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Incremental Learning in Nonstationary Environments
with Controlled Forgetting

Ryan Elwell and Robi Polikar*

Abstract - We have recently introduced an incremental learn­
ing algorithm, called Learn++.NSE, designed for Non-Stationary
Environments (concept drift), where the underlying data distri­
bution changes over time . With each dataset drawn from a new
environment, Learn++.NSE generates a new classifier to form an
ensemble of classifiers. The ensemble members are combined
through a dynamically weighted majority voting, where voting
weights are determined based on classifiers' age-adjusted accu­
racy on current and past environments. Unlike other ensemble­
based concept drift algorithms, Learn++.NSE does not discard
prior classifiers, allowing potentially cyclical environments to be
learned more effectively. While Learn++.NSE has been shown to
work well on a variety of concept drift problems, a potential
shortcoming of this approach is the cumulative nature of the en­
semble size. In this contribution, we expand our analysis of the
algorithm to include various ensemble pruning methods to intro­
duce controlled forgetting. Error or age-based pruning methods
have been integrated into the algorithm to prevent potential out­
voting from irrelevant classifiers or simply to save memory over
an extended period of time. Here, we analyze the tradeoff be­
tween these precautions and the desire to handle recurring con­
texts (cyclical data). Comparisons are made using several scena­
rios that introduce various types of drift.

Index Terms-concept drift, learning in nonstationary envi­
ronments, multiple classifier systems, incremental learning

1. INTROD UCTIO N

I ncremental learning from data drawn from a non-stat ionary
environment is an increasingly important topic in computa­

tional intelligence due to many potential applications - from
climate or financial data analysis to monitoring network traffic
- that can benefit from such a capability. In a nonstationary
environment, the underlying distribution that generates the
data, and therefore the corresponding decision boundaries,
changes over time. The classification algorithm must then be
able to adapt such that the learned decision boundaries can be
updated accordingly. However, the classifier should also retain
any previously acquired knowledge that is still relevant, which
raises the stability-plastic ity dilemma [I]. Learning in such an
environment becomes particularly challenging if the previous
data are no longer available, requiring an incremental ap­
proach, where learning must rely on existing models (classifi­
ers) and the current data only [2].

Early work on learning in nonstationary environments have
primarily focused on the definition of the problem, as well as
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the conditions under which such learning is possible, for ex­
ample, within the PAC (probably approximately correct)
learning framework [3-5]. More recently, non-stationary en­
vironments have been modeled in more pragmatic terms, such
as real or virtual drift (change in class conditional or prior
probabilities, respectively) [6], or as a hidden context as de­
scribed by Kuncheva [7]. The hidden contexts typically ap­
pear in incrementally acquired data that experience some type
of perturbat ion, whether caused by noise, gradual or abrupt
changes in the boundaries between classes, or even systematic
trends that may be cyclical in nature. Hence, learning in a
non-stationary environment is also known as concept drift,
where concept refers to classes or class boundaries to be
learned, and drift is the change in these boundaries. The drift
can be gradual, abrupt, contracting, expanding or cyclical.
When the drift is abrupt, the problem is more appropriately
called concept change rather than concept drift . Both concept
drift and concept change are evaluated through the experimen­
tal work described in this paper.

II. COMMONLY USED ApPROACH ES FOR CONCEPT DRIFT

A. Windowing-Based Approaches

Earliest approaches to tracking a changing environment
have sought to control how the data are used or learned by the
algorithm through windowing. In windowing-based approach­
es, the data that fall into the most recent time window are
thought to represent the currently valid information, which is
then used to retrain a classifier. As new data become available ,
the window slides to include the most recent data. Previous
data, now considered as irrelevant, are discarded. All informa­
tion learned from such data is therefore forgotten. Variable
length windows have been employed in algorithms such as
FLORA [8] to handle various drift rates. A longer window is
typically used for slowly varying environments , since more of
the data is believed to be relevant at any given time. Converse­
ly, a shorter window is used for fast changing environments,
since a smaller segment of the data is then relevant to the cur­
rent environment. Other data selection techniques have also
been employed, which seek out instances that are believed to
be most relevant to the current environment based on a com­
parison to previous instances [5;6].

B. Multiple Classifier Systems

Multiple Classifier Systems (MCS) (or ensemble) based al­
gorithms represent a different approach to concept drift, and
are particularly effective at providing a good balance between
stability (retaining existing and relevant information) and plas­
ticity (learning new knowledge) . MCS-based approaches are
characterized by an ensemble of classifiers which are com­
bined to form a final decision. The challenge of MCS-based
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approaches is that of keeping the ensemble relevant to the cur­
rent environment, which is often accomplished using some
combination of voting techniques, batch or instance-based
classifiers, and a forgetting mechanism.

Street's Streaming Ensemble Algorithm (SEA) is among
the first MCS-based approaches, specifically developed for
learning in non-stationary environments [9]. In SEA, an en­
semble of classifiers is created for each consecutive time win­
dow (of predetermined size) of data. Classifiers are weighted
according to a quality score, and their votes are combined to
obtain the final decision. SEA employs an age-based forget­
ting mechanism, where old classifiers (that fall outside of the
fixed ensemble size) are permanently deleted.

Ensemble weighting is introduced for drifting environments
by Wang in [10;11] for large scale data-mining purposes using
batch classifiers, which are trained on an entire window of
data (hence not incremental learning). Classifier weights are
related to their accuracy on the current training data and are
calculated using mean square error. Both theoretical and em­
pirical results indicate that this approach effectively gives
more power to classifiers with low error in the current envi­
ronment, and thus yields a performance substantially superior
to that of an unweighted ensemble.

More recently, Dynamic Weighted Majority (DWM) is in­
troduced by Kolter and Maloof [12;13], which uses an online
learning approach, training and updating classifiers with each
in-coming individual data instance. An error score is main­
tained for each expert in the ensemble, and experts are re­
moved at a predetermined interval if their error exceeds some
threshold. This algorithm also includes a re-training phase for
each expert in order to keep the ensemble updated to the cur­
rent environment.

Nishida's Adaptive Classifiers Ensemble (ACE) [14] takes a
novel approach to MCS by combining both online and batch
learning. Batch-trained classifiers are used to maintain prior
knowledge, whereas an online classifier is updated on each
new instance. The goal is to create a diverse ensemble that is
competent in recent environments and also retain old know­
ledge. ACE employs a forgetting method for classifiers with
high error, and also uses selective memory for making a final
ensemble decision. The top performing classifiers (determined
by a confidence interval) are polled while the rest are forgot­
ten.

Perhaps one of the more interesting examples is Scholz and
Klinkenberg's boosting based ensemble creation approach
which maintains two ensembles - one trained on the currently
available data, and one trained on a cache of previously seen
data, and chooses the better of the two ensembles in each time
step. Classifier weights are based on the LIFT of each classifi­
er, which measures the correlation between the classifier's
decision and the true class based on conditional probabilities.
Changing values of LIFT for each classifier across time indi­
cate the existence of drift [15]. The way in which the LIFT
values are computed, however, restricts the algorithm to bi­
nary classification problems only.

C. Pruning

Many MCS-based algorithms have introduced some form en­
semble pruning. Pruning has two primary objectives: first, to
preserve memory and computation time in cases of long-term

or large scale data-mining applications as suggested in
[10;14;16]. The second objective is to maintain the ensemble's
overall competency in the current environment as in SEA [9]
as well as ACE [14]. Despite error-based weighted majority
voting methods, assuring that classifiers are weighted with
respect to their competence, an ensemble of classifiers may
suffer from outvoting if the number of incompetent classifiers
(irrelevant to the current environment) becomes sufficiently
large. Hence, a "forgetting" mechanism is often employed to
enforce a limit on the ensemble size. When the limit is ex­
ceeded, a new classifier replaces an existing one, then believed
to be irrelevant.

The most basic form of ensemble pruning is age-based prun­
ing, also known as replace-the-oldest. A fixed ensemble size
is chosen, and as new classifiers are generated, the oldest clas­
sifier that causes ensemble size to exceed the predetermined
size is removed to make room for the newest classifier. Per­
haps a more effective ensemble pruning approach, however, is
error-based pruning, also known as replace-the-loser or re­
place-the-weakest. Here, an error-based criterion is imposed
on all classifiers in the ensemble to determine - and remove -
the least competent one(s) on the current environment. Com­
petence can be relative to the mean squared error on current
environment's training data (as in [8] and[14]) or some other
quality criterion (as in [9]). One of the greatest concerns with
any permanent ensemble pruning method, however, is the risk
of forgetting information that can later become relevant again
in recurring or cyclical environments. In such scenarios, en­
semble members that are either old or have low accuracy in
the current environment may very well be useful again if or
when the distribution drifts back to an earlier state.

D. When Pruning is Necessary?

We have recently introduced an ensemble of classifiers ap­
proach, Learn++.NSE, for incremental learning of concept drift
in nonstationary environments [2;17]. Unlike other ensemble­
based approaches, Learn++.NSE does not discard any of the
classifiers, but rather uses the classifiers' age-adjusted errors
on current and past environments to determine if - or how
much - each classifier should contribute to the final decision.
Such an approach, of course, will only temporarily forget cur­
rently irrelevant information, but will be able to recall when
such information becomes relevant again. On the other hand,
this desirable property comes at a cost of increased complexi­
ty' as the algorithm will accumulate classifiers in perpetuity. It
is therefore fair to ask whether - or when - a pruning mechan­
ism can be beneficial, and if so, what kind of pruning mechan­
ism is better suited for concept drift applications. To answer
these questions, we have integrated and evaluated two con­
trolled forgetting mechanisms for pruning old classifiers. Our
overall goal is to test the effectiveness of the age-adjusted er­
ror-based weighting that is inherent in Learn++.NSE in com­
parison to - as well as in combination to - the forgetting me­
chanism used by the two types of pruning methods, replace­
the-oldest and replace-the-weakest. We also want to evaluate
the tradeoffs (if such exists) between the usefulness of retain­
ing old classifiers (e.g. in the case of recurring contexts) and
the prevention of ensemble outvoting. Also provided is a
cross-comparison of base classifiers using MLP, SVM, and
Naive Bayes classifiers.
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1. Compute error of the existing ensemble on new data

Et = L~tl(l/mt) · [Ht-1 (Xi) =I=- Yi] (2)
2. Update and normalize instance weights

w~ = .2.... {E t
, Ht

-
1
(Xi) = v.

L m t 1, otherwise (3)

Set Dt = wtlL~tl wf ==> Dt is a distribution (4)

3. Call BaseClassifier with ~t, obtain ht :X --+ Y

Input: For each dataset ~ t = 1,2, """
Training data {x~ E X; yf E Y = {1, """' el}, i = 1, ... , mi .
Supervised learning algorithm BaseClassifier
Ensemble size s

Do for t = 1,2, """

If t = 1, Initialize D1 (i) = w 1(i) = I/m1
, Vi, (1)

Go to step 3.
Endif

(5)

(7)

(8)

(9)

(10)

Fig. 1. Learn++.NSE algorithm

7. Calculate classifier voting weights

W: = log (l/Pk), for k = 1, """' t

8. Obtain the final hypothesis

Ht (Xi) = arg max, Lk W: · [hk(Xi) = e]

4. Evaluate all existing classifiers on new data ~t

Ek = L~tl Dt (i) · [hk(Xi) =I=- Yi] for k = 1, """' t
If Ek=t > 1/2, generate a new ht.
If Ek<t > 1/2, set Ek = 1/2,
Pk = Ekl(l - Ek), for k = 1, """' t (6)

5. Compute the weighted average of all normalized
errors for k t h classifier hk : For a, b E IRt
wk = 1/(1 + e-a(t-k-b)), wk = WkIL]:~w~-j

P
- t _ ~t-k t-j pt-j.c. k - 1

k - ~j=O wk k' lor - '"""' t
6. Ensemble Pruning: If t > s

a. Age-based: Remove h t - s from the ensemble

b. Error-based: Remove hk where Ek = maxk=l ...t Ek

Endif

algorithm), multilayer perceptron (MLP) and the support vec­
tor machine (SVM), the latter two of which are batch learning
algorithms. We later show that Learn++.NSE is largely inva­
riant to the choice of the BaseClassifier.

The training data of size m t is drawn from the current dis­
tribution pt (x, y) at time t. As mentioned earlier, the current
environment or distribution may have drifted in some way
from the prior distribution pt-l (x, y). At each time step,
Learn++.NSE initializes a distribution over each sample in the
current dataset. Before training, the distribution is updated
based on the error of the existing ensemble evaluated on the
new batch of training data (that is, the current environment),
providing a scalar measure on how much the current ensem­
ble, i.e., the composite hypothesis n', already knows the data
from the new environment. The normalized distribution then
assigns a higher weight to instances Xi that are incorrectly
classified under the hypothesis n'.

III. LEARN++.NSE

A. Overview

As an MCS-based algorithm, Learn++.NSE expects to receive
data in sequential batches, where each batch of data represents
a snapshot of the current form of the distribution, which is
expected to change over time. More specifically, Learn++.NSE
is provided with a series of training datasets {x~ E X; yf E

Yl. i = 1,···,mt, where xf is the i th instance obtained from the
lhdataset (environment), drawn from an unknown distribution
pt (z, y), the current form of a possibly changing distribution
at time t. At time t + 1, we obtain a new training dataset drawn
from pt+l (z, y). At each time step, there mayor may not have
been a change in the environment, and if there were, the rate
of this change is not known, nor assumed constant. Further­
more, we presume previously seen datasets - whether any of
them is still relevant or not - are no longer available. Hence,
the algorithm needs to work in an incremental fashion, and
any information previously provided by earlier data must nec­
essarily be stored in the parameters of the previously generat­
ed classifiers. Most existing concept drift algorithms, particu­
larly those that use a windowing approach, do not make this
restriction, and hence cannot be considered as incremental
learning algorithms.

Learn++.NSE then trains a new classifier with each dataset
that is received, and adds this classifier to the ensemble. As
the ensemble grows over time with addition of new classifiers,
the potential for outvoting from irrelevant classifiers also in­
creases. Thus, Learn++.NSE employs a unique dynamic
weighting mechanism that allows all classifiers (regardless of
age) that are relevant to the current environment to contribute
to the final decision with a voting weight that is proportional
to its training data performance on the current dataset. This is
accomplished by using an age-adjusted error that evaluates
each classifier's performance at current and all previous envi­
ronments. Performances on current and recent past receive a
higher weight. Classifiers with high error are then temporarily
ignored. This strategy justifies the retention of old classifiers,
especially in cases of recurring contexts and cyclical data.

Two pruning methods are integrated into Learn++.NSE and
compared to the original algorithm that retains all classifiers.
The first pruning approach is a time-based strategy, replace­
the-oldest, in which the oldest classifier is replaced by an in­
coming classifier trained on the current environment to main­
tain a fixed ensemble size. The second approach is weight­
based pruning, replace-the-weakest, where the classifier with
the lowest accuracy on the current environment is dropped to
make room for a new classifier. The weighting and voting
strategies are the same as those used for a normal (un -pruned)
ensemble in Learn++.NSE. The algorithm is described in the
following paragraphs, whose detailed pseudocode appears
Figure 1.

B. Algorithm Description

Given the current training dataset, ~t, the primary free para­
meter of Learn++.NSE is the selection of the supervised classi­
fication algorithm to be used as the BaseClassifier. This is the
classification algorithm using which all classifiers of the en­
semble are trained. Three such algorithms have been evaluated
in this work, namely, the naive Bayes (NB - an online learning
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A. Triangular Drift Data

The triangular drift problem is a three-class synthetic data
set ruled by a Gaussian distribution, which experiences drift in
mean along the three edges of a triangle . Three classes under­
go a rotational drift in a triangular pattern. Figure 2 shows the
location of each class distribution at times t = 0, t = 1/6, t =
1/3, and t = 1/2, along with the direction of drift . The entire
experiment is comprised of two complete rotations of each
class along the path. Random noise is added to the experiment
in order to prevent the appearance of identical snapshots from
a recurring distribution. The parametric equations which go­
vern these paths are shown in Table 1. The number of time
steps chosen for this test was T = 200 . At each time step, we
select a total of 20 samples from each of the three class distri­
butions, which serve as the current training data DC.

t=1/2

8

8

t=1/6

5

5

2

2

i --------

t=1/3

Such an instance weighing scheme effectively focuses the
algorithm on the previously misclassified instances on which
the individual classifiers' new error is evaluated. Since such
misclassified instances are likely to come from the current
(and possibly previously unseen parts of the) environment,
such an approach allows the error-based voting weights to
focus on the current environment.

Once the new classifier is trained (Step 3), the error efc of
each classifier hk is evaluated based on its performance on the
current training data DC (Step 4). Note that the distribution D1

itself is used to calculate the error in order to give more credit
to classifiers which are accurate over previously misclassified
instances (Equation 5). The individual error of each classifier
is later used for calculating its voting weights. If the newly
trained classifier's error on the current environment exceeds
Yz, that classifier is discarded and a new one is trained; if the
error of a previously generated classifier exceeds Yz, however,
its weight is set to Yz . An error of Yz yields a normalized error
flt of 1 (Equation 6) at the current time step, which carries
zero voting weight (Equation 9).

Prior to calculating classifier weights , the normalized error
is weighted using a non-linear sigmoid function to give more
preference to each classifier's performance in the recent envi­
ronment(s) . Final "age-adjusted error averaged" voting weight
of each classifier hk at time t is then the logarithm of 1/ fir

Ensemble pruning, which introduces the cap on ensemble
size, s, as an additional free parameter, occurs in Step 6. Age­
based pruning checks the current ensemble size, and perma­
nently removes the oldest classifier (and its weight and prior
error information) if the size exceeds this cap, s . Alternative­
ly, error-based pruning selects the classifier with the highest
error on the current training data to be permanently removed
from the ensemble, provided that the ensemble size has
reached the cap. All remaining classifiers are then combined
through weighted majority weighting using their age-based
error adjusted weights.

Fig. 2. Four snapshots from the path of triangular drill

Table ! PARAMETRIC EQl:AT10SS GOVERSING PATH OF DRIFT. ,
o< t < 1/6 & 112 < t < 213 1/6 < t <1/3 & 213 < t < ~/6

II. II. G. G u, II. G G

('I 5~91 8-181 1 1 8-181 1 1 1
('2 1...91 1·181 1 1 5+91 8-18t 1 1
('3 8-181 1 1 1 1+91 1~181 1 1

1/3 < t < 1/2 & ~/6 < t < I
II. II. G. G

('I 1+91 ' 1+181 1 1
('2 8-181 , 1 1 1
('3 5+91 8-181 1 1

The results given in Figure 3, for each of the NB, MLP and
SVM used as the BaseClassifer, shows the maximum achieva­
ble performance using a Bayes Classifier (since the distribu­
tion is known) , the LearnH.NSE algorithm, the LearnH.NSE
with two pruning implementations (age-based and error­
based), and the performance of a single classifier trained only
on the current training data . We note that this is an important
benchmark, since the single classifier never carries the extra
baggage of what then may be irrelevant data.

Several datasets simulating different scenarios of nonstatio­
nary environments, such as abrupt vs. gradual vs. cyclical
drift, have been generated to yield some insight into the com­
parison of LearnH.NSE with different pruning variations.

The following structure is used in all simulations: experi­
ments begin at t = 0 and end at some arbitrary time t = 1.
Within this interval , a total of T consecutive batches of data
are presented for training, where each batch is assumed to be
drawn from a drifting environment. Thus, the number T de­
termines the number of time steps, or snapshots taken from the
data throughout the period of drift . A large T corresponds to a
low rate of drift seen by the algorithm, whereas a small T cor­
responds to a high effective drift rate, since the algorithm sees
fewer snapshots of the data over time. In these experiments,
the number of snapshots is kept the same for each data set, and
we focus on the comparison of pruning methods . An analysis
of the original LearnH.NSE using various amounts of effective
drift rate can be seen in [2]. As one would expect, the ability
of the algorithm to track the changing environment is inverse­
ly proportional to the rate of drift; the slower the change, the
better the tracking.

IV. EXPERIMENTAL R ESULTS
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a =Snl8

a = rt , t = Yza =7nl8

a =n/2, t =X

a = 3n/4

a =3nl8

Conversely, the original Learn++.NSE (in blue) and the er­
ror-based pruning (in black) always perform as good as, or
better than the single classifier. The error-based pruning never
significantly outperforms a single classifier, while the original
Learn++.NSE does show a statistical improvement during the
second cycle/rotation of the data. We attribute the overall si­
milarity of these methods to the relatively simple nature of the
classification problem. Note that the sinusoidal characteristic
of the performance curves are also due to symmetric and rotat­
ing nature of the distributions. Finally, we also observe that
the algorithm Learn++.NSE shows very similar behavior with
all of the base classifiers, indicating that Learn++.NSE itself is
mostly independent of the base classifier being used.

B. Rotating Checkerboard Data

The second experiment is a unique, non-Gaussian data set
which resembles a rotating checkerboard. As shown in Figure
4, the rotation makes this deceptively simple looking problem
particularly challenging, as the decision boundaries change
rather drastically at each time step . Figure 4 shows half of an
entire rotation (a =0 to n), indexed to the parameter a, where
the axis of rotation is the lower left comer of the board . Note
that after half a rotation, data are drawn from a recurring envi­
ronment, as the [n 2n] interval will create an identical distribu­
tion drift to that of the [0 n] interval. As before, random noise
is introduced to prevent identical training snapshots from ap­
pearing. Each training dataset was kept particularly small,
comprising merely 25 samples (total from both classes) to add
another layer of small-data-set challenge to this problem .

Figure 5 shows the performance result of 50 independent
trials on test data comprised of 260 1 points (a 51 by 51 grid) at
each time step (the snapshots shown in Figure 4 are in fact the
test data at those time instances). Once again, the comparison
is made between Learn++.NSE, two pruning methods, and a
single classifier using three different base classifiers, the naive
Bayes , the MLP and the SVM. The Bayes classifier bench­
mark is not available in this scenario , since the dataset is not
Gaussian . As before, each performance curve is enclosed by
its 95% confidence interval to determine statistical signific­
ance of the performance differences.

a =O,t=O a =n/8 a =n/~

150

----+-----t-----+----j

0.4 -- - - - +---'-- - ------=--+- ------"'- - +---"- - ------=-

o 50 100
----------------,-----,

Ql
U
C
ctl
E...
.g
Ql
a.

0.4 -- - - - -t--I-- - - ....-+--lI'---+'!'----,,-

o 50 100 150
Time Step

1- L++.NSE _0_'Error Prune - Age Pru ne --- Sing le _._._.• Bay es I
Fig 3. Comparative results on the three-class triangular drill data

Ql
U
C
ctl
E
~ 0.6 -- .....-.- __Ilf-f--tE..----t-t--~" )
Ql
a.

Ql
U
C
ctl
E....g 0.6 --
Ql
a.

Each individual performance curve is color coded and en­
closed with similarly colored background shading, denoting
the 95% confidence interval over 50 independent trials. The
wider the shading, the larger is the confidence interval (please
see the electronic version for best visualization of the color
coded results in these figures) . Ensemble size cap was set as
25 in all experiments, as used in previously cited works.

Our focus here is not necessarily on overall performance
(although the algorithm seem to track the Bayes classifier ­
plotted in orange - quite well); but rather to make inferences
based on the usefulness of pruning methods at various stages
in the process. We make the following observations from the
results in Figure 3. Age-based pruning (in green) is clearly
inadequate, which is often outperformed by a single classifier
(red). This makes sense, as old data are not always irrelevant,
particularly in recurring contexts as the one featured here.

: : :

0.5 -- -\- -1-- -\--1- - -\

Fig. 4. Sample snapshots of the rotating checkerboard problem .

775
Authorized licensed use limited to: Drexel University. Downloaded on May 24,2010 at 19:30:25 UTC from IEEE Xplore.  Restrictions apply. 



Furthermore, Learn++.NSE increases this margin between it­
self and error-based pruning during the second half of the rota­
tion of the checkerboard, where the distribution repeats its first
rotation drift. This makes sense, because during the second
half of the rotation Learn++.NSE can take advantage of all of
the classifiers that were generated during the first half rotation .
The age-based pruning has no access to those classifiers, whe­
reas error-based pruning has only partial access to those clas­
sifiers to the extent allowed by its fixed ensemble size (25, in
this case).

Also of interest are the periodic spikes of performances for
all base classifier types and for all versions of the algorithms .
We note that these spikes occur in predictive and regular in­
tervals of 100 time steps which correspond to 90 degree rota­
tions of the board. At this angle, the decision boundaries are
substantially simpler, and the spikes in the performances
merely correspond to classification problem being simpler at
these time instances.

'- '- j
0.8 1-- - -+-- --+- - +-- -+- - t-- -+-- --+- -

0.9 ,-- - ,--- -,
NB

We make the following observations from the results in
Figure 5. First and foremost, we note that the original
Learn++.NSE algorithm, which retains all of the classifiers,
now performs better than all other algorithms, including both
versions of itself that features a pruning mechanism. Further­
more, the differences are statistically significant at all times
for NB, and most time steps for MLP and SVM (please see
color figures in the electronic version of this document) .

More specifically, Learn++.NSE outperforms the single clas­
sifier as well as age-based pruning version in all cases and at
all times during the experiment. Using MLP and SVM as base
model, the error-based pruning approach also outperforms the
age-based method and the single classifier (yet without statis­
tical significance), but never outperforms Learn++.NSE.

C. SEA Concepts

The third experiment involves an environment which under­
goes both steady periods of no drift as well as sharp and ab­
rupt changes in the class boundaries . This dataset was devel­
oped by Street et aI., discussed in [9], and has been used by
other proposed algorithms as a benchmark. The SEA (stream­
ing ensemble algorithm) dataset contains two classes of three
dimensional data (three features), only two of which are rele­
vant to the classification problem. Hence the third dimension
represents noise. The class labels are determined by using the
sum of the first two features of the data, such that class 1 is
assigned to all data whose sum is greater than some threshold,
and class 2 is assigned to the rest. That is, for instance i, class
label is c, = 1 if fi.l+fi .2 2: Ob and c, = 2 otherwise. This effec­
tively separates the classes by a two-dimensional hyper-plane .

Drift occurs as a result of a change in the value of the thre­
shold 0b which corresponds to an abrupt change in the class
labels. The threshold e controls the changing concepts. As
before, experiment begins at t = 0 and completes at t = 1; and
as in [9], we use 0/= 8 for t = 0 to 0.25; 9 for t = 0.25 to 0.5; 7
for t = 0.5 to 0.75, and 9.5 for t = 0.75 to 1. The changes are
introduced at evenly spaced intervals throughout the test, with
each change being more drastic than the last. We have also
added a 10% class noise to the training data as in [9].

We also follow the training data sizes introduced in [9],
where a total of 50,000 total points are introduced as training
data (25,000 points per class), and 250 points are introduced at
each time step, corresponding to a total of 200 time steps in
the experiment from t=0 to t=I .

We note that this experiment characterizes two different
scenarios of i) sharp changes between environments; and ii)
convergence during a stationary environment, as opposed to
gradual drift shown in the previous two experiments. The
results are shown in Figure 6, again for each of the three Ba­
seClassifiers mentioned above.
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SVM

A primary concern with learning in nonstationary environ­
ments is how to handle previously acquired knowledge that
mayor may not be currently relevant. Algorithms that use a
windowing approach over the incoming instances assume that
any data that falls outside of the current window is irrelevant
and hence train a single classifier only with the data that falls
into the current data window. Such approaches never have to
worry about the issue of how to handle previously acquired
knowledge, as all such knowledge is discarded every time a
new classifier is trained . On the other hand, these approaches
risk a significant performance drop if and when the previous
knowledge is still - at least partially - relevant. Ensemble­
based approaches overcome this difficulty by retaining the
previously generated knowledge in the ensemble members .
However this solution comes at a cost of increased computa­
tional and memory resources due to maintaining and reweight-

v. CONCLUSIONS & DISCUSSIONS

ing those stretches where there is no concept drift, all ensem­
ble-based algorithms behave more or less similarly, and grad­
ually increase their classification performance to reach an
asymptotic value, which is a well established feature of the
ensemble-based algorithms . When a sudden concept change
occurs, the decision boundaries generated by the previous
classifiers become (mostly) incorrect, with only one (the most
recent) classifier generating the correct decision boundary.
The combination of large number of misclassifications then
results in the steep drop in performance as seen with all en­
semble algorithms and all base classifier configurations.

The second observation we note is that - despite the steep
drop in performance - all ensemble-based algorithms are able
to recover from the drop, and in fact exceed the performance
of the single classifier with statistically significant margins (as
before, the shading around each curve represents that classifi­
er's 95% confidence interval). Among the three ensemble­
based approaches, however, there are significant differences in
recovery time. The age-based pruning approach performs most
sluggishly after a concept change, as it takes much longer for
this approach to achieve its asymptotic value. Both the origi­
nal LearnH.NSE as well as it error-based pruning version, on
the other hand, recover much faster, the error-based pruning
approach being the faster of the two. This also makes sense,
since after the concept change, there is relatively little reason
to retain the old classifiers , and the error-based pruning gets
rid of all old classifier in at most s steps, where s is the number
of classifiers to be retained in the ensemble. We should also
add that the difference in performance as well as the recovery
time between the original LearnH.NSE and its error-based
pruning version is not consistently statistically significant, as
seen in Figure 6. This indicates that the error based - and age
adjusted - weighting allows LearnH.NSE to effectively identi­
fy and ignore the irrelevant classifiers.

Finally, as in all previous cases, we note that the
LearnH.NSE and both of its versions that feature a pruning
mechanism behave very similarly with identical trends regard­
less of the base classifier being used. This is also noteworthy
because such invariance allows the user to choose the classifi­
cation algorithm that is most appropriate for the application at
hand.
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The figure of merit in this scenario is not the specific classi­
fication performance of the algorithm, but rather how quickly
the algorithm can recover from an abrupt change. So the SEA
data represent a concept change problem, rather than a concept
drift problem . We observe that the single classifier has a fairly
consistent performance throughout the experiment. This
makes sense: unlike the rotating checkerboard problem, where
the characteristics of the decision boundaries changes in time,
the nature of the decision boundary in the SEA dataset, a (li­
near) line with identical slope, remains unchanged in all four
cases . Furthermore, unlike the previous cases where the deci­
sion boundaries changed gradually, there is no explicit need to
retain any of the previous classifiers . Since there is no extra
baggage from older classifiers, single classifier does not expe­
rience any steep performance drop. Regardless of the base
classifier used, the single classifier performance remains
around 95%.

Such is not the case, however, for the ensemble-based algo­
rithms, which need to properly reweigh the old classifiers that
are currently in the ensemble, each time new data arrive. Dur-
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ing each classifier with each addition to the ensemble. Fur­
thermore, retaining an ensemble also makes the algorithm less
agile to track fast changing environments. One way to alle­
viate these problems is to use a pruning strategy. Two most
commonly used pruning strategies in ensemble-based systems
are age-based and error-based pruning, both of which retain a
fixed size ensemble. Our previously introduced Learn++.NSE
algorithm does not discard any of the classifiers and instead
relies on a strategic dynamic weight update rule. The question
of our interest in this effort was therefore when is it advanta­
geous to retain all classifiers and rely only on the weight up­
date rule to ignore irrelevant decisions of old classifiers and
when is it advantageous to use a pruning strategy.

The experiments conducted in this study give several clues
to the behavior of ensemble-based algorithms for nonstatio­
nary environments. First, ensemble approaches outperform a
single classifier, even when the concept change / drift is rapid
or abrupt as in the SEA dataset. Interestingly, we see that if
the old knowledge has little or no relevance to the current en­
vironment, it appears that retaining all classifier members as in
Learn++.NSE can still provide an advantage (though often not
significant) but it never causes any performance degradation.
Pruning-based approaches may nevertheless be preferred due
to their lower computational cost and lower likelihood of over­
fitting. Similar arguments can also be made for gradual / slow­
ly changing environments, so long as such environments do
not experience a cyclical change. If a cyclical change is ex­
pected or even suspected, then all classifiers should be re­
tained as demonstrated by the performance of the original
Learn++.NSE with the rotating checkerboard problem.

The choice of the pruning strategy appears to be a less diffi­
cult decision: error-based pruning should, in general, be pre­
ferred over the age-based pruning. Limiting the ensemble size
according to lowest error tends to increase the ensemble's
ability to react to any environment change, but specifically to
sharp changes, as seen in the SEA experiment. We observed
that the error-based pruning can react to such sharp changes
much faster than the age-based pruning.

Finally, we should add Learn++.NSE and its pruning based
versions are likely to be most beneficial in learning in nonsta­
tionary environments i) if the environment provides so little
data at each time step that a new classifier trained with such
limited data cannot sufficiently model the current environ­
ment; and/or ii) if the previously generated classifiers retain
at least partial currently relevant information. We note that
cyclic environments necessarily satisfy the second condition.

Our future work will include comparison of Learn++.NSE to
other approaches of concept-drift learning, such as the stream­
ing ensemble algorithm (SEA) itself, and the dynamic
weighted majority on these simulated data as well as real­
world data as such data become available.
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