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Abstract. Pattern recognition problems span a broad range of applications,
where each application has its own tolerance on classification error. The vary-
ing levels of risk associated with many pattern recognition applications indicate
the need for an algorithm with the ability to measure its own confidence. In this
work, the supervised incremental learning algorithm Learn++ [1], which ex-
ploits the synergistic power of an ensemble of classifiers, is further developed
to add the capability of assessing its own confidence using a weighted expo-
nential majority voting technique.

1   Introduction

1.1   Incremental Learning

It is widely recognized that the recognition accuracy of a classifier is heavily incum-
bent on the availability of an adequate and representative training dataset. Acquiring
such data is often tedious, time-consuming, and expensive. In practice, it is not un-
common for such data to be acquired in small batches over a period of time. A typical
approach in such cases is combining new data with all previous data, and training a
new classifier from scratch. This approach results in loss of all previously learned
knowledge, a phenomenon known as catastrophic forgetting. Furthermore, the combi-
nation of old and new datasets is not even always a viable option if previous datasets
are lost, discarded, corrupted, inaccessible, or otherwise unavailable.

Incremental learning is the solution to such scenarios, which can be defined as
the process of extracting new information without losing prior knowledge from an
additional dataset that later becomes available.  Various definitions and interpretations
of incremental learning can be found in literature, including online learning [2,3], re-
learning of previously misclassified instances [4,5], and growing and pruning of clas-
sifier architectures [6,7]. For the purposes of this work, an algorithm possesses incre-
mental learning capabilities, if it meets the following criteria: (1) ability to acquire
additional knowledge when new datasets are introduced; (2) ability to retain previ-
ously learned information; (3) ability to learn new classes if introduced by new data.
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1.2   Ensemble of Classifiers

Ensemble systems have attracted a great deal of attention over the last decade due to
their empirical success over single classifier systems on a variety of applications.
Such systems combine an ensemble of generally weak classifiers to take advantage of
the so-called instability of the weak classifier, which causes the classifiers to construct
sufficiently different decision boundaries for minor modifications in their training pa-
rameters, causing each classifier to make different errors on any given instance. A
strategic combination of these classifiers, such as weighted majority voting [8], then
eliminates the individual errors, generating a strong classifier. A rich collection of al-
gorithms have been developed using multiple classifiers, such as AdaBoost [9], with
the general goal of improving the generalization performance of the classification
system. Using multiple classifiers for incremental learning, however, has been largely
unexplored. Learn++, in part inspired by AdaBoost, was developed in response to
recognizing the potential feasibility of ensemble of classifiers in solving the incre-
mental learning problem. Learn++ was initially introduced in [1] as an incremental
learning algorithm for MLP type networks. A more versatile form of the algorithm
was presented in [10] for all supervised classifiers. We have recently recognized that
inherent voting mechanism of the algorithm can also be used in effectively determin-
ing the confidence of the classification system in its own decision. In this work, we
describe the algorithm Learn++, along with representative results on incremental
learning and confidence estimation obtained on one real world and one benchmark
database from the Univ. of California, Irvine (UCI) machine learning repository [11].

2   Learn++

The Learn++ algorithm, given in Fig. 1, exploits the synergistic power of an ensemble
of classifiers to incrementally learn new information that may later become available.
Learn++ generates multiple weak classifiers, each trained with different subsets of the
data. For each database �k, k=1,…,K that becomes available, the inputs to Learn++
are (i)                                        , a sequence of mk training data instances xi, along with
their correct labels yi, (ii) a weak classification algorithm BaseClassifier to generate
weak classifiers, and (iii) an integer Tk specifying the number of classifiers (hypothe-
ses) to be generated for that database. We require that BaseClassifier obtain at least
50% correct classification performance on its own training dataset, to ensure a mean-
ingful classification performance for each classifier.

Learn++ starts by initializing a set of weights for the training data, w, and a distri-
bution D obtained from w, according to which a training subset TRt and a test subset
TEt are drawn at the tth iteration of the algorithm, t=1,…,Tk, where ttk TETRS �= .
Unless a priori information indicates otherwise, this distribution is initially set to be
uniform, giving equal probability to each instance to be selected into the first training
subset. The variation of instances within the training data subsets is achieved by it-
eratively updating the distribution of weights D. At each iteration t, the weights ad-
justed at iteration t-1 are normalized to ensure that a legitimate distribution, Dt, is ob-
tained. TRt and TEt are then drawn according to Dt and BaseClassifier is trained with
the training subset. A hypothesis ht is obtained as the tth classifier, whose error t is
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computed on the entire (current) database Sk simply by adding the distribution weights
of the misclassified instances
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If εt  > ½, ht is discarded and a new TRt and TEt are selected. If the error is less then
half, then the error is normalized and computed as

    ( ),1 ttt εεβ −=      10 ≤≤ tβ (2)

Hypotheses generated in all previous iterations are then combined using weighted
majority voting to form a composite hypothesis Ht using
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where the sum of weights associated with each classifier is computed for every class
present in the classification task.  A higher weight is given to classifiers that perform
better on their specific training sets. The composite hypothesis Ht is obtained by as-
signing the class label to an instance xi that receives the largest total vote.  The com-
posite error made by Ht is then computed as
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where [| · |] evaluates to 1, if the predicate holds true. Similar to the calculation of βt, a
normalized composite error Bt is computed as

( ) 10,1 ≤≤−= tttt BEEB (5)

The weights wt(i) are then updated to obtain Dt+1, which is used for the selection of
the next training and testing subsets, TRt+1 and TEt+1, respectively. The distribution up-
date rule which comprises the heart of the algorithm is given by
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This rule reduces the weights of those instances that are correctly classified by the
composite hypothesis Ht, so that their probability of being selected into the next
training subset is reduced.  When normalized during iteration t+1, the weights of mis-
classified instances are increased relative to the rest of the dataset.  We emphasize that
unlike AdaBoost and its variations, the weight update rule in Learn++ looks at the
classification output of the composite hypothesis, not to that of a specific hypothesis.
This weight update procedure forces the algorithm to focus more on instances that
have not been properly learned by the ensemble. When Learn++ is learning incre-
mentally, the instances introduced by the new database are precisely those not learned
by the ensemble. After Tk hypotheses are generated for each database �

�
, the final hy-

pothesis is obtained by the weighted majority voting of all composite hypotheses:
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Input: For each dataset drawn from �
�
 k=1,2,…,K

• Sequence of mk examples ( ){ }kiik miyxS ,,1|, �==
• Weak learning algorithm BaseClassifier
• Integer Tk, specifying the number of iterations

 Initialize w1(i) = D1(i)=1/mk, ∀i, i=1,2,…,mk

Do for each k=1,2,…,K:
Do for t= 1,2,…,Tk:

1. Set ∑
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)(tw  so that Dt is a distribution

2. Draw training TRt and testing TEt subsets from Dt.
3. Call BaseClassifier to be trained with TRt.
4. Obtain a hypothesis ht: X�Y, and calculate the error of ht:

on TRt+TEt. If εt> ½ , discard ht and go to step 2.  Otherwise, compute nor-
malized error as ( )ttt εεβ −= 1 .

5. Call weighed majority voting and obtain the composite hypothesis
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Fig. 1. Learn++ Algorithm

3   Confidence Estimation

An intimately relevant issue is the confidence of the classifier in its decision, with
particular interest in whether the confidence of the algorithm improves as new data
becomes available. The voting mechanism inherent in Learn++ hints to a practical ap-
proach for estimating confidence: decisions made with a vast majority of votes have
better confidence then those made by a slight majority. We have implemented McIver
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and Friedl’s weighted exponential voting based confidence metric [12] with Learn++
as
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where Cj(x) is the confidence assigned to instance x when classified as class j, Fj(x) is
the total vote associated with the jth class for the instance x, and N is the total number
of classes.  The total vote Fj(x) class j receives for any given instance is computed as
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The confidence of winning class is then considered as the confidence of the algo-
rithm in making the decision with respect to the winning class. Since Cj(x) is between
0 and 1, the confidences can be translated into linguistic indicators, such as those
shown in Table 1. These indicators are adopted and used in tabulating the results.

Table 1. Confidence percentages represented by linguistic indicators

Confidence Percentage Range Confidence Level
90 ≤ C ≤ 100 Very High (VH)
80 ≤ C < 90 High (H)
70 ≤ C < 80 Medium (M)
60 ≤ C < 70 Low (L)

C < 60 Very Low (VL)

Equations (8) and (9) allow Learn++ to determine its own confidence in any classi-
fication it makes. The desired outcome of the confidence analysis is to observe a high
confidence on correctly classified instances, and a low confidence on misclassified in-
stances, so that the low confidence can be used to flag those instances that are being
misclassified by the algorithm. A second desired outcome is to observe improved con-
fidences on correctly classified instances and reduced confidence on misclassified in-
stances, as new data becomes available, so that the incremental learning ability of the
algorithm can be further confirmed.

4   Simulation Results on Learn++

Learn++ has been tested on a diverse set of benchmark databases acquired from the
UCI Machine Learning Repository, as well as a few real-world applications, both for
incremental learning – where new datasets included new classes – and for estimating
the confidence of Learn++ in its own decisions. The incremental learning results with
new classes are presented in [1]. In this paper, we present the results on confidence
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estimation, and we use two databases, one benchmark database from UCI, and one
real world on gas sensing, as representative simulations. 

4.1   Volatile Organic Compound (VOC) Database

The VOC database is a real world database for the odorant identification problem.
The instances are responses of six quartz crystal microbalances to five volatile or-
ganic compounds, including ethanol (ET), octane (OC), toluene  (TL), trichloroethe-
lene (TCE), and xylene (XL), constituting a five class, six feature database.

Three datasets S1, S2 and S3, where each dataset included approximately one third of
the entire training data, were provided to Learn++ in three training sessions for in-
cremental learning. The data distribution and the percent classification performance
are given in Table 2. The performances listed are on the validation data, TEST, fol-
lowing each training session. Table 3 provides an actual breakdown of correctly clas-
sified and misclassified instances falling into each confidence range after each train-
ing session. The trends of the confidence estimates after subsequent training sessions
are given in Table 4.  The desired outcome on the actual confidences is high to very
high confidences on correctly classified instances, and low to very low confidences on
misclassified instances. The desired outcome on confidence trends is increasing or
steady confidences on correctly classified instances, and decreasing confidences on
misclassified instances, as new data is introduced.

Table 2. Data distribution and performance on VOC database

Ethanol Octane Toluene TCE Xylene Test Perf. (%)
S1 13 11 12 9 15 84.3
S2 9 10 14 11 16 85.8
S3 8 9 24 10 9 87.7

TEST 34 34 62 34 40 -------

Table 3. Confidence results on VOC database

VH H M L VL
S1 149 9 3 8 3
S2 163 6 2 4 0

Correctly
Classified

S3 172 0 2 0 5
S1 16 4 3 6 3
S2 25 2 0 0 2Misclassified
S3 23 0 1 0 1

Table 4. Confidence trends for the VOC database.

Increasing/Steady Decreasing
Correctly Classified 172 7

Misclassified 9 16

The performance figures in Table 2 indicate that the algorithm is improving its
generalization performance as new data becomes available. The improvement is mod-
est, however, as majority of the new information is already learned in the first training
session. Other experiments, where new data introduced new classes, showed remark-
able performance increase as reported in [1]. Table 3 indicates that the vast majority
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of correctly classified instances tend to have very high confidences, with continually
improved confidences at consecutive training sessions. While a considerable portion
of misclassified instances also had high confidence for this database, the general de-
sired trends of increased confidence on correctly classified instances and decreasing
confidence on misclassified ones were notable and dominant, as shown in Table 4.

4.2   Glass Database

The glass database, retrieved from UCI repository, is a 10-feature, 6-class database
with samples of glass from buildings, vehicles, containers, tableware, and headlamps.
The buildings include two types of glass, which are float processed and non-float
processed. This database was also provided incrementally in three training sessions,
with each session using one of the datasets, S1 ~ S3. The distribution of data, as well as
the performance on the validation dataset, is shown in Table 5. The confidence results
are shown in Table 6, while the confidence trends are provided in Table 7.

Table 5. Data distribution and generalization performance on glass database

Float Non-
Float

Vehicle Container Table Lamp Test Perf.
(%)

S1 14 22 3 1 2 6 84.0
S2 14 17 4 3 2 9 85.5
S3 17 13 6 3 2 7 92.8

TEST 25 24 4 6 3 7 ------

Table 6. % Confidence Results on Glass Database

VH H M L VL
S1 0 0 17 6 35

Correctly Classified S2 47 1 5 2 5
S3 57 4 2 2 3
S1 0 0 0 0 11

Misclassified S2 0 0 0 1 9
S3 1 0 0 2 2

Table 7. Confidence trends for glass database

Increasing/Steady Decreasing
Correctly classified 63 1

Misclassified 3 2

For the glass database, the above-mentioned desirable traits are even more remark-
able. The majority of correctly classified instances fell into a very high confidence
range, while the misclassified instances fell into the very low confidence range. Posi-
tive attributes were also seen in the confidence trends where the majority of correctly
classified instances had an increasing or steady confidence through consecutive
training sessions. Furthermore, the incremental learning ability of the algorithm is
also demonstrated through the improved generalization performance (from 83% to
93%) on the TEST dataset with availability of additional data.
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5   Discussion and Conclusions

Apart from the incremental learning ability of Learn++, it was found that the algo-
rithm can also assess the confidence of its own decisions. In general, majority of cor-
rectly classified instances had very high confidence estimates while lower confidence
values were associated with misclassified instances. Therefore, classifications with
low confidences can be used as a flag to further evaluate those instances.  Further-
more, the algorithm also showed increasing confidences in correctly classified in-
stances and decreasing confidences in misclassified instances after subsequent train-
ing sessions. This is a very comforting outcome, which further indicates that algo-
rithm can incrementally acquire new and novel information from additional data.
Work is in progress to further test the algorithm’s capabilities on a more diverse set of
real world and benchmark databases.
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