Using Your TI-83/84/89 Calculator: Linear Correlation and Regression
Dr. Laura Schultz
Statistics I

This handout describes how to use your calculator for various linear correlation and regression applications. For illustration purposes, we will work with a data set consisting of the Amazon.com prices of ten commonly adopted introductory statistics textbooks (in $) paired with the page count for each textbook. You can find this data set in the Appendix at the end of this handout.

1. Before we can get started, you will need to enter the textbook data into your calculator. We will be using this data set for several different applications, so it will be helpful to enter the data into named lists. Press [STAT] and enter a list by highlighting L1 and pressing [2nd] [DEL]. Name this list PAGES and proceed to enter the page count data into this list. Insert another list named PRICE and enter the Amazon.com prices into this list. Check over your lists to make sure you didn’t enter any incorrect data values. Note that each PAGES value must be paired with the corresponding PRICE for a given textbook.

2. Generating a Scatterplot. To get a sense of the data, start by generating a scatterplot. Press [2nd] [Y=] to access the [STAT PLOT] menu. Make sure all the plots except Plot1 are turned off, and then press [1]. Select the first Type of plot. At the Xlist prompt, enter the name of the list containing the predictor variable; this variable will be assigned to the x-axis of the plot. For this example, the Xlist is PAGES. Enter the name of the response variable at the Ylist prompt; the values in this list will be plotted on the y-axis. The Ylist for this example is PRICE.

3. Press [ZOOM] [9] to view the scatterplot. There should be no line drawn through the points on your plot; if there is a line, you will need to press [Y=] and make sure all the equations are empty for Plot1. (Select any equation you need to clear and press [CLEAR].) What can you tell from the scatterplot? Does there appear to be a linear correlation between PAGES and PRICE? If so, is it positive or negative? How strong does the correlation appear to be?

4. The next step is to find the linear correlation coefficient (r) and the linear regression equation. The LinRegTTest function on your calculator provides “one-stop shopping” for answering these and other questions relating to linear correlation and regression. Press [STAT] and scroll right to the TESTS menu. Scroll down to LinRegTTest and press [ENTER]. (Note: This is menu-item F on a TI-84 calculator, but it is E on a TI-83 calculator.)

5. You will be prompted for the following information:
 - Xlist: Enter the name of the list containing the predictor (x) variable. For this example, type PAGES and press [ENTER].
• **Ylist:** Enter the name of the list containing the response (y) variable. For this example, type PRICE and press [ENTER].

• **β & ρ:** Select the sign that appears in your alternative hypothesis. (The model utility test for simple linear regression is covered by the Statistics II course at Rowan.) For our purposes, select ≠ 0 and press [ENTER].

• **RegEQ:** Here you can specify one of the built-in Y= functions as a place to store the regression equation that is generated. Doing so will allow you to add the regression line to your scatterplot later. (Note that this same line will be drawn on all subsequent plots, too, unless you press [Y=] and [CLEAR] to clear the equation from memory when you are finished working with this data set.) I generally store my regression equations as Y1. Press [VARS] and scroll right to Y-VARS and press [ENTER] to select 1:Function. Then, press [ENTER] again to select 1:Y1. These keystrokes will enter Y1 into the RegEQ field.

• Highlight Calculate and press [ENTER].

6. Your calculator will return two screens full of output; use the [▼] and [▲] keys to scroll through all of the output. Let’s start by finding the linear correlation coefficient (r) for our data. You will need to scroll down to the bottom of the second screen to find r. For our example, r = -0.747. What does r tell us? First of all, its sign tells us that there likely is a negative correlation between page count and the price of introductory statistics textbooks sold by Amazon.com. The slope of the regression line will also be negative. Second, because r is fairly close to -1, we can conclude that there is a moderately strong negative correlation displayed by our sample data.

7. A **model utility test** asks whether there a useful linear relationship between the page count of an introductory statistics textbook and its price on Amazon.com. That is, can we conclude that the slope (β) of the population regression line is not equal to 0? The linear regression t test calculator output can be used to address this question. You would report the results of the t test for this example as t8 = -3.1775, P = .0130 (two-tailed). Note that I reported the degrees of freedom as a subscript (df = n - 2). Round the t-test statistic to 4 decimal places and the P-value to 3 significant figures. Given that the P-value is less than the significance level of α = .05, we can conclude that there is a useful linear relationship between the page count of an introductory statistics textbook and its price on Amazon.com. *(The details of the model utility test for simple linear regression are covered by Rowan’s Statistics II course; we will not use this test in Statistics I.)*

8. The **coefficient of determination** (r²) tells us how much of the variability in y can be explained by the linear relationship between x and y. By convention, r² is reported as a percentage. For our example, r² = 55.8%. **What does this mean?** 55.8% of the observed variability in
introductory statistics textbook prices on Amazon.com can be attributed to the linear relationship between the page count and the textbook price.

9. We can also use the calculator output to construct the **linear regression equation** for our data. There are two methods for doing so. First, note that the previous calculator displays indicate that \(y = a + bx \). Your calculator reports values for both \(a \) (the \(y \)-intercept) and \(b \) (the slope). The second method is to press \(Y= \) and scroll right to see the equation given for \(Y1 \). In either case, round the \(y \)-intercept and slope values to one more decimal place than you started with for \(y \) when you report the linear regression equation.

The linear regression equation for our sample data is \(\hat{y} = 243.957 - 0.111x \).

10. Note that the previous output screen also included the **standard deviation of the residuals** (\(s_e \) in textbook; \(s \) on calculator display), also referred to as the **standard error of the estimate**. For our data set, \(s = 9.64 \). (Note that \(s \) has the same units as \(y \).) *What does this mean?* The typical discrepancy between an observed textbook price and the value predicted by the regression equation is \(9.64 \).

11. Let’s plot the data again and see what it looks like with the **regression line**. Press \(\text{[ZOOM]} \ [9] \). Your calculator will return the scatterplot with the regression line in place. Note how well the regression line fits our data. The stronger the linear correlation, the closer the data points will cluster along the regression line.

12. What is the marginal change in textbook price for each additional page? **Marginal change** is simply the slope of the regression line. Hence, the marginal change for our example is -0.111 dollars/page. In other words, the price of an introductory statistics textbook decreases by an average of \$0.111\) for each additional page.

13. **Making predictions from a regression equation.** Let’s use the regression equation to predict what the price would be for an introductory statistics textbook with 850 pages. Once again, there are several approaches you can use. Let’s start by working off the scatterplot display. Press \(\text{[TRACE]} \) and then \(\downarrow \) to hop from the data points onto the regression line. Type in the \(x \) value you want to plug into the regression equation and press \(\text{[ENTER]} \). For this example, type 850 and press \(\text{[ENTER]} \). Your calculator will return the display shown to the right. The predicted \(y \) value for an \(x \) value of 850 is reported on the lower right-hand corner of the display. Round your predictions to one more decimal place than we started with for \(y \). Hence, we predict that an 850-page introductory statistics textbook will cost \$149.265 on Amazon.com.
14. Another approach is to work from the home screen. Press \texttt{2nd MODE} to exit the plot display. Then, press \texttt{VARS \textbullet 1 \textbullet 1 \textbullet ENTER} to paste \(Y_1 \) to the home screen and type \texttt{(850) ENTER}. Doing so will tell your calculator to plug \(x = 850 \) into the regression equation stored for \(Y_1 \). Your calculator will return the output screen shown to the right. Once again, you would round to 3 decimal places and report that you predict that an 850-page introductory statistics textbook will cost \$149.265 on Amazon.com.

15. The final approach is to write down the equation given for \(Y_1 \) and plug 850 into the equation manually. If you choose to the third approach, make sure you use all the given digits and round only at the end. I strongly advise that you adopt one of the first two approaches for making predictions.

16. When you are finished working with this data set, don’t forget to press \texttt{Y=} and \texttt{CLEAR} to clear the regression equation for \(Y_1 \) from memory. Forgetting to do so will cause you problems the next time you try to generate a stat plot.

\textbf{How to Generate a Residual Plot}

A residual plot is a scatter plot of each \(x \) value plotted against its corresponding residual. Recall that a residual is the difference between an observed \(y \) value and the corresponding predicted \(y \) value \((e = y - \hat{y}) \). It is important to examine the residual plot to look for any potential problems. Ideally, a residual plot will contain no pattern at all. If a pattern does appear (such as a curve in the plot or an uneven distribution of the points), then you should hesitate to use the regression equation to make predictions. Any pattern in the residuals is an indication that the relationship between \(x \) and \(y \) is not linear and that simple linear correlation and regression techniques are not appropriate. A residual plot can also be helpful for identifying outliers and high leverage points.

1. Whenever you use your calculator to run an \texttt{LinRegTTest}, the residuals are automatically computed and stored in a list named \texttt{RESID}. You can view the residuals by inserting a list named \texttt{RESID} in the list editor.

2. To plot the residuals, Press \texttt{2nd Y=} to access the \texttt{[STAT PLOT]} menu. Make sure all the plots except \texttt{Plot2} are turned off, and then press \texttt{2}. Select the first \texttt{Type} of plot. At the \texttt{Xlist} prompt, enter the name of the list containing the predictor variable; this variable will be assigned to the \texttt{x}-axis of the plot. For our example, the \texttt{Xlist} is \texttt{PAGES}. The \texttt{Ylist} is always \texttt{RESID} for a residual plot.

3. Press \texttt{ZOOM9} to view the residual plot. There should be no regression line drawn through the points on your plot; if there is a line, you will need to press \texttt{Y=} and make sure all the equations are empty. (Select any equation you need to clear and press \texttt{CLEAR}.) Do you see any problems with this residual plot?
Using the TI-89

There are substantial differences between the TI-83/84 and the TI-89 calculators. These screenshots should help you adapt the previous directions to a TI-89 calculator.

Generating a Scatterplot

![Scatterplot screenshot]

Linear Regression t Test

![Regression t Test screenshot]

Viewing the Regression Equation

The regression equation will be stored in \(y_1 \). You can view the full equation by pressing \(\boxed{Y=} \) and then scrolling with \(\boxed{\downarrow} \).

Plotting the Regression Line

Just press \(\boxed{F2 \ 9} \) to add the regression line to your scatterplot.
Making Predictions

Press $\text{F5}\,\text{F1}$ to make a prediction from the plot screen. Type in the x value you want to plug into the regression equation and press ENTER.

To make a prediction from the home screen, press [VAR-LINK] and then F2. For the Folder, choose 2:main and press ENTER. For the Var Type, choose 5:Function and press ENTER. Select $y1$ and press ENTER. Type in the x value, close the parentheses, and press ENTER again to see the predicted y value.

Generating a Residual Plot

Turn off the original scatterplot with $\text{F4}\,\text{F3}$. Then, press $\text{F4}\,\text{F1}$ and define a new scatterplot as illustrated below. Note that is somewhat tricky to access the resid variable. You could press [VAR-LINK] when your cursor is in the y box and follow the steps shown. Alternatively, just type in statvars\resid for y. (Note that the stat part of statvars gets pushed outside the view field; you’ll see it if you scroll left.) Press ENTER and then F5 to view your residual plot.
Appendix: Data Set

Data obtained from Amazon.com on 24 July 2013

<table>
<thead>
<tr>
<th>Textbook</th>
<th>Pages</th>
<th>Amazon Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Moore/McCabe/Craig</td>
<td>694</td>
<td>153.33</td>
</tr>
<tr>
<td>2 Bluman</td>
<td>896</td>
<td>134.49</td>
</tr>
<tr>
<td>3 Sullivan</td>
<td>960</td>
<td>142.56</td>
</tr>
<tr>
<td>4 Triola</td>
<td>840</td>
<td>147.56</td>
</tr>
<tr>
<td>5 Weiss</td>
<td>896</td>
<td>150.31</td>
</tr>
<tr>
<td>6 DeVeaux/Velleman/Bock</td>
<td>976</td>
<td>131.99</td>
</tr>
<tr>
<td>7 Peck/Olsen/Devore</td>
<td>944</td>
<td>133.99</td>
</tr>
<tr>
<td>8 Agresti and Franklin</td>
<td>832</td>
<td>147.09</td>
</tr>
<tr>
<td>9 McClave and Sincich</td>
<td>814</td>
<td>166.25</td>
</tr>
<tr>
<td>10 Utts and Heckard</td>
<td>752</td>
<td>173.49</td>
</tr>
</tbody>
</table>