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Abstract—Most machine learning algorithms, including many 
online learners, assume that the data distribution to be learned is 
fixed. There are many real-world problems where the distribu-
tion of the data changes as a function of time. Changes in 
nonstationary data distributions can significantly reduce the ge-
neralization ability of the learning algorithm on new or field data, 
if the algorithm is not equipped to track such changes. When the 
stationary data distribution assumption does not hold, the learner 
must take appropriate actions to ensure that the new/relevant in-
formation is learned. On the other hand, data distributions do 
not necessarily change continuously, necessitating the ability to 
monitor the distribution and detect when a significant change in 
distribution has occurred. In this work, we propose and analyze a 
feature based drift detection method using the Hellinger distance 
to detect gradual or abrupt changes in the distribution.  

Keywords-concept drift; nonstationary environments; drift 
detection  

I.  INTRODUCTION 
Detecting change in data distributions is an important prob-

lem in data mining and machine learning algorithms due to 
increasing number of applications that are governed by such 
data. Any algorithm that does not make the necessary adjust-
ments to changes in data distribution will necessarily fail to 
provide satisfactory generalization on future data, if such data 
do not come from the distribution on which the algorithm was 
originally trained. For example, consider an application that 
tracks a user’s web browsing habits to determine which ads 
are most relevant for that user’s interest. User interests are 
known to change – or drift – over time. In such cases, certain 
ads in which the customer used to express interest may no 
longer be relevant. Thus, an algorithm designed to determine 
the relevant ads must be able to monitor the customer’s brows-
ing habits and determine when there is change in the 
customer’s interest. Applications that call for an effective 
change or drift detection algorithm can be expanded: analysis 
of electricity demands or pricing, financial or climate data are 
all examples of applications with nonstationary data distribu-
tions, where change or drift detection is needed so that the 
learner can take an appropriate action.  

For the purposes of this paper, we define a sudden or abrupt 
change in the underlying data distribution that alters the deci-

sion boundaries as a concept change, whereas gradual changes 
in the data distribution as a concept drift. However, when the 
context does not require us to distinguish between the two, we 
use the term concept drift to encompass both scenarios, as it is 
usually the more difficult one to detect. 

Learning from drifting environments is usually associated 
with a stream of incoming data, either one instance or one 
batch at a time. There are two types of approaches for drift de-
tection in such streaming data: in passive drift detection, the 
learner assumes – every time new data become available – that 
some drift may have occurred, and updates the classifier ac-
cording to the current data distribution, regardless whether 
drift actually did occur. In active drift detection, the algorithm 
continuously and explicitly monitors the data to detect if and 
when drift occurs. If – and only if – the drift is detected, the 
algorithm takes an appropriate action, such as updating the 
classifier with the most recent data or simply creating a new 
classifier to learn the current data. The drift detection method 
presented in this work is appropriate for an active drift detec-
tion framework.  

This paper is organized as follows: Section II provides an 
overview of drift detection algorithms, followed by our moti-
vation for using Hellinger distance as a metric, as well as a 
detailed explanation of the approach for the proposed algo-
rithm in Section III. Section IV presents results obtained by 
the proposed approach on several real world & synthetic data-
sets. Finally, Section V provides concluding remarks and 
future work. 

II. BACKGROUND 
Concept drift algorithms are usually associated with incre-

mental learning of streaming data, where new datasets become 
available in batches or in an instance-by-instance basis, result-
ing in batch or online learning, respectively [1]. Given such 
data, the (active) drift detection itself can be parametric or 
non-parametric, depending on whether a specific underlying 
distribution is assumed. Many parametric algorithms use a 
CUSUM (cumulative sum) based mechanism, which is tradi-
tionally used for control charts in detecting nonstationary 
changes in process data [2-4]. A series of successful imple-
mentations of this approach are proposed by Alippi & Roveri, 
including CI-CUSUM [5;6], a pdf free extension of the tradi-
tional CUSUM. Recently, Alippi et al. also introduced the This material is based on work supported by the National Science Founda-
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intersection of confidence intervals (ICI) rule for drift detec-
tion [7]. Some drift detection approaches such as the Early 
Drift Detection Method (EDDM) [8] and similar approaches 
[9], do not make any assumptions on feature distribution, but 
rather monitor a classifiers’ accuracy or some distance metric 
to detect drift. Cielslak & Chawla suggest Hellinger distance, 
not for detecting concept drift in an incremental learning set-
ting, but rather to detect bias between training and test data 
distributions [10].  Using a non-parametric statistical test, the 
authors measure the significance between the probability esti-
mates of the classifier on a validation set (carved out from 
training data) and the corresponding test dataset [10]. To do 
so, a baseline comparison is first made by calculating the Hel-
linger distance between the original training and test datasets. 
Bias is then injected into the testing set. A baseline Hellinger 
distance (i.e. when no bias is present between training/testing 
sets) and the distance after bias is injected into the dataset are 
observed.  

We extend this approach to concept drift in an incremental 
learning setting, where new datasets are presented in batches 
over time. We do not use the original dataset as the baseline 
distribution against which other data distributions are com-
pared, nor do we inject any bias into future distributions, as 
done in [10], but rather we monitor the magnitude of the 
change in Hellinger distance between a new distribution and a 
baseline distribution, which is updated every time drift is de-
tected. 

III. APPROACH 
We begin this section by introducing the motivation for us-

ing the Hellinger distance as a measure that can be applied to 
drift detection in an incremental learning setting. Next, we 
present the proposed Hellinger Distance Drift Detection Me-
thod (HDDDM). According to four criteria suggested by 
Kuncheva [3], HDDDM can be categorized as follows:  
 
� Data chunks: batch based 
� Information used: raw features (not based on classifier 

performance) 
� Change detection mode: explicit 
� Classifier-specific vs. classifier-free: classifier free 

The algorithm uses a hypothesis testing-like statistical ap-
proach to determine if there is enough evidence to suggest that 
the data instances are being drawn from different distributions. 

A. Motivation 
The primary motivation for this detection method is to 

detect if drift is present in a sequence of batch data. While 
prior work used the Hellinger distance only as a measure be-
tween a single training and testing set, we extend the approach 
to sequential batch learning where the goal is to detect drift 
among different datasets. We select the Hellinger distance 
over other measures such as the Mahalanobis distance, be-
cause there are no assumptions made about the distribution of 
the data. Also, the Hellinger distance is a measure of distribu-
tional divergence which will allow HDDDM to measure the 

change between the distributions of data at two subsequent 
time stamps. 

In contrast to EDDM and other similar approaches that rely 
on classifier error [8;9], the proposed Hellinger distance drift 
detection method (HDDDM) is a feature based drift detection 
method, using the Hellinger distance between current data dis-
tribution and a reference distribution that is updated as new 
data are received. The Hellinger distance is an example of �divergence measure, similar to the Kullback-Leibler (KL) 
divergence. However, unlike the KL-divergence the Hellinger 
divergence is a symmetric metric. Furthermore, unlike most 
other distance metrics, the Hellinger distance is a bounded dis-
tance measure: for two distributions with probability mass 
functions (or histograms representing these distributions) � 
and �� the Hellinger distance is ����� �	 
 ��� 
�� . If ����� �	 � �, the two probability mass functions are com-
pletely overlapping and hence identical. If ����� �	 � 
�, the 
two probability mass functions are completely divergent (i.e. 
there is no overlap).  

As an example, consider a two-class rotating mixture of 
Gaussians with class centers moving in a circular pattern (Fig. 
1), with each distribution in the mixture corresponding to a 
different class label. The class means can be given by the pa-
rametric equations ����	 � ���� �� � ��� ���� , ����	 � �����	 , �� � �� ! " , with fixed class covariance matrices given as #� � #� � �$% & ', where (  is the number of cycles, "  is the 
(integer valued) time stamp that iterates from zero to ) � *, 
and ' is a 2x2 identity matrix. Fig. 2 shows the evolution of the 
Hellinger distance computed between the datasets (+,) gener-
ated with respect to  ��  and �,  where - � ��. �) � *. The 
Hellinger distance is capable of displaying the relevance or the 
closeness of a new dataset (+,) to a baseline dataset (+�) as 
shown in Fig. 2. We plot the Hellinger distance for the diver-
gence of the datasets for class /�, class /�, and the entire data 
separately. The Hellinger distance varies as �  begins to 
evolve. We observe that when �� and �, are the same (or very 
similar) the Hellinger distance is small as observed at " �0�� ���� 1��� 2��3 . This is when ����	 � ����	  and ����	 ������	 � �����	. We observe that the Hellinger distance com-
puted for all data (entire dataset) repeats every 100 time 
stamps, twice as often compared to class specific distributions,  

t=0�

t=100�

t=25�

t=75�

 
Fig. 1. Evolution of a binary classification task with two drifting Gaussian dis-
tributions. 



 
Fig. 2. Hellinger distance (vertical axis, plotted against time) computed on a 
rotating Gaussian centers problem. The Hellinger distance is computed be-
tween datasets  +� and +� where  " � ��4�. � 2�� for /�, /�, and all classes. 
Recurring environments occur when the Hellinger distance is at a minimum. 

 
Fig. 3. Hellinger distance computed on a static Gaussian problem. The Hellin-
ger distance is computed between +� and +�  where  " � ��4�. � 2�� for /�, /�, and all classes. 

which repeat every 200 time steps. This is because, as seen in 
Fig. 1, every 100 time steps, the data consists of the exact 
same instances at the exact same locations, but with their la-
bels flipped, compared to the distribution at " � �. 

As the class centers evolve from " � � to " � ���, we ob-
serve changes in Hellinger distances that follow the expected 
trends based on Fig. 1, reaching the maximum value at " � 5% 
and " � *�% , with a slight dip at " � *�� , for the class-
specific datasets. The Hellinger distance then reduces as the 
class distributions return to their initial state at " � ���. The 
entire scenario then repeats two more times. 

If the distributions governing the data at different time 
stamps is static (i.e. � �6constant), then the Hellinger distance 
between the 1st batch and subsequent batches remains constant 
as shown in Fig. 3. We note that a static distribution does not 
mean zero Hellinger distance. In fact, the Hellinger distance 
will be non-zero due to differences in class means as well as 
the  random  nature  of  the data  drawn  for  each  sample. The  

Hellinger distance remains near constant; however, as the dis-
tribution itself does not change.  

Having observed that the Hellinger distance does change 
between two distributions as these two distributions diverge 
from each other, and remain constant if they do not, we can 
use this information to determine when change is present in an 
incremental learning problem. The process of tracking the data 
distributions for drift is described below. 

B. Assumptions 
The proposed approach makes three assumptions: i) labeled 

training datasets are presented in batches to the drift detection 
algorithm, as the Hellinger distance is computed between two 
histograms (of distributions) of data. If only instance based 
streaming data is available, one may accumulate instances to 
form a batch to compute the histogram; ii) data distributions 
have finite support (range): ��7 8 9	 � �  for 69 8 :�  and ��7 ; 9	 � � for 9 ; :�, where <*6 =6 <� are finite real num-
bers. We fix the number of bins in the histogram required to 
compute the Hellinger distance at >
)?, where ) is the num-
ber of instances at each time stamp presented to the drift 
detection algorithm. This can be manually adjusted if one has 
prior knowledge to justify otherwise. Under minimal or no 
prior knowledge, >
)? works well. iii) Finally, in order to fol-
low a true incremental learning setting, we assume that we do 
not have access to old data [11].  Each instance is only seen 
once by the algorithm. 

C. Drift Dection Algorithm 
The pseudo code of the proposed Hellinger distance drift 

detection method (HDDDM) is shown in Fig. 4. As mentioned 
above, we assume that the data arrive in batches, with dataset  +� becoming available at time stamp ". The algorithm initia-
lizes @ � * and6+A � +� where @ indicates the last time stamp 
in which change was detected. +�  is established as the first 
baseline reference dataset to which we compare future datasets 
for possible drift. This baseline distribution, +A, is updated in-
crementally as described below.  

The algorithm begins by constructing histogram � from +� 
and histogram � from +A with B � >
)? bins, where ) is the 
cardinality of the current data batch presented to the algorithm. 
The Hellinger distance between the two histograms � and � is 
then computed using Eq. (1). The (intermediate) Hellinger dis-
tance is calculated first for each feature, and the average of 
distances for all features is then considered as the final Hellin-
ger distance. 

� ���"	 � *CDEDFG �H�,I �J�,KJL� � G �H�,I �J�,KJL� M�K
HL�

N
,L�  

(1)  

where C is the dimensionality of the data, and �H�, (�H�,) is the 
frequency count in bin i of the histogram corresponding to the 
histogram � (�) of feature k. We then compute O�"	, the dif-
ference in divergence between the most recent measure of the 
Hellinger distance, ���"	, and the Hellinger distance measured 
at the previous time stamp, ���" � *	. This differential be-
tween the current and prior distances is compared to a 
threshold, to determine whether the change is large enough to  
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Input: Training data, +" � PQR�"	 
 7�"	S TR 
 UV, presented in 
batches corresponding to a joint probability distribution W"�Q� /	 where " � *���. 

  Initialize: @ � *, and +@ � +* 
 

for " � ��4�. do  
1. Generate a histogram, �, from +"  and a histogram, �, from +@ . Each histogram has B = >
)?bins, where ) is the 

cardinality of +"  
 

2. Calculate the Hellinger distance between � and � using Eq. 
(1). Call this �X�"	. 

3. Compute the difference in Hellinger distance O�"	 � �X�"	 � �X�" � *	 
 

4. Update the adaptive threshold 

OY � *" � @ � *DZO�R	Z"�*
R�@  

[\ � GI �ZO�R	Z � OY	�"�*R�@" � @ � *  

 

Compute ]�"	 using the standard deviation in Equation (2) or 
the confidence interval method in Equation (3). 
 

5. Determine if drift is present 
if ZO�"	Z ^ ]�"	 then  
     @ � " 
     Reset +@by setting +@ � +"  
     Indicate change was detected 
else 
     Update +@  with +" _ +@ � 0+@ � +"3  
end if 

end for   
Fig. 4. Algorithm pseudo code for the Hellinger distance drift detection me-
thod (HDDDM) 

claim a drift. Rather than heuristically or arbitrarily selecting a 
threshold, we use an adaptive threshold that is automatically 
adjusted at each time stamp. To do this, we first compute OY, 
the mean ZO�R	Z, and [\, the standard deviation of differences in 
divergence, where R � @� @ ` *�. � " � *. Note that the current 
time stamp and all steps before @ (last time a change was de-
tected) are not included in the mean difference calculation. 

The actual threshold ]�"	 at time step " is then computed 
based on the mean and standard deviations of the differences 
in divergence. We propose two alternatives to compute this 
threshold: based on the standard deviation and on a confidence 
level. The first is computed simply by 

� ]�"	 � OY ` a[\� (2)  

where a is some positive/real constant, indicating how many 
standard deviations of change around the mean we accept as 
“different enough”. Note that we use OY ` a[\ and not OY b a[\, 
as we flag a drift when the magnitude of the change is signifi-
cantly greater than the average of the change in recent time 
(since the last detected change) with the significance con-
trolled by the a  term and the standard deviation of the 
divergence differences.  

The second implementation of HDDDM uses the "-statistic 
and scales by the square root of " � @ � *. Again, an upper-

tailed test is used,  OY ` "c ��Nde fg
�hAh�  and not the interval  OY b "c ��Nde fg
�hAh�. 

� ]�"	 � OY ` "c ��Nde [\
" � @ � *� (3)  

Once the adaptive threshold is computed, it is applied to 
observed current difference in divergence to determine if drift 
is present in the most recent data. If magnitude ZO�"	Z ^ ]�"	 , 
then we signal that change has been detected in the most re-
cent batch of data. As soon as change is detected, the 
algorithm resets @ � " and +A � +�. Note that the resetting of 
the baseline distribution is essential as the old distribution is 
no longer an accurate reference to determine how much the 
data distribution has changed (and whether that change is sig-
nificant) as indicated by the large difference in Hellinger 
distance between time stamps. If drift is not detected, then we 
update, rather than reset, the distribution +A with the new data +�. Thus, +A continues to be updated with the most recent data 
as long as drift is not detected. This histogram can be updated 
or reset using the following equation: �H�, i �H�, ` �H�,�6666�j6kl�jm6��6��m6knmn�mnk �H�, i �H�,�666666666�j6kl�jm6��6knmn�mnk 

Note that the normalization in Eq. (1) ensures that the cor-
rect density is obtained from these histograms. 

The algorithm naturally lends itself to an incremental drift 
detection scenario since it does not need access to previously 
seen data. Rather, only the histogram of the current and refer-
ence distributions are needed. Therefore, the only memory 
required for this algorithm is the previous values of O , ���" � *	 and the histogram of +A (�).   

D. Algorithm Performance Assessment 
Determining the effectiveness of a drift detection algorithm 

can be best tested on carefully designed synthetic datasets us-
ing a variety of drift scenarios, such as abrupt or gradual drift. 
Since the drift is deliberately inserted into the dataset, the abil-
ity of the algorithm to detect a drift when one is known to 
exist (measured by sensitivity), as well as its ability to not sig-
nal one when there is in fact no drift (measured by specificity), 
can be easily determined for such datasets.  

Detecting drift is only useful to the extent such information 
can be used to guide a learner track a nonstationary environ-
ment and learn the drift in the data. To do so, we use a naïve 
Bayes classifier, which can be easily updated as new data ar-
rive to determine whether detection of drift can be used to 
improve the classifier’s performance on a drifting classifica-
tion problem. We use the following procedure to determine the 
effectiveness of the drift detection algorithm: 

� Generate two naïve Bayes classifiers with the 1st data-
base. Call them o� and o�. 

FOR " � ��4� . 
� Begin processing new databases for the presence of 

concept drift using HDDDM.  
- o� is our target classifier which is updated or reset 

based on HDDDM decision. If drift is detected us-
ing HDDDM, we reset o� and train o� only on the 



new data, otherwise incrementally update o� with 
the new data. 

- Regardless of whether or not drift is detected, o� 
is incrementally trained with the new data. o� is 
therefore the control classifier that is not subject to 
HDDDM intervention. 

- Compute error of o� and o� on new test data 
ENDFOR 
 
We expect o� to outperform o� on drifting environments. 
The online implementation of the naïve Bayes classifier is 

straightforward as the features are assumed class conditionally 
independent. The calculation of Wp9HZ/Jq required to imple-
ment naïve Bayes classifier, can be further simplified by 
assuming the data for the Rth feature is normally distributed 
(though, this is not necessary for the algorithm to work). Thus, 
the parameters of naïve Bayes are computed as:  

� Wp9HZ/Jq � *[HJ
�r nstu� p9H � �HJq��[HJ� v� (4)  

� �p/JwQHq x ��/J	yWp9HZ/JqN
HL� �

(5)  

where 9H is the Rth feature, [HJ�  is the variance of the Rth feature 
of the zth class, �HJ  is the mean of the Rth feature of the zth 
class, and /J is the label of the zth class. 

IV. EXPERIMENTS 
Several synthetic and real world datasets, described below, 

were selected to evaluate the HDDDM algorithm. 

A. Description of Datasets 
As summarized in Table I, seven datasets were used. The 

rotating checkerboard dataset is generated using the Matlab 
source found in [12], and used in two scenarios controlled by 
changing the rotation of the checkerboard: i) continuous rota-
tion over 400 time stamps for gradual drift and ii) discrete 
rotations every 20 of  300 time steps ( a total of 15 changes) to 
simulate abrupt changes.   

 
Fig. 5. Evolution of the rotating checkerboard dataset 

 
Fig. 6. Evolution of the circular Gaussian drift by observing the posterior 
probability. The drift is continuous from one batch to the next and not abrupt-
ly changing. There are 100 time stamps for each cycle. 

 
Fig. 7. Evolution of the RandGauss dataset by observing the posterior. The da-
taset begins with 2-modes (one for each class) and begins slowly drifting. The 
drift stops at the third evolution point and remains static for 25 time stamps 
followed by the introduction of a new mode for the magenta class. The dataset 
continues to evolve with slow change followed by abrupt changes. 
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TABLE I. DESCRIPTION OF DATASETS AND THEIR DRIFT PROPERTIES USED FOR 
THE EXPERIMENTATION OF THE HDDDM ALGORITHM. 

Dataset Instances Source Drift 
type 

 

Checkerboard 800,000 Synthetically Generated Synthetic 
Elec 27,5494 Web source1 Natural 
SEA [5%] 400,000 Synthetically Generated Synthetic 
RandGauss 812,500 Synthetically Generated Synthetic 
Magic 13,065 UCI2 Synthetic 
NOAA  18,159 NOAA3 Natural 
GaussCir 950,000 Synthetically Generated Synthetic 
1. http://www.liaad.up.pt/~jgama/ales/ales_5.html  
2. UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/) 
3. National Oceanic and Atmospheric Administration(www.noaa.gov) 
4. All missing instances with missing features have been removed 



Figure 5 illustrates a few snapshots of the checkerboard ap-
pearances over time. Electricity pricing (Elec) is a real-world 
dataset that contains natural drift within the database. SEA da-
taset comes from the original shifting hyper-plane problem 
presented by Street & Kim [13]. Magic dataset is from the 
UCI machine learning repository [14]. The original Magic da-
taset includes little, if any, drift. Therefore, this dataset has 
been modified by sorting a feature in ascending order and then 
generating incremental batches on the sorted data with a mea-
ningful drift as an end-effect. 

GaussCir and RandGauss are two synthetic datasets gener-
ated with a controlled drift scenario (whose decision 
boundaries are shown in Fig. 6 and 7, respectively). GaussCir 
is the example previously described in Section III. The NOAA 
dataset contains approximately 50 years of weather data ob-
tained from a post at Offutt Air Force Base in Bellevue, 
Nebraska. Daily measurements were taken for a variety of fea-
tures like temperature, pressure, visibility, wind speed, etc. 

The number of feature vectors was reduced to eight features 
and the classification task was to predict whether or not there 
was rain on a particular day. 

B. Preliminary Results 
The preliminary results are summarized in Fig. 8.  Each of 

the plots presents the error of a naïve Bayes classifier with no 
update or intervention from HDDM, and with various values 
of a (0.5, 1.0, 1.5, 2.0) for the standard deviation implementa-
tion of the HDDDM, as well as with {=0.1 for the confidence 
interval based implementation of HDDDM. The primary ob-
servation we make is that the classifier that is continuously 
updated, disregarding the concept change (red curve, corres-
ponding to o� , i.e., no drift detection being used), has an 
overall error that is typically greater than the error of the clas-
sifiers that are reset based on the intervention of the HDDDM 
(other colors, corresponding to different implementations of o�	. We would like to note that resetting an online classifier is 

Fig. 8. Error evaluation of the online naïve Bayes classifiers (updated and dynamically reset) with a variation in the parameters of the Hellinger Distance 
Drift Detection Method (HDDDM). (a) Checker board with abrupt changes in rotation, (b) NOAA (120 instances), (c) RandGauss, (d) magic, (e) elec, (f) 
checkerboard with continuous drift, (g) SEA (5% noise), and (h) GaussCir. 
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not necessarily the ideal method to implement concept drift (as 
it causes catastrophic forgetting [15]), and there are several al-
gorithms that can forget only what is no longer relevant, and 
retain the still-relevant information, such as the Learn++.NSE 
algorithm [16;17]. However, since our goal is to evaluate the 
drift detection mechanism, we use the resetting approach, so 
that any improvement observed is not due to the innate ability 
of the learner to learn concept drift, but simply the impact and 
effect of intervention based on drift detection.  

Of the seven datasets, the rotating checkerboard provides 
the best scenario to determine the effectiveness of HDDDM 
since the drift occurs at evenly spaced intervals: approximately 
every 20 time steps, out of 300, the board rotates 0.449 ra-
dians, and remains static during the intermediate time stamps. 
This leads to a total of 15 concepts (including time step 1) 
throughout the experiment. Table II presents the F-measure, 
sensitivity and specificity of the HDDDM’s detections as av-
erages of 10 independent trials. We can compute these 
quantities, precisely because the locations of the drift points 
are known for this dataset. In Table II, sensitivity (/� ) 
represents the ratio of the number of drifts detected to total 
number of real drifts that were actually present for /�, whe-
reas specificity (/�) is the ratio of number of no-drift time 
steps to total number of no-drift steps in class /�. The perfor-
mance measure in Table II indicates the detection rate across 
all data. Note that with class label removed, there is no change 
in checkerboard distribution, and hence there should be no 
change detected.  The numbers are therefore de facto specifici-
ty figures for the entire data. Sensitivity cannot be measured 
on the entire data (when class labels are removed) since there 
are no actual drifts in such data. 
 

TABLE II. F-MEASURE, SENSITIVITY AND SPECIFICITY MEASURES ON THE 
ROTATING CHECKERBOARD DATASET AVERAGED OF 10 INDEPENDENT TRIALS. 
TRUE POSITIVES CORRESPOND TO THE TRUE POINTS OF CHANGE IN THE DATA. 

Parameter _ a { 
Measure | 0.5 1.0 1.5 2.0 0.05 0.1 

 

F-measure (/�) 0.80 0.84 0.78 0.64 0.79 0.82 
Sensitivity (/�) 1.0 0.97 0.81 0.61 0.98 1.0 
Specificity (/�) 0.97 0.98 0.98 0.99 0.97 0.97 
F-measure (/�) 0.79 0.81 0.78 0.64 0.82 0.80 
Sensitivity (/�) 0.99 0.94 0.86 0.58 0.97 0.98 
Specificity (/�) 0.97 0.98 0.98 0.98 0.89 0.97 
Performance 0.81 0.87 0.91 0.92 0.85 0.82 

 
Table II also shows the effect of the variation of a and [ on 

the checkerboard dataset. We observe that a smaller a is better 
for sensitivity (and F-measure), whereas a larger a is better for 
specificity – not a surprising outcome – with a � * providing 
a good compromise. The standard deviation implementation of 
HDDDM generally maintains a higher performance than the t-
statistic implementation; however the latter is more tolerant to 
changes in its parameter (of { values). We should note that by 
performance we are referring to the performance of the 
HDDDM algorithm and not the performance of the naïve 
Bayes classifier.   

Fig. 9 and 10 display the location of drift detection on /� 
and  /�  from the rotating checkerboard dataset, as an addi-
tional figure of merit. Recall that this dataset experiences a 
change every ~20 time steps. There are 15 distinct points of 
drift (including first time step) in the checkerboard dataset 
each indicated by the vertical gridlines, whereas each horizon-
tal gridline indicates a different selection of the free 
parameters of the HDDDM algorithm. 

These plots provide a graphical display on the algorithm’s 
ability to detect the changes. Every marker that coincides with 
the vertical lines is a correct detection of drift. Every marker 
that falls off a vertical grid is a false alarm of a non-existing 
drift, whereas every missing marker on a vertical grid is a 
missed detection of an actual drift. We observe from these 
plots that the algorithm was able to make the correct call in 
vast majority of the cases. However, a few cases are worth fur-
ther discussion:  for example,   there are certain times when  

 

 
Fig. 9. Location of drift points for /� as detected using the HDDDM on the 
rotating checkerboard problem with abrupt drift where the x-axis indicates the 
location of the change and the y-axis is a variation of a parameter.  
 

 
Fig. 10.Location of drift points for /� as detected using the HDDDM on the 
rotating checkerboard problem with abrupt drift where the x-axis indicates the 
location of the change and the y-axis is a variation of a parameter. 
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drift is detected in one of the classes but not the other, even 
though the drift existed on both classes. Consider the situation. 

for a � *$%, where a change was detected in /� at time stamp 
102, while drift was not detected in 6/� . However, the 
HDDDM algorithm will correctly detect the change in the data 
in this case, because our implementation decides on a change    
when drift is detected in either one of the classes. This ap-
proach will accommodate all cases where the drift is detected 
in at least one of the classes. The drawback, however, is a po-
tential increase in false alarm rate: if the algorithm incorrectly 
detects drift for any of the classes, it will indicate that the drift 
exists, even though it actually may not. We plan to address 
this issue in our future work. We also observe that the 
HDDDM implemented with { � �$�% is quite sensitive and 
detects change rather often compared to the other implementa-
tions of HDDDM. 

We should also note that a table similar to Table II, or fig-
ures similar to Fig. 9 and 10 cannot be generated for other 
databases, either because the drift is continuous, or the exact 
locations of the drift are actually not known. 

V. CONCLUSIONS 
We have presented a drift detection algorithm, inspired in 

part by [10], that relies only on the raw data features to esti-
mate whether drift is present in a supervised incremental 
learning scenario. This approach utilizes the Hellinger distance 
as a measure to infer whether drift is present between two 
batches of training data using an adaptive threshold. The adap-
tive threshold was analyzed using a standard deviation and "-
statistic approach. This threshold is computed based on the in-
formation obtained from the divergence between training 
distributions. Preliminary results show that the Hellinger dis-
tance drift detection method (HDDDM) presented in this paper 
can improve the performance of an incremental learning algo-
rithm by resetting the classifier when a change has been 
detected. The primary goal of this preliminary effort was to 
see whether the algorithm can detect a drift accurately, and 
whether an intervention based on such detection would benefit 
the overall classifier performance. The answers to both ques-
tions appear to be affirmative. Since our goal was not 
necessarily to obtain the best concept drift classifier for a giv-
en dataset, the actual classifier used in the algorithm was not 
optimized. The drift detection method proposed in this paper 
can then be employed with any active concept drift algorithm. 
Note that the drift detection in HDDDM is not based on clas-
sifier error, hence HDDDM is a classifier independent 
approach and can be used with other supervised learning algo-
rithms.  

Future work will include the integration of other (non-
parametric) statistical tests along with the Hellinger distance 
as well as other distance measures. Comparison to other drift 
detection algorithms, as well as addressing the false alarm is-
sue in cases when the algorithm detects a (non-existing) drift 
in only one of the classes, are also within the scope of our fu-
ture work. 
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