Freshman Clinic II Fall 2018

Dr. Kauser Jahan, P.E.

Algae Growth Studies

Objectives: To determine the growth characteristics of a select algae species

Algae Species: Chlorella vulgaris

Algae Media for Growth:

Nitrogen-Greenway Biotech Inc Urea 46-0-0 Phosphate-Hi-Yield Triple Super Phosphate 0-45-0

Equipment:

2- 125mL Flask Weighing Dish
Mortar and Pedestal 100 mL beaker
Pipette with Tip 30 mL Beaker
Nitrogen (0.1 g) Tin Foil

Phosphate (0.075 g)

Supplies

Spectrophotometer Light Meter
Thermometer Kimwipes

pH Kits 23 Watt Compact Fluorescent Bulbs

Aquarium Pump with Tubing and Air Stone Scale

Safety: Gloves are to be worn during the sample handling process **Method**:

1. Weigh 0.075 g Crushed Phosphate

2. Weigh 0.1 g Nitrogen

3. Add nutrients to 125mL flask

- 4. Add 30mL algae
- 5. Swirl algae for 30 seconds
- 6. Pour 90 mL nutrient media water in flask and stir for 1 minute
- 7. Take initial Absorbance reading (Optical density OD)-set to 625nm
- 8. Add air diffuser to sparge air into sample
- 9. Cover top of flask with tin foil
- 10. Plug in aerator
- 11. Label Beakers and place on stir place
- 12. Take readings for optical density every day preferably at the same time (All groups need to maintain this schedule)
- 13. Convert optical density to algae dry weight using relation provided below Algae dry weight (grams) = 0.0318*optical density
- 14. Use excel to plot algae dry weight as a function of time in days
- 15. Calculate growth rate μ (1/days)

Will be provided in solution titled Nutrient Media

Raw Data Worksheet

Date	Time	OD Daily	Comment

EXCEL DATA SAMPLE

Time days	OD	Algae Mass grams
0		
1		
2		
3		
4		
5		
6		
7		

Algae growth rate can be calculated using the following relationship

$$ln\frac{X}{Xo} = \mu t$$

where X is algae mass at time t and Xo is algae mass at time 0 $\boldsymbol{\mu}$ is growth rate in 1/time

t = time in days

Plot natural log of algae mass on y axis and plot time on x axis The data has to be picked from the exponential phase (do not plat all data)

Slope of the line is the growth rate

See sample data next page

Sample data

Time		
(days)	Algae(g)	In(algae)
0	0.1	
2	0.8	
4	1.4	0.336472
6	2.5	0.916291
8	3.1	1.131402
10	2.98	1.091923
12	2.99	1.095273

Raw data plot for Algae Biomass with Time

Natural log of Algae Biomass with Time during exponential phase

Growth rate from slope = 0.1987 1/days