The Arrhenius Equation

- · increase temperature, inc. reaction rates
- rxn rates are $\,\alpha\,$ to energy, collisions, temp. & orient
- · k = Ae-Ea/RT

k = rxn rate constant

A = frequency of collisions

-Ea/RT = fraction of molecules with energy necessary for reaction

$$k = A e^{-rac{E_a}{RT}}$$
 or $ln \; k = -rac{E_a}{RT} + ln \; A$

Where:

k = Chemical Reaction Rate

A = Pre-exponential Factor

E_a = Activation Energy

R = Gas Constant

T = Temperature in Kelvin

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$