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Abstract: 
We describe an incremental learning algorithm designed 

to learn in challenging non-stationary environments, where 
the underlying data distribution that governs the classification 
problem changes at an unknown rate. The algorithm is based 
on a multiple classifier system that generates a new classifier 
every time a new dataset becomes available from the changing 
environment. We consider the particularly challenging form of 
this problem, where we assume that the previously generated 
data points are no longer available, even if some of those 
points may still be relevant in the new environment. The algo-
rithm employs a strategic weighting mechanism to determine 
the error of each classifier on the current data distribution, 
and then combines the classifiers using a dynamically 
weighted majority voting. We describe the implementation 
details of algorithm, and track its performance as a function of 
the environment’s rate of change. We show that the algorithm 
is able to track the changing environment, even when the en-
vironment changes drastically over a short period of time.  
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1. Introduction 

Much of the recent history of machine learning re-
search has focused on algorithms than can learn from a set 
of training data, where the data points are assumed to be 
drawn from a fixed, yet unknown distribution. A vast ma-
jority of the algorithms that are developed over the last 
several decades, including various forms of neural networks, 
decision trees, and other statistical learners have made the 
“unknown but fixed distribution” assumption even in online 
and incremental learning scenarios. The problem of learn-
ing in a non-stationary environment (NSE), where the un-
derlying data distribution changes over time, has received 
less attention, perhaps due to the difficulty of this problem. 

Early work in NSE learning have primarily been on 
the definition of the problem, and identifying the types of 
nonstationary environments that can be learned [1-3]. Even 

defining exactly what constitutes a nonstationary environ-
ment is not a trivial matter; after all the change in the envi-
ronment can be abrupt or gradual, it can be slow or fast, it 
can be random or systematic, it can be cyclical or not. The 
common denominator in all of the above mentioned sce-
narios is that distribution that generates the data changes 
over time in some manner. Hence the change in the envi-
ronment is also referred to as concept drift. 

Learning in non-stationary environments have been 
receiving an increasing amount of attention, in part due to 
many practical applications, such as spam detection, that 
can benefit from an algorithm that can learn in such envi-
ronments. Several approaches have been proposed for 
various combinations of above mentioned non-stationary 
environment scenarios, though many of these algorithms 
typically employ a procedure for detecting that there is a 
drift and its magnitude; adjust the learner’s parameters to 
incorporate the change in the environment; and forget what 
is no longer relevant to the classification problem. 

Perhaps one of the earliest examples of algorithms ca-
pable of learning in non-stationary environment is the 
FLORA family of algorithms [1], where a new classifier is 
trained on a windowed block of training samples, as new 
data points arrive. Only those instances that fall within the 
current window are deemed relevant, and hence any infor-
mation carried by those samples that fall outside of the cur-
rent data window is automatically forgotten. Other ap-
proaches include novelty detection to determine when 
changes occur [4,5], or treating the concept drift as a pre-
diction problem and use an adaptive neural network that 
can adjust its parameters according to the environment [6]. 

The ensemble of classifiers, or multiple classifier sys-
tems (MCS) based approaches constitute a new breed of 
algorithms for learning in nonstationary environments. 
Such algorithms typically use more than one classifier to 
track the changing environment. We should note that the 
algorithms described above also create multiple classifiers, 
since a new classifier is generated as new data become 
available. However, these algorithms do not constitute MCS 
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based approaches, since only one classifier (specifically the 
one generated last) is used for the classification. 

In her recent review [7], Kuncheva puts MCS based 
approaches into one of three general categories: (i) a fixed 
ensemble whose combination rules (weights) are changed 
based on the changing environment [8]; (ii) the new data is 
used to update the parameters of an online learning algo-
rithm [9]; and/or (iii) add new members to an existing en-
semble [10] or replace the least contributing ensemble 
members with a new one generated based on new data [11]. 

In this paper, we introduce an alternative MCS based 
approach that can be described as a hybrid of the above 
listed strategies. Specifically, we use new data to create new 
ensemble members, but we also adjust the combination rule 
based on the errors of the existing classifiers on the new 
data. The algorithm does not use any of the previously seen 
data to ensure that the algorithm remains truly incremental, 
and instead relies on the earlier classifiers to refer to previ-
ously learned but still relevant information. Also, the algo-
rithm does not discard any of the previously generated clas-
sifiers, in case those classifiers become relevant again 
should there be a cyclical change in the distribution. The 
algorithm, named Learn++.NSE is based on our previously 
introduced – AdaBoost inspired [12] – incremental learning 
algorithm Learn++ [13]. In Learn++, we assumed that addi-
tional data was presented in an incremental fashion, how-
ever the underlying distribution was assumed fixed. 

We first describe the algorithm Learn++.NSE and pre-
sent promising results of various simulation experiments. 
We also look at the algorithm’s performance as a function 
of the rate of change. It is reasonable to assume that slower 
rate of change will make it easier for an online algorithm to 
track the changes. However, we are interested to see how 
well the algorithm can still track the changes in the envi-
ronment as the rate of change increases. 

2. Nonstationary Learning Algorithm Learn++.NSE 

2.1. Overall description of the algorithm 

In this paper, we define the problem of learning in a 
non-stationary environment as follows: the learning algo-
rithm is presented with a series of training datasets, each of 
which is drawn from a different snapshot of a distribution 
that is drifting at an unknown rate. The rate of change may 
or may not be constant. We further assume that the previ-
ously seen data – whether any of it is still relevant or not – 
is no longer available, or storing previous data is not possi-
ble or not allowed. This restriction is inline with most defi-
nitions of incremental learning. Any information previously 
provided by earlier data must then be stored in the parame-

ters of the previously generated classifiers. Unlike most al-
gorithms for nonstationary learning, we also do not use a 
time window over incoming instances, nor do we use an 
aged based forgetting. Instead, we generate an ensemble of 
classifiers from new data, which are then combined by us-
ing a strategic weighting mechanism that tracks the classi-
fiers’ performances over changing environments to deter-
mine appropriate voting weights. Specifically, we assume 
that each new dataset represents a new snapshot of the then 
current environment. The amount of change in the envi-
ronment since the previous dataset – whether fixed or vari-
able, or minor or substantial – is tracked by the perform-
ance of the existing ensemble on the current dataset. 
Learn++.NSE generates a single classifier for each dataset 
that becomes available, and then combines them through a 
dynamically weighted majority voting, where the voting 
weights are computed as weighted averages of classifiers’ 
individual performances over all previous and current en-
vironments. The averaging uses a non-linear (sigmoid) 
function, which gives more weight to performances of the 
classifiers to the more recent environments.  

Consequently, the change in the environment is 
tracked not only by the addition of new classifiers, but also 
by the dynamic adjustment of the voting weights of the ex-
isting classifiers. No classifier is ever discarded, since pre-
viously generated classifiers can possibly become relevant 
and informative, if a cyclical environment returns to the 
original distribution, or if only some of the class conditional 
distributions experience concept drift. In such cases, 
Learn++.NSE recognizes the relevance of earlier classifiers, 
and awards them with higher weights. The algorithm is de-
scribed in detail in the next section, whose pseudocode is 
provided in Figure 1. 

2.2. Detailed description of the algorithm 

The inputs to the algorithm are the BaseClassifier 
model that generates individual classifiers, and the training 
data at each time snapshot. The training dataset Dt at time t 
provides us with mt data points that serves as a snapshot of 
the then current environment. We assume that the distribu-
tion that generated the dataset Dt has changed in some 
manner and rate unknown the us, since the previous dataset 
Dt-1 was provided at time t-1. 

Learn++.NSE generates one classifier ht for each such 
new dataset that becomes available, which are then com-
bined with all previous classifiers to create the composite 
hypothesis Ht. The decision of Ht then serves as the ensem-
ble decision. More specifically, the algorithm first evaluates 
the classification accuracy of the currently available com-
posite hypothesis Ht-1 on the newly available data Dt. Ht-1, 
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obtained by the weighted majority voting of all classifiers 
generated during the previous t-1 iterations, represents the 
existing ensemble’s knowledge of the current environment. 
The error of the composite hypothesis, Et, is computed as 
the ratio of correctly identified instances of the new dataset. 
We require that this error be less than a threshold, typically 
½ that allows a convenient normalization, to ensure that Ht 
has a meaningful classification capacity.  

Input: For each new dataset Dt  t=1,2,… 
• Training data {xi, yi| xi ∈ R,  yi ∈ Y = {1,…,c} 

i=1,…,mt  
• Supervised learning algorithm BaseClassifier. 
Do for t=1,2,… 
If t=1, ( ) ( )1 1 11/D i w i m= = , ∀i, skip to step 3.  (1) 

1. Compute error of existing ensemble on new data  

( ) ( )1
1

1
tmt t t

i ii
E m H x y−

=
= ⋅ ≠∑  (2) 

Normalize error ( )1t t tB E E= −  (3) 

2. Update instance weights 
( )1,1
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i it
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w

m otherwise
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Set 
1
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t t t

i
i

D w w
=

= ∑  so that Dk is a distribution. (5) 

3. Call BaseClassifier with Dt, obtain ht : X  Y 
4. Evaluate all existing classifiers on new dataset Dt 

( ) ( )1
, 1,...,

tmt t
k k i ii

D i h x y k tε
=

= ⋅ ≠ =∑  (6) 

If 1 2t
k tε = > , generate a new ht. If 1 2t

k tε < > ,  

set 1 2t
kε = , ( )1 , 1,...,t t t

k k k k tβ ε ε= − =  (7) 

5. Compute a weighted sum of all normalized errors  
for kth classifier hk 

( )( )1 1 a t k bt
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0

t kt t t j
k k kj
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=

= ∑  (8) 

0

, for 1,...,
t k
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k tβ ω β
−
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=
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6. Calculate classifier voting weights 

( )log 1 , for 1,...,t t
k kW k tβ= =  (10) 

7. Obtain the composite hypothesis as the current  
final hypothesis 

( ) ( )arg maxt t
i k k ikc

H x W h x c= ⋅ =∑  (11) 

Figure 1. Learn++.NSE algorithm 

For this selection of the threshold, we normalize the 
error so that the normalized error Bt remains between 0 and 
1 (step 1 inside the Do loop). We then update a set of 
weights for each instance, that is normally initialized to be 
uniform, such that the weights of the instances misclassified 
by the ensemble are reduced by a factor of Bt . The weights 
are then normalized to obtain a distribution Dt (step 2).  

The algorithm then calls the BaseClassifier and asks it 
to create the tth classifier ht using data drawn from the 
current training dataset Dt (step 3). All classifiers generated 
thus far hk, k=1,...,t are then evaluated on the current dataset, 
by computing their weighted error (Equation 6, step 4). 
Note that at current time step t, we now have t error meas-
ures, one for each classifier generated thus far. Hence the 
error term εk

t represents the error of the kth classifier hk at 
the tth time step. 

The errors are again assumed to be less than ½. Here, 
we make a distinction: if the error of the most recent 
classifier on its own training data is greater than ½, we 
discard that classifier and generate a new one. After all, if it 
cannot perform at least 50% on the training data it has just 
seen, than this last classifier is of very little use. For any of 
the other (older) classifiers, if its error is greater than ½, it 
is set to ½. This effectively sets the normalized error of that 
classifier at that time step to 1, which in turn removes all of  
its voting power later during the weighted majority voting. 
Note that unlike the current classifier, previously generated 
classifiers are not discarded when their error exceeds ½. 
This is because, it is not unreasonable for a classifier to 
perform poorly on a future dataset, if the environment has 
changed drastically since it was created. Furthermore, this 
classifier can very well be useful in the future, should the 
environment returns to the condition it was in when the 
classifier was generated. If the future distributions are 
different enough that the previous classifiers are not useful, 
they are made dormant by setting their error rate to ½. If, on 
the other hand, these classifiers become relavant again in 
the future, then such relevance is reflected by a lower (than 
½) error rate they obtain on the then current environment.   

In order to combine the classifiers, however, we need 
one weight for each, even though the algorithm maintains a 
set of t such error measures εk

t for each classifier k=1,…,t. 
The error measures are therefore combined through a 
weighted averaging (step 5). The weighting is done through 
a nonlinear sigmoid function (Equation 8), which gives a 
large weight to errors on most recent environments, and less 
to errors on older environments. Note that this process does 
not give less weight to old classifiers: it gives less weight to 
their error on old environments. Therefore, a classifier gen-
erated long time ago can in fact receive a large voting 
weight, if its error on the recent environments becomes low.  

The errors so weighted are combined to obtain a 
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weighted average error (Equation 9). The logarithm of the 
inverse of this weighted error average then constitutes the 
final voting weight Wk

t for classifier k at time instant t (Step 
6, Equation 10). Finally all classifiers are combined through 
weighted majority voting (Step 7, Equation 11). 

3. Simulation Experiments and Results 

We describe two experiments that are designed to il-
lustrate the performance and behavior of the algorithm in 
two different and challenging non-stationary learning sce-
narios. In both experiments, we use data that is originally 
drawn from Gaussian distribution, so that we can compare 
the algorithm’s performance to that of the optimal Bayes 
classifier, and to the performance of the single naïve Bayes 
classifier that is always trained on the most recent dataset.  

In the first case we evaluate the ability of the algo-
rithm to track the changing environments with respect to 
the rate of change of the environment for a two-dimensional, 
three class problem. The environment and its changing path 
are illustrated in Figure 2. The actual parametric equations 
used to determine the changing environment are shown in 
Table 1. Note that the class means µx and µy change in all 
three classes but the variance only changes in class 3. The 
environment changes from t=0 to t=1 in T time steps, and at 
each step 25 instances are drawn from the environment to 
train a Naïve Bayes classifier. This classifier is then added 
to the Learn++.NSE ensemble, to be combined with the 
previous classifiers as described above. This process is re-

peated for an array of T values (T = 10, 20, 30, 40, 50, 65, 
80, and 100). Note that a small value of T indicates a fast 
changing environment, and a large value of T indicates a 
slow changing environment. Figure 3 shows the perform-
ance of Learn++.NSE, Naïve Bayes, and Bayes at each time 
step for each experiment using a different T value. All per-
formance plots are averages of 100 independent trials. 

Several interesting observations can be made from 
Figure 3. First and foremost, we note that the ensemble 
performance is always as good (T=10) or better than that of 
the single classifier (all other values of T). Note that T=10 
is the fastest changing environment among all trials, with 
only 10 time steps allowed for the algorithm to track the 
entire change. Even then, the ensemble performance at 
worst is the same as that of a single classifier that has seen 
the most recent dataset. Second, as expected, the ensemble 
performance improves as the rate of change decreases. This 
makes sense, since a slower changing environment is easier 
to track. As T increases, the previously generated classifiers 
in the ensemble become more relevant to the current envi-
ronment, thus increasing the performance. Third, as T con-
tinues to increase, the performance gain of the algorithm 
levels off, as it is able to completely adapt to the changes in 
the environment. Table 2 shows the average error rate, over 
all T time steps, normalized to the error rate of the Bayes 
classifier. Note that the relative error of Naïve Bayes re-
mains constant (with respect to optimal Bayes error), where 
as the ensemble performance improves as T increases. 

Class 2 (t=0) [ µx µy σx σy ]

[3 6 2 1]
6

Class 1 (t=0)

5 Class 3 (t=1)
[ 7   5   3    2]

Class 2 new

[8 5 2 2]

x

y

Path of drift

4

Class 3 (t=0)
[ 3 5 1 1]

7

Class 1 (t=1)

[7 6 2 1]

[3 4 2 1]
Class 2 (t=1)

[7 4 2 1]

3  
Figure 2. First simulation experiment on a three class data, where both class means and variances change 
 
Table 1. Parametric expressions controlling the change of class mean and standard deviations for Gaussian data 
 

Data µx µy σx σy 
Class 1 3+4t 3.5+0.5cos(2πt) 2 1 
Class 2 3+4t 6.5-0.5cos(2πt) 2 1 
Class 3 7-4t 5 3-2t 2-t 
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Figure 3. Learn++.NSE performance against the number 
of classifiers for different rates of change. 
 

Finally, we also observe that the algorithm per-
formance approaches to that of optimal Bayes perform-
ance as new members are added to the ensemble, re-
gardless the value of T. Therefore, the algorithm does not 
suffer from catastrophic forgetting. This is attributed to 
the boosting based structure of the algorithm. The resis-
tance of boosting based approaches to overfitting is a 
previously observed phenomenon, which has been ex-
plained by the margin theory [14]. 

 
Table 2. Average error, relative to the Bayes classifier 

 Learn++.NSE Naïve Bayes 
T = 10 6.2% 6.3% 
T = 20 5.1% 6.4% 
T = 30 4.2% 6.4% 
T = 40 3.7% 6.4% 
T = 50 3.4% 6.3% 
T = 65 3.2% 6.4% 
T = 80 3.1% 6.4% 
T = 100 3.1% 6.4% 

 
Note that in this first experiment the environment 

changes gradually, even for small values of T which in-
creased the rate of change. In our second experiment, we 
introduced several sharp, abrupt and unexpected changes 
to the distribution in order to observe the behavior of the 
algorithm in such scenarios. Figure 4 illustrates the 
changing environments of this challenging scenario. The 
experiment consists of four classes, each with a Gaussian 
distribution. The environment periodically changes such 
that each class’ distribution rotates in a counter  
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Class 1 (30<t<40)
Class 4 (40<t<50)

Figure 4. Rotating classes problem 
 
clockwise manner, moving to where another class was 
previously located.  Hence, any classifier trained before 
the abrupt change would be incapable of correctly clas-
sifying data from the current environment. 

The performances of the Bayes, single classifier 
Naïve Bayes and Learn++.NSE are shown in Figure 5. We 
now observe that Learn++.NSE initially takes advantage 
of the boosting characteristics inherent in its structure 
and reduces its error as classifiers are added to the en-
semble (up until classifier 10).   
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Figure 5. Learn++.NSE performance in abruptly changing 
environments 
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However, when the environment changes abruptly and 
drastically, the performance of the algorithm immedi-
ately plunges. This is not unexpected, since only one 
classifier (the one generated the last) in the ensemble can 
correctly recognize the new environment at the time of 
the abrupt change. However, the performance of  the 
ensemble based Learn++.NSE rapidly increases as new 
classifiers are added, out performs the single Naïve 
Bayes classifier, and in fact approaches to the optimal 
Bayes classifier.  

4. Conclusions 

We described an MCS based algorithm for learning 
in nonstationary environments. The algorithm creates a 
single classifier for each dataset that becomes available, 
and keeps a record of the performance of each classifier 
on all environments throughout the training. The classi-
fiers are then combined through a dynamically weighted 
majority voting, where the voting weights are determined 
by each classifier’s performance on the current environ-
ment, weighted along with the performances on previous 
environments. All classifiers are retained, which allows 
the previously generated classifiers to make significant 
contributions to the ensemble decision, if such classifiers 
provide relevant information for the current environment.  

On two experiments, we showed that the algorithm 
can track the changing environments regardless of the 
rate of change, though the performance markedly in-
creases for slower rates of change. We further showed 
that the algorithm can also track abrupt and rapid 
changes, as soon as a reasonable ensemble size (greater 
than 1) is obtained for each new dataset. 

This algorithm is currently in its infancy stages of 
its development; however, initial results are promising 
and warrant further analysis of this approach. 
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