜ ൌ
1

8
ሺࣆଶ െ ଵሻࣆ

் ൬
઱ଵ ൅ ઱ଶ

2
൰
ିଵ

ሺࣆଶ െ ଵሻࣆ

൅
1

2
logቌ

ቚ
઱ଵ ൅ ઱ଶ

2 ቚ

ඥ|઱ଵ||઱ଶ|
ቍ 

(9) 

 
The components of ࣨሺ௧ሻ that are closest to the component 

௖ࣧ
ሺ௧ሻare assigned the label ܿ because of the minimum 

distance. We then call the GMM obtained from these 

components ௖ࣨ
ሺ௧ሻ. Note that   ௖ࣨ

ሺ௧ሻ simply represents a 
(temporarily) labeled component of ࣨሺ௧ሻ. Once the 
(estimated) labels are assigned to the components in ࣨሺ௧ሻ, 
WEA generates a batch of synthetic data with class 

associations by sampling from the GMMs in ௖ࣨ
ሺ௧ሻ. The 
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Fig. 3. Raw classification accuracy comparison of WEA and Learn++.NSE evaluated on the GaussCir dataset. The experiment is run over 200 time stamps 
and batch sizes of 1000 with approximately equal prior probabilities. The level of bias between the labeled and unlabeled data varies as follows: (a) zero 
bias, (b) 1 time stamp, (c) 3 time stamps, (d) 5 time stamps, (e) 7 time stamps, (g) 10 time stamps, and (g) 13 time stamps. 
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sample size, ݍሺ௧ሻ, is a free parameter of the algorithm. If the 
aforementioned assumption has not been violated, the data 

sampled from ௖ࣨ
ሺ௧ሻ should have a distribution similar to that 

of ࣜሺ௧ሻ, but now with estimated class labels. The synthetic 
data, along with its assigned (temporary) labels are used to 

estimate the expected error, denoted by ߝ௞̂
ሺ௧ሻ, on ࣜሺ௧ሻ. The 

expected error of the classifiers on the synthetic data will 
reasonably estimate the error on ࣜሺ௧ሻ, if the GMMs 
accurately represent the data in ࣞሺ௧ሻ and the limited drift 
assumption is held. Thus, the weights computed by WEA 
should approach the original weights we were seeking to 

estimate in (6). The weights of the classifiers, ௞ܹ
ሺ௧ሻ, are 

inversely proportional to the logarithm of the estimated 
average error on ࣜሺ௧ሻ. Finally, the unlabeled data are 
classified using a weighted majority vote, where the final 
class labels are determined. 

V. EXPERIMENTAL RESULTS 

A series of synthetic datasets were used to demonstrate the 
capabilities of the proposed approach for using unlabeled 
data in tracking nonstationary environments. We also 
compare this algorithm to Learn++.NSE whose pseudo code 
can be found in [20]. Learn++.NSE uses a similar ensemble 
approach and weighted majority voting to track drift; 
however Learn++.NSE only uses labeled data. Using 
identical base classifiers, this comparison then allows us to 
determine whether the proposed GMM based approach can 
use unlabeled data to better track nonstationary 
environments. Synthetic datasets are used to strictly control 
the distributions of the data and the rate/type of drift present 
in the incremental learning problem. Each experiment is 
averaged with 50 independent trials. The lightly shaded 
regions around each plot represent the 95% confidence 
interval that allows us to test for statistical significance. A 
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Fig. 4. Raw classification accuracy comparison of WEA and Learn++.NSE evaluated on the GaussTri dataset. The experiment is run over 200 time stamps 
and batch sizes of 1000 with approximately equal prior probabilities. The level of bias between the labeled and unlabeled data varies as follows: (a) zero 
bias, (b) 1 time stamp, (c) 3 time stamps, (d) 5 time stamps, (e) 7 time stamps, (g) 10 time stamps, and (g) 13 time stamps. 
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CART decision tree was used as the base classifier both for 
the WEA and Learn++.NSE. 
 

A. Datasets used for Experimentation 

The rotating Gaussian dataset is comprised of two 
Gaussian components, each for a different class, rotating 
around one another. The class means are determined by 

using the parametric equations ࣆଵ
ሺ௧ሻ
ൌ ሾcos ௧ߠ , sin ௧ሿߠ

், 

ଶࣆ
ሺ௧ሻ
ൌ െࣆଵ

ሺ௧ሻ, ߠ௧ ൌ
ଶగ௠

ே
 with fixed class covariance ,ݐ

matrices given by Σଵ ൌ Σଶ ൌ 0.5 ൈ ۷, where ݉ is the 
number of cycles, ݐ is an integer valued time stamp (ݐ ൌ
0,1, … ,ܰ െ 1) and ۷ is a 2 ൈ 2 identity matrix. The 
experiment is run over 2 cycles with 1000 train/test instances 
in each batch, and a varying level of bias between the 
training and testing datasets. Bias was injected by sampling 
the testing dataset from a future time stamp. This dataset is 
referred to as GaussCir. 

A second Gaussian dataset was created, consisting of three 
components, each belonging to a different class moving in a 
triangular pattern. The environment experiences reoccurring 
concepts for a total of two rotations. The parametric 
equations that govern the mean and standard deviations for 
the ݔ and ݕ components are presented in Table I. Each batch 
of training/testing data contains 1000 instances. The drift 
rate for the triangular Gaussian dataset as well as the circular 
Gaussian dataset remains constant throughout the duration of 
the experiment. This dataset is referred to as GaussTri. 

B. Results 

Fig. 3 shows the performance of WEA and Learn++.NSE 
evaluated on the GaussCir dataset under varying levels of 
bias between the training and testing datasets. WEA uses 1-
mixture component for each class. WEA performs on par 
Learn++.NSE when there is no bias between the 
training/testing batches. Both algorithms have a significant 
boost in performance when a reoccurring environment is 
encountered, which happens at time step 50. WEA maintains 
nearly the same performance as it did without any bias when 
the bias is increases. However, Learn++.NSE’s performance 
begins to drop off rapidly as the bias increases. The effect of 
bias on Learn++.NSE can be observed with small amount of 
bias as shown in Fig. 3(b) and 3(c), referring to a bias of 1 
and 3 time stamps, respectively. This result is expected 
because Learn++.NSE computes its classifier weights from a 
batch of data that was drawn from a significantly different 
distribution than the distribution used for the evaluation of 
Learn++.NSE, and the weights of Learn++.NSE are not 
updated with respect to the test data. Many other concept 
drift algorithms may suffer the same drop in performance 
because information in the unlabeled data is not used to 
adjust classifier voting weights. WEA maintains a dominant 
performance over Learn++.NSE until the bias in the data 
becomes large (when bias=13 time steps). Note that since 
this is a relatively easy problem (2 classes with one mixture 
each); violating the limited drift assumption becomes quite 
detrimental to the classification performance whereas a 
problem with a large number of mixture components may 
not experience the same degradation. Whether this is indeed 

the case is currently been tested and will be reported in 
future correspondences. 

The preliminary results of WEA on the GaussTri dataset 
are shown in Fig. 4. The experiment is run with two cycles 
and each GMM uses 1-mixture component for each class, 
thus ܭ ൌ 3. Similar results are recorded for the GaussTri 
dataset as with GaussCir. WEA is a very strong predictor 
when the bias between the training and testing datasets is 3, 
5, 7, or 10 time stamps. The response of WEA becomes 
slightly less stable when the bias increases further. However, 
WEA performs quite well when the bias between the labeled 
and unlabeled data is reasonable that is, when the limited 
drift assumption holds. WEA should perform well on a 
variety of problems where the distribution can be modeled 
with GMMs and the drift is gradual or incremental in nature. 
Gradual or incremental concept drift should imply that the 
limited drift assumption is held. 

VI. CONCLUSION 

We have presented a weight estimation algorithm (WEA) 
for determining classifier-voting weights when concept drift 
is present in incremental learning scenarios. WEA is an 
incremental ensemble based algorithm that uses labeled and 
to build classifiers and unlabeled data to aid in the 
calculation of the classifier voting weights before the data 
are classified. WEA was compared to Learn++.NSE, an 
incremental learning algorithm for learning in non-stationary 
environments and empirical results indicate that WEA 
performs similarly to Learn++.NSE when there is no bias 
between the labeled and unlabeled data. However, WEA 
showed significant improvement when bias was present 
between the distributions of labeled (training) and unlabeled 
(testing) batches. We have also demonstrated a potential 
weakness of our proposed WEA approach: clear violation of 
the limited drift assumption can result in poor overall 
accuracy compared to state of the art approaches like 
Learn++.NSE. However, the violation of the limited drift 
assumption may not be as detrimental to the overall accuracy 
if the GMMs contain a large number of mixtures. This will 
be addressed in future research. The incremental learning 
scenarios presented in this paper offer a proof of concept for 
WEA and its application to concept drift and unlabeled data. 

WEA can have potential issues when there is a uniform 
distribution throughout the entire experiment and the 
concept drift is induced via a changing decision boundary. 

TABLE I. PARAMETRIC EQUATIONS CONTROLLING THE TRIANGULAR 

DRIFT SCENARIO OVER THE INTERVAL OF 0 ൏ ݐ ൏ 1 
 

 0 ൏ ݐ ൏ 1 6⁄ ,
1 2⁄ ൏ ݐ ൏ 2 3⁄

1 6⁄ ൏ ݐ ൏ 2 6⁄ ,
2 3⁄ ൏ ݐ ൏ 5 6⁄

௫ߪ ௬ߤ ௫ߤ  ௬ߪ ௫ߪ ௬ߤ ௫ߤ ௬ߪ
߱ଵ 5+18t 8-36t 2 2 8-36t 2 2 2 
߱ଶ 2+18t 2+36t 2 2 5+18t 8-36t 2 2 
߱ଷ 8-36t 2 2 2 2+18t 2+36t 2 2 
 

 2 6⁄ ൏ ݐ ൏ 1 2⁄ , 5 6⁄ ൏ ݐ ൏ 1 
 ௬ߪ ௫ߪ ௬ߤ ௫ߤ

߱ଵ 2+18t 2+36t 2 2 
߱ଶ 8-36t 2 2 2 
߱ଷ 5+18t 8-36t 2 2 
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Therefore, WEA should be evaluated on larger sets of 
synthetic and real-world experiments, which constitutes part 
of our future work. Other work to investigate includes 
developing theoretical models to aid in the reliability and/or 
accuracy of a system that applies semi-supervised learning 
mechanisms to concept drift problems. Essentially, to what 
extent and under what conditions can unlabeled data be 
beneficial to aiding in classifying data that was sampled 
from sources different from ones presented for training? 
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