
Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

1-4244-0973-X/07/$25.00 ©2007 IEEE
3618

MULTIPLE CLASSIFIERS BASED INCREMENTAL LEARNING
ALGORITHM FOR LEARNING IN NONSTATIONARY ENVIRONMENTS

MICHAEL D. MUHLBAIER, ROBI POLIKAR

Signal Processing and Pattern Recognition Laboratory, Rowan University, Glassboro, NJ 08028 USA
E-MAIL: muhlbaier@ieee.org, polikar@rowan.edu

Abstract:
We describe an incremental learning algorithm designed

to learn in challenging non-stationary environments, where
the underlying data distribution that governs the classification
problem changes at an unknown rate. The algorithm is based
on a multiple classifier system that generates a new classifier
every time a new dataset becomes available from the changing
environment. We consider the particularly challenging form of
this problem, where we assume that the previously generated
data points are no longer available, even if some of those
points may still be relevant in the new environment. The algo-
rithm employs a strategic weighting mechanism to determine
the error of each classifier on the current data distribution,
and then combines the classifiers using a dynamically
weighted majority voting. We describe the implementation
details of algorithm, and track its performance as a function of
the environment’s rate of change. We show that the algorithm
is able to track the changing environment, even when the en-
vironment changes drastically over a short period of time.

Keywords:
Incremental learning, non-stationary learning, Learn++,

ensemble systems, multiple classifier systems.

1. Introduction

Much of the recent history of machine learning re-
search has focused on algorithms than can learn from a set
of training data, where the data points are assumed to be
drawn from a fixed, yet unknown distribution. A vast ma-
jority of the algorithms that are developed over the last
several decades, including various forms of neural networks,
decision trees, and other statistical learners have made the
“unknown but fixed distribution” assumption even in online
and incremental learning scenarios. The problem of learn-
ing in a non-stationary environment (NSE), where the un-
derlying data distribution changes over time, has received
less attention, perhaps due to the difficulty of this problem.

Early work in NSE learning have primarily been on
the definition of the problem, and identifying the types of
nonstationary environments that can be learned [1-3]. Even

defining exactly what constitutes a nonstationary environ-
ment is not a trivial matter; after all the change in the envi-
ronment can be abrupt or gradual, it can be slow or fast, it
can be random or systematic, it can be cyclical or not. The
common denominator in all of the above mentioned sce-
narios is that distribution that generates the data changes
over time in some manner. Hence the change in the envi-
ronment is also referred to as concept drift.

Learning in non-stationary environments have been
receiving an increasing amount of attention, in part due to
many practical applications, such as spam detection, that
can benefit from an algorithm that can learn in such envi-
ronments. Several approaches have been proposed for
various combinations of above mentioned non-stationary
environment scenarios, though many of these algorithms
typically employ a procedure for detecting that there is a
drift and its magnitude; adjust the learner’s parameters to
incorporate the change in the environment; and forget what
is no longer relevant to the classification problem.

Perhaps one of the earliest examples of algorithms ca-
pable of learning in non-stationary environment is the
FLORA family of algorithms [1], where a new classifier is
trained on a windowed block of training samples, as new
data points arrive. Only those instances that fall within the
current window are deemed relevant, and hence any infor-
mation carried by those samples that fall outside of the cur-
rent data window is automatically forgotten. Other ap-
proaches include novelty detection to determine when
changes occur [4,5], or treating the concept drift as a pre-
diction problem and use an adaptive neural network that
can adjust its parameters according to the environment [6].

The ensemble of classifiers, or multiple classifier sys-
tems (MCS) based approaches constitute a new breed of
algorithms for learning in nonstationary environments.
Such algorithms typically use more than one classifier to
track the changing environment. We should note that the
algorithms described above also create multiple classifiers,
since a new classifier is generated as new data become
available. However, these algorithms do not constitute MCS

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

3619

based approaches, since only one classifier (specifically the
one generated last) is used for the classification.

In her recent review [7], Kuncheva puts MCS based
approaches into one of three general categories: (i) a fixed
ensemble whose combination rules (weights) are changed
based on the changing environment [8]; (ii) the new data is
used to update the parameters of an online learning algo-
rithm [9]; and/or (iii) add new members to an existing en-
semble [10] or replace the least contributing ensemble
members with a new one generated based on new data [11].

In this paper, we introduce an alternative MCS based
approach that can be described as a hybrid of the above
listed strategies. Specifically, we use new data to create new
ensemble members, but we also adjust the combination rule
based on the errors of the existing classifiers on the new
data. The algorithm does not use any of the previously seen
data to ensure that the algorithm remains truly incremental,
and instead relies on the earlier classifiers to refer to previ-
ously learned but still relevant information. Also, the algo-
rithm does not discard any of the previously generated clas-
sifiers, in case those classifiers become relevant again
should there be a cyclical change in the distribution. The
algorithm, named Learn++.NSE is based on our previously
introduced – AdaBoost inspired [12] – incremental learning
algorithm Learn++ [13]. In Learn++, we assumed that addi-
tional data was presented in an incremental fashion, how-
ever the underlying distribution was assumed fixed.

We first describe the algorithm Learn++.NSE and pre-
sent promising results of various simulation experiments.
We also look at the algorithm’s performance as a function
of the rate of change. It is reasonable to assume that slower
rate of change will make it easier for an online algorithm to
track the changes. However, we are interested to see how
well the algorithm can still track the changes in the envi-
ronment as the rate of change increases.

2. Nonstationary Learning Algorithm Learn++.NSE

2.1. Overall description of the algorithm

In this paper, we define the problem of learning in a
non-stationary environment as follows: the learning algo-
rithm is presented with a series of training datasets, each of
which is drawn from a different snapshot of a distribution
that is drifting at an unknown rate. The rate of change may
or may not be constant. We further assume that the previ-
ously seen data – whether any of it is still relevant or not –
is no longer available, or storing previous data is not possi-
ble or not allowed. This restriction is inline with most defi-
nitions of incremental learning. Any information previously
provided by earlier data must then be stored in the parame-

ters of the previously generated classifiers. Unlike most al-
gorithms for nonstationary learning, we also do not use a
time window over incoming instances, nor do we use an
aged based forgetting. Instead, we generate an ensemble of
classifiers from new data, which are then combined by us-
ing a strategic weighting mechanism that tracks the classi-
fiers’ performances over changing environments to deter-
mine appropriate voting weights. Specifically, we assume
that each new dataset represents a new snapshot of the then
current environment. The amount of change in the envi-
ronment since the previous dataset – whether fixed or vari-
able, or minor or substantial – is tracked by the perform-
ance of the existing ensemble on the current dataset.
Learn++.NSE generates a single classifier for each dataset
that becomes available, and then combines them through a
dynamically weighted majority voting, where the voting
weights are computed as weighted averages of classifiers’
individual performances over all previous and current en-
vironments. The averaging uses a non-linear (sigmoid)
function, which gives more weight to performances of the
classifiers to the more recent environments.

Consequently, the change in the environment is
tracked not only by the addition of new classifiers, but also
by the dynamic adjustment of the voting weights of the ex-
isting classifiers. No classifier is ever discarded, since pre-
viously generated classifiers can possibly become relevant
and informative, if a cyclical environment returns to the
original distribution, or if only some of the class conditional
distributions experience concept drift. In such cases,
Learn++.NSE recognizes the relevance of earlier classifiers,
and awards them with higher weights. The algorithm is de-
scribed in detail in the next section, whose pseudocode is
provided in Figure 1.

2.2. Detailed description of the algorithm

The inputs to the algorithm are the BaseClassifier
model that generates individual classifiers, and the training
data at each time snapshot. The training dataset Dt at time t
provides us with mt data points that serves as a snapshot of
the then current environment. We assume that the distribu-
tion that generated the dataset Dt has changed in some
manner and rate unknown the us, since the previous dataset
Dt-1 was provided at time t-1.

Learn++.NSE generates one classifier ht for each such
new dataset that becomes available, which are then com-
bined with all previous classifiers to create the composite
hypothesis Ht. The decision of Ht then serves as the ensem-
ble decision. More specifically, the algorithm first evaluates
the classification accuracy of the currently available com-
posite hypothesis Ht-1 on the newly available data Dt. Ht-1,

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

3620

obtained by the weighted majority voting of all classifiers
generated during the previous t-1 iterations, represents the
existing ensemble’s knowledge of the current environment.
The error of the composite hypothesis, Et, is computed as
the ratio of correctly identified instances of the new dataset.
We require that this error be less than a threshold, typically
½ that allows a convenient normalization, to ensure that Ht
has a meaningful classification capacity.

Input: For each new dataset Dt t=1,2,…
• Training data {xi, yi| xi ∈ R, yi ∈ Y = {1,…,c}

i=1,…,mt
• Supervised learning algorithm BaseClassifier.
Do for t=1,2,…
If t=1, () ()1 1 11/D i w i m= = , ∀i, skip to step 3. (1)

1. Compute error of existing ensemble on new data

() ()1
1

1
tmt t t

i ii
E m H x y−

=
= ⋅ ≠∑ (2)

Normalize error ()1t t tB E E= − (3)

2. Update instance weights
()1,1

1,

t t
i it

i t

B H x y
w

m otherwise

−⎧ =⎪= ×⎨
⎪⎩

 (4)

Set
1

tm
t t t

i
i

D w w
=

= ∑ so that Dk is a distribution. (5)

3. Call BaseClassifier with Dt, obtain ht : X Y
4. Evaluate all existing classifiers on new dataset Dt

() ()1
, 1,...,

tmt t
k k i ii

D i h x y k tε
=

= ⋅ ≠ =∑ (6)

If 1 2t
k tε = > , generate a new ht. If 1 2t

k tε < > ,

set 1 2t
kε = , ()1 , 1,...,t t t

k k k k tβ ε ε= − = (7)

5. Compute a weighted sum of all normalized errors
for kth classifier hk

()()1 1 a t k bt
k eω − − −= + ,

0

t kt t t j
k k kj

ω ω ω− −
=

= ∑ (8)

0

, for 1,...,
t k

t t j t j
k k k

j

k tβ ω β
−

− −

=

= =∑ (9)

6. Calculate classifier voting weights

()log 1 , for 1,...,t t
k kW k tβ= = (10)

7. Obtain the composite hypothesis as the current
final hypothesis

() ()arg maxt t
i k k ikc

H x W h x c= ⋅ =∑ (11)

Figure 1. Learn++.NSE algorithm

For this selection of the threshold, we normalize the
error so that the normalized error Bt remains between 0 and
1 (step 1 inside the Do loop). We then update a set of
weights for each instance, that is normally initialized to be
uniform, such that the weights of the instances misclassified
by the ensemble are reduced by a factor of Bt . The weights
are then normalized to obtain a distribution Dt (step 2).

The algorithm then calls the BaseClassifier and asks it
to create the tth classifier ht using data drawn from the
current training dataset Dt (step 3). All classifiers generated
thus far hk, k=1,...,t are then evaluated on the current dataset,
by computing their weighted error (Equation 6, step 4).
Note that at current time step t, we now have t error meas-
ures, one for each classifier generated thus far. Hence the
error term εk

t represents the error of the kth classifier hk at
the tth time step.

The errors are again assumed to be less than ½. Here,
we make a distinction: if the error of the most recent
classifier on its own training data is greater than ½, we
discard that classifier and generate a new one. After all, if it
cannot perform at least 50% on the training data it has just
seen, than this last classifier is of very little use. For any of
the other (older) classifiers, if its error is greater than ½, it
is set to ½. This effectively sets the normalized error of that
classifier at that time step to 1, which in turn removes all of
its voting power later during the weighted majority voting.
Note that unlike the current classifier, previously generated
classifiers are not discarded when their error exceeds ½.
This is because, it is not unreasonable for a classifier to
perform poorly on a future dataset, if the environment has
changed drastically since it was created. Furthermore, this
classifier can very well be useful in the future, should the
environment returns to the condition it was in when the
classifier was generated. If the future distributions are
different enough that the previous classifiers are not useful,
they are made dormant by setting their error rate to ½. If, on
the other hand, these classifiers become relavant again in
the future, then such relevance is reflected by a lower (than
½) error rate they obtain on the then current environment.

In order to combine the classifiers, however, we need
one weight for each, even though the algorithm maintains a
set of t such error measures εk

t for each classifier k=1,…,t.
The error measures are therefore combined through a
weighted averaging (step 5). The weighting is done through
a nonlinear sigmoid function (Equation 8), which gives a
large weight to errors on most recent environments, and less
to errors on older environments. Note that this process does
not give less weight to old classifiers: it gives less weight to
their error on old environments. Therefore, a classifier gen-
erated long time ago can in fact receive a large voting
weight, if its error on the recent environments becomes low.

The errors so weighted are combined to obtain a

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

3621

weighted average error (Equation 9). The logarithm of the
inverse of this weighted error average then constitutes the
final voting weight Wk

t for classifier k at time instant t (Step
6, Equation 10). Finally all classifiers are combined through
weighted majority voting (Step 7, Equation 11).

3. Simulation Experiments and Results

We describe two experiments that are designed to il-
lustrate the performance and behavior of the algorithm in
two different and challenging non-stationary learning sce-
narios. In both experiments, we use data that is originally
drawn from Gaussian distribution, so that we can compare
the algorithm’s performance to that of the optimal Bayes
classifier, and to the performance of the single naïve Bayes
classifier that is always trained on the most recent dataset.

In the first case we evaluate the ability of the algo-
rithm to track the changing environments with respect to
the rate of change of the environment for a two-dimensional,
three class problem. The environment and its changing path
are illustrated in Figure 2. The actual parametric equations
used to determine the changing environment are shown in
Table 1. Note that the class means µx and µy change in all
three classes but the variance only changes in class 3. The
environment changes from t=0 to t=1 in T time steps, and at
each step 25 instances are drawn from the environment to
train a Naïve Bayes classifier. This classifier is then added
to the Learn++.NSE ensemble, to be combined with the
previous classifiers as described above. This process is re-

peated for an array of T values (T = 10, 20, 30, 40, 50, 65,
80, and 100). Note that a small value of T indicates a fast
changing environment, and a large value of T indicates a
slow changing environment. Figure 3 shows the perform-
ance of Learn++.NSE, Naïve Bayes, and Bayes at each time
step for each experiment using a different T value. All per-
formance plots are averages of 100 independent trials.

Several interesting observations can be made from
Figure 3. First and foremost, we note that the ensemble
performance is always as good (T=10) or better than that of
the single classifier (all other values of T). Note that T=10
is the fastest changing environment among all trials, with
only 10 time steps allowed for the algorithm to track the
entire change. Even then, the ensemble performance at
worst is the same as that of a single classifier that has seen
the most recent dataset. Second, as expected, the ensemble
performance improves as the rate of change decreases. This
makes sense, since a slower changing environment is easier
to track. As T increases, the previously generated classifiers
in the ensemble become more relevant to the current envi-
ronment, thus increasing the performance. Third, as T con-
tinues to increase, the performance gain of the algorithm
levels off, as it is able to completely adapt to the changes in
the environment. Table 2 shows the average error rate, over
all T time steps, normalized to the error rate of the Bayes
classifier. Note that the relative error of Naïve Bayes re-
mains constant (with respect to optimal Bayes error), where
as the ensemble performance improves as T increases.

Class 2 (t=0) [µx µy σx σy]

[3 6 2 1]
6

Class 1 (t=0)

5 Class 3 (t=1)
[7 5 3 2]

Class 2 new

[8 5 2 2]

x

y

Path of drift

4

Class 3 (t=0)
[3 5 1 1]

7

Class 1 (t=1)

[7 6 2 1]

[3 4 2 1]
Class 2 (t=1)

[7 4 2 1]

3
Figure 2. First simulation experiment on a three class data, where both class means and variances change

Table 1. Parametric expressions controlling the change of class mean and standard deviations for Gaussian data

Data µx µy σx σy
Class 1 3+4t 3.5+0.5cos(2πt) 2 1
Class 2 3+4t 6.5-0.5cos(2πt) 2 1
Class 3 7-4t 5 3-2t 2-t

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

3622

0 20 40 60 80 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time Step (Number of Classifiers)

G
en

er
al

iz
at

io
n

Pe
rf

or
m

an
ce

Learn++.NSE (T=10)
Learn++.NSE (T=20)
Learn++.NSE (T=30)
Learn++.NSE (T=40)
Learn++.NSE (T=50)
Learn++.NSE (T=65)
Learn++.NSE (T=80)
Learn++.NSE (T=100)
Naive Bayes
Bayes

Figure 3. Learn++.NSE performance against the number
of classifiers for different rates of change.

Finally, we also observe that the algorithm per-
formance approaches to that of optimal Bayes perform-
ance as new members are added to the ensemble, re-
gardless the value of T. Therefore, the algorithm does not
suffer from catastrophic forgetting. This is attributed to
the boosting based structure of the algorithm. The resis-
tance of boosting based approaches to overfitting is a
previously observed phenomenon, which has been ex-
plained by the margin theory [14].

Table 2. Average error, relative to the Bayes classifier

 Learn++.NSE Naïve Bayes
T = 10 6.2% 6.3%
T = 20 5.1% 6.4%
T = 30 4.2% 6.4%
T = 40 3.7% 6.4%
T = 50 3.4% 6.3%
T = 65 3.2% 6.4%
T = 80 3.1% 6.4%
T = 100 3.1% 6.4%

Note that in this first experiment the environment

changes gradually, even for small values of T which in-
creased the rate of change. In our second experiment, we
introduced several sharp, abrupt and unexpected changes
to the distribution in order to observe the behavior of the
algorithm in such scenarios. Figure 4 illustrates the
changing environments of this challenging scenario. The
experiment consists of four classes, each with a Gaussian
distribution. The environment periodically changes such
that each class’ distribution rotates in a counter

[µx µy σx σy]

6

5

x

y

4

[5 8 1.5 1.5]

73

Class 1 (0<t<10)
Class 4 (10<t<20)
Class 3 (20<t<30)
Class 2 (30<t<40)
Class 1 (40<t<50)

[5 3 1.5 1.5]

[3 5 1.5 1.5] [8 5 1.5 1.5]

Class 2 (0<t<10)
Class 1 (10<t<20)
Class 4 (20<t<30)
Class 3 (30<t<40)
Class 2 (40<t<50)

Class 3 (0<t<10)
Class 2 (10<t<20)
Class 1 (20<t<30)
Class 4 (30<t<40)
Class 3 (40<t<50)

Class 4 (0<t<10)
Class 3 (10<t<20)
Class 2 (20<t<30)
Class 1 (30<t<40)
Class 4 (40<t<50)

Figure 4. Rotating classes problem

clockwise manner, moving to where another class was
previously located. Hence, any classifier trained before
the abrupt change would be incapable of correctly clas-
sifying data from the current environment.

The performances of the Bayes, single classifier
Naïve Bayes and Learn++.NSE are shown in Figure 5. We
now observe that Learn++.NSE initially takes advantage
of the boosting characteristics inherent in its structure
and reduces its error as classifiers are added to the en-
semble (up until classifier 10).

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time Step (Number of Classifiers)

G
en

er
al

iz
at

io
n

Pe
rf

or
m

an
ce

Learn++.NSE

Naive Bayes

Bayes

Figure 5. Learn++.NSE performance in abruptly changing
environments

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

3623

However, when the environment changes abruptly and
drastically, the performance of the algorithm immedi-
ately plunges. This is not unexpected, since only one
classifier (the one generated the last) in the ensemble can
correctly recognize the new environment at the time of
the abrupt change. However, the performance of the
ensemble based Learn++.NSE rapidly increases as new
classifiers are added, out performs the single Naïve
Bayes classifier, and in fact approaches to the optimal
Bayes classifier.

4. Conclusions

We described an MCS based algorithm for learning
in nonstationary environments. The algorithm creates a
single classifier for each dataset that becomes available,
and keeps a record of the performance of each classifier
on all environments throughout the training. The classi-
fiers are then combined through a dynamically weighted
majority voting, where the voting weights are determined
by each classifier’s performance on the current environ-
ment, weighted along with the performances on previous
environments. All classifiers are retained, which allows
the previously generated classifiers to make significant
contributions to the ensemble decision, if such classifiers
provide relevant information for the current environment.

On two experiments, we showed that the algorithm
can track the changing environments regardless of the
rate of change, though the performance markedly in-
creases for slower rates of change. We further showed
that the algorithm can also track abrupt and rapid
changes, as soon as a reasonable ensemble size (greater
than 1) is obtained for each new dataset.

This algorithm is currently in its infancy stages of
its development; however, initial results are promising
and warrant further analysis of this approach.

Acknowledgements

This material is based on work supported by the
National Science Foundation under Grant No: ECS
0239090.

References

[1] Widmer, G. and Kubat, M.; “Learning in the presence
of concept drift and hidden contexts,” Machine
Learning vol. 23, no. 1, pp. 69-101, 1996.

[2] Schlimmer, J. C. and Granger, R. H.; “Incremental
learning from noisy data,” Machine Learning, vol. 1,
no. 3, pp. 317-354, 1986.

[3] Helmbold, D. P. and Long, P. M.; “Tracking drifting
concepts by minimizing disagreements,” Machine
Learning, vol. 14, no. 1, pp. 27-45, 1994.

[4] Gama, J., Medas, P., Castillo, G., and Rodrigues, P.;
“Learning with drift detection,” SBIA 2004, Lecture
Notes in Comp. Science, vol.3171, pp.286-295, 2004.

[5] Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A.,
and Kipersztok, O.; “Real-time data mining of
non-stationary data streams from sensor networks,”
Information Fusion, in press, (2007).

[6] Rutkowski, L.; “Adaptive probabilistic neural net-
works for pattern classification in time-varying envi-
ronment,” IEEE Trans. on Neural Networks vol. 15
811-827, no. 4, 2004.

[7] Kuncheva, L. I.; “Classifier Ensembles for Changing
Environments,” Multiple Classifier Systems (MCS
2004), Lecture Notes in Computer Science vol.
3077, pp. 1-15, 2004.

[8] Blum, A.; “Empirical support for Winnow and
weighted-majority algorithms: Results on a calendar
scheduling domain,” Machine Learning, vol.26, no. 1,
pp. 5-23, 1997.

[9] Oza, N.; Online Ensemble Learning, Ph.D. Disserta-
tion, (2001) University of California, Berkeley.

[10] Kyosuke, N., Koichiro, Y., and Takashi, O.; “ACE:
Adaptive classifiers-ensemble system for con-
cept-drifting environments,” Multiple Classifier Sys-
tems (MCS 2005), Lecture Notes in Computer Sci-
ence, vol. 3541, pp. 176-185, 2005.

[11] Street, W. N. and Kim, Y.; “A streaming ensemble
algorithm (SEA) for large-scale classification,” 7th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD-01), pp.
377-382, 2001.

[12]Y. Freund and R. E. Schapire, "Decision-theoretic
generalization of on-line learning and an application
to boosting," J. of Comp. and System Sci., vol. 55, no.
1, pp. 119-139, 1997.

[13] Polikar, R., Upda, L., Upda, S. S., and Honavar, V.;
“Learn++: an incremental learning algorithm for su-
pervised neural networks,” IEEE Transactions on
Systems, Man and Cybernetics, vol.31, no. 4, pp.
497-508, 2001.

[14] Schapire R., Freund Y., Bartlett B., and Lee W.,
“Boosting the margin: new explanation for the effec-
tiveness of voting methods,” The Annals of Statistics,
vol. 26, no. 5, pp. 1651-1686, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

